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Abstract 

Manufacturing processes can produce imperfect items, and inventory disruptions may occur in the process, causing 

shortages. This paper presents a production inventory model that considers the inspection of the produced batches 

and disposal of defective items in an Economic Production Quantity (EPQ) model with partial backorders and a 

discount on batches that are imperfect but not defective. Furthermore, the proposed model also considers the holding 

cost of these imperfect items while they are not sold. A step-by-step is conducted to find the optimal solution and a 

numerical example is provided to perform sensitivity analysis. We conclude that the setup cost and the holding cost 

are the ones with the most significant impacts on the total cost function. Although the inspection cost has been 

added to the model, this cost has little effect on the total cost and does not increase it significantly.  
 

Keywords - Backorder; disposal; EPQ; imperfect quality; inspection 
 

INTRODUCTION 

The Economic Order Quantity (EOQ) model, proposed by 

Harris [1], aimed to determine the order quantity based on 

economic considerations, including holding and setup costs. 

From the EOQ model, Taft [2] developed the classic 

Economic Production Quantity (EPQ) model, recognised by 

researchers as one of the most applicable models in 

production and inventory control management [3].  

The EOQ/EPQ inventory control models intend to 

minimise the total inventory-related costs, usually the 

holding cost and ordering costs, and because of their 

simplicity and effectiveness, the models are still a common 

approach for practical inventory management [4]-[6]. 

Nevertheless, several EOQ/EPQ models consider unrealistic 

assumptions and conditions regarding model input 

parameters that do not match real-world situations [7]-[9]. To 

increase the EOQ/EPQ models’ applicability, a significant 

number of researchers have expanded these initial models by 

considering more realistic propositions [10]-[23].  

 

One of the very restrictive assumptions of the EPQ 

model is that the manufacturing process must necessarily 

result in good-quality products. However, the manufacturing 

process may produce imperfect items for many reasons, such 

as imperfect raw materials, the skill level of the workforce, 

machine capability, maintenance policies, or malfunction 

during the manufacturing process [24]. These imperfect-

quality items may not necessarily be defective [25]; they can 

also be non-defective if their problem does not affect their 

primary function. For example, in the textile industry, the 

manufacturing process may produce imperfect clothes out of 

strict quality standards. Some customers may consider the 

possibility of buying items, even with imperfections, at a 

lower price. On the other hand, if a product is unable to 

perform its primary function, it is classified as a defective 

item, and it will therefore be disposed of. 

To evaluate the quality of batches and classify them as 

perfect or imperfect, and if imperfect, as defective or non-

defective, an inspection needs to be performed. Many 

scholars have developed studies considering the inspection 

cost in production [26]-[29]. Salameh and Jaber [30] 

evaluated the possibility of selling imperfect items at a 

discount in a single lot by the end of the inspection. When 
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such items are classified as defective, this is, does not fulfill 

their main function, some customers will not receive their 

orders. If such customers are willing to wait and receive their 

orders in the following period, the orders will turn into 

backorders; otherwise, the orders become lost sales. Thereby, 

customers’ behaviours in the shortage condition have led to 

another assumption in formulating the different models. 

Montgomery, Bazaraa, and Keswani [31] extended the basic 

EOQ pattern through partial backordering (EOQ-PBO). 

Thereafter, a wide range of researchers has explored the 

EOQ/EPQ-PBO problem [32]-[38]. Based on EPQ-PBO and 

imperfect items discussion, Cunha et al. [25] proposed an 

EPQ model that investigates how the partial backordering 

(EPQ- PBO) and the discount on imperfect quality of items 

affect the EPQ model when demand is not fully met.  

In light of the above, this work intends to extend the EPQ 

model of Cunha et al. [25], adding more realistic dimensions 

to the problem, by considering: (i) the inspection cost of all 

batches in the manufacturing process; (ii) the disposal cost of 

defective items; and (iii) the holding cost of non-defective 

items. This paper differs from other works and contributes to 

academia and practitioners in several ways. Firstly, through a 

review of the literature, and to the best of the authors’ 

knowledge, no previous work considering an EPQ model 

with partial backordering, lost sales, inspection, disposal of 

defective items, and holding cost of imperfect (non-

defective) items sold at a discount was found. Thus, this study 

endorses the literature discussion on inventory management 

by developing a new cost function. Secondly, EPQ models 

considering imperfect non-defective items are particularly 

relevant to industries that need to sell the products at a lower 

price. Besides, we consider that the holding cost of non-

defective items is relevant as non-defective products may not 

be sold immediately, needing, therefore, to be managed and 

stocked until they are sold at a discount. Thus, through our 

EPQ model, managers in charge of inventory decisions can 

determine the best-integrated options for a manufacturing 

system. 

The remainder of the paper is organised as follows. 

Section 2 presents the literature review. Section 3 states the 

problem definition. Section 4 describes the mathematical 

modelling problem and model optimisation, including the 

analytic solution procedure for finding the optimal solution 

to the EPQ inventory model, proving its optimality. Section 

5 presents the numerical example and sensitivity analysis, 

whereas Section 6 discusses the managerial implications. 

Finally, Section 7 summarises the concluding remarks, the 

limitations of this study, and recommendations for future 

research. 

 

 

 

BACKGROUND 

EOQ is one of the initial inventory models and is still used in 

production and inventory control environments. Studies 

directed after Harris [1] focused on certain critical features, 

such as developing new cost and revenue functions for 

particular applications [4]. For EPQ and EOQ models, the 

cost function can be optimised in numerous ways by 

combining multi-decision variables and various inventory 

approaches.  

In the literature, one specific focus of study is to consider 

the imperfect process in determining the EPQ/EOQ value 

[39]-[41] due to several factors such as human error, 

machine, and equipment breakdowns [42]. Various works 

have studied the problem of handling imperfect items in EPQ 

inventory models [43]-[52], and to evaluate the quality of 

batches, many studies have included inspection and screening 

procedures to identify these imperfect products. Lee and 

Rosenblatt [53] presented an inspection policy for the EOQ 

model with a known fraction of defective items. A year later, 

Porteus [54] introduced the concept of defective products into 

the manufacturing process for inventory by assuming a fixed 

probability of a malfunction. Chan, Ibrahim, and Lochert [55] 

modified the classical EPQ model, integrating 100% 

inspection of goods, lower pricing, and rework situations. 

The authors assumed that imperfect-quality items, not 

necessarily defective, could be used in a different production 

process or sold to a specific customer at a lower price.  

In his EPQ model, Chiu [56] suggested that not all 

defective items can be repairable; but some would need to be 

discarded. The mathematical model proposed by Chiu [56] 

included repair and holding costs per reworked item and 

disposal cost per scrapped item. Later, Chiu and Wang [10] 

considered a procedure to determine the optimal runtime and 

production quantity for an EPQ model with repairable 

defective items, scrap, and stochastic machine breakdowns. 

Tsou, Hejazi, and Barzoki [57] proposed a production 

inventory model assuming that perfect items were maintained 

in stock until sold; imperfect items were sold at a discounted 

price, and defective items could be reworked or rejected. 

Jaggi, Khanna, and Kishore [58] developed an EPQ model by 

combining the effects of imperfect-quality items, a defective 

inspection process, an imperfect rework process, and disposal 

cost. Selvaraju and Ghuru [59] presented an imperfect 

production system with rework and scrap at a single-stage 

manufacturing system, integrating cost reduction delivery 

policy. More recently, Nobil, Sedigh, and Afshar-Nadjafi 

[60] studied a flawed production system with inspection, 

rework, shortage and scrap.  

Considering the production of defective items, several 

researchers had proposed distinguishing between holding 

costs of defective and perfect items [61]-[63]. Paknejad, 

Nasri, and Affisco [64] considered the extra cost of holding 
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the defective items in the batch during the period before items 

were returned to the supplier. More recently, Miranda, Vilela, 

and Leiras [65] presented an EPQ model considering items 

with a range of imperfection levels, with the selling price 

varying accordingly to it. 

Another classical assumption of EPQ models is that 

shortages are not allowed. According to Roy, Sana, and 

Chaudhuri [66], shortages are natural events in any inventory. 

Yu, Wee, and Chen [67] affirmed that when some customers 

are willing to wait for stock replenishment, shortages are 

partially backordered; otherwise, shortages may result in lost 

sales. It is possible to backorder the partial or full shortage 

amount. Montgomery, Bazaraa, and Keswani [31] were some 

of the initial authors to developed a model for the basic EOQ 

with partial backordering (EOQ-PBO). After that, many 

authors have focused their efforts on studying EOO/EPQ 

models, including imperfect-quality items combined with 

backorder-allowed cases [68]-[69].  

Zipkin [32] explored backorders and lost sales. Eroglu 

and Ozdemir [70] modified the model of Salameh and Jaber 

[30] by allowing shortages to be fully backordered and 

considered the scenario where defective items were scrapped, 

and imperfect-quality items could be sold at a discount as a 

single lot. Cárdenas-Barrón [24] adjusted the approach of 

Jamal, Sarker, and Mondal [71] by including the planned 

backorders into an EPQ inventory model. Pentico and Drake 

[33] formulated a deterministic EOQ model with partial 

backordering, developing a new solution for cost function 

optimisation. Later, Pentico, Drake, and Toews [34] extended 

this model to EPQ-PBO. 

 Still considering the several modifications on EOQ/ 

EPQ-PBO models, Taleizadeh, Sadjadi, and Niaki [72] 

studied two joint production systems with and without 

rework, where shortage was allowed and backordered. Hsu 

and Hsu [73] developed an integrated inventory model with 

an imperfect production process, inspection errors, and fully 

backordered shortage. Taleizadeh and Pentico [15] 

formulated an EOQ-PBO model with discounts for all units 

and a solution algorithm. Taleizadeh, Cárdenas-Barrón, and 

Mohammadi [74] elaborated an EPQ model with 

interruptions in the process, scrapping and rework, for 

multiple products and a single machine, resulting in limited 

production capacity and shortages. Salehi, Taleizadeh, and 

Tavakkoli-Moghaddam [38] presented an EOQ model in 

which some customers expected the orders to be delivered in 

the subsequent period when a shortage occurred due to 

quality issues; hence, in this model, the shortage was allowed 

by the unplanned interruption and partial backorders. Cheng, 

Wang, and Wei [75] studied an inventory model in which 

demand and backorder rates were, respectively, dependent on 

stock and backorder levels. More recently, Keshavarzfard et 

al. [28] presented an economic production system with 

backorder, inspection, and holding costs of both perfect and 

imperfect items. The major findings of the relevant literature 

are summarised in Table 1, presenting the features, model 

objective functions, and stochastic conditions of the models.  

 

 

Based on the wide-ranging literature on the EPQ models, 

it is noted that there is still a strong growing interest in the 

Features Reference 

Imperfect items 

[9], [10], [13], [20], [25], 

[30], [39], [38], [40], 
[51], [56], [57], [58], 

[61], [62], [63], [68], 

[73], [74], [76], [77],[78] 

[79], [80] 

Inspection Process 

[9], [10], [13], [20], [30], 

[39], [40], [51], [56], 
[58], [61], [62], [63], 

[68], [73], [74], [77], 

[78], [80]  

Discounts 
[20], [25], [30], [57], 
[61], [63], [73], [77] 

Disposal / scrapping 

[9], [10], [20], [39], [40], 

[51], [56], [57], [58], 
[62], [74], [76], [80], [81] 

Backorder / PBO 

[13], [25], [38], [56], 

[58], [68], [72], [73], [74] 

[76], [78], [79], [80], [81] 

Lost Sales [25], [38], [62], [76],[81] 

Model Objective                                             Reference 

Maximise total profit [20], [30], [51], [57], 

[58], [61], [73], [77] 

Minimise total inventory costs [9], [10], [13], [20], [25], 
[38], [39], [40], [56], 

[62], [63], [68], [74], 

[76], [78], [79], [80],[81] 

Minimise total warehouse space [79] 

Uncertainty Conditions                                 Reference 

Percentage of defective items [13], [30], [38], [51], 

[58], [61], [73], [74], 

[78], [79] 

Percentage of imperfect items [56], [57], [68], [77] 

Percentage of reworked items [39], [57], [58], [61] 

Percentage of scrapped items [39] 

Number of machine breakdowns [10], [40] 

Proportion of errors Type I/ II [51], [58], [61], [73] 

Preventive maintenance time [62] 

Frequency of orders [9] 

Number of consecutive imperfect 

batches 

[25] 

Storage area of product [76] 

Repair time/ breakdown time [78] 

Deterioration rate [80] 

Demand [81] 

TABLE 1 
LITERATURE FINDINGS 
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topic of imperfect production systems, which is a real-world 

manufacturing segment concern. On this, the present paper 

investigates the imperfect production systems, distinguishing 

non-defective items from defective ones and addressing the 

holding cost of these non-defective items - until they are sold 

at a discount - and the disposal cost of defective items. It is 

also possible to highlight that most of the papers do not 

address the lost sales costs together with backorder 

conditions. Thus, this study considers partial backordering 

and lost sales besides inspection costs and the other 

aforementioned costs.  
 

 PROBLEM DEFINITION  

This paper addresses an EPQ problem in a production system. 

We assume that once a product has been manufactured, all 

produced batches are inspected through quality control. The 

batches are identified as perfect or imperfect; there are no 

batches of intermediate quality. Imperfect batches can be 

classified as defective products (do not perform their primary 

function) or non-defective products (still perform their 

primary function but are not considered perfect, e.g., due to a 

scratch, a crack, or a stain). In many cases, the producer can 

sell the imperfect-not defective items at a discount. In the 

case of defective items, they can become a backorder, if the 

customer accepts to receive the order in the following period, 

or lost sale if the customer does not accept (Figure 1). 

If the demand is not met in the production system 

because of insufficient stock, the inventory may be negative. 

Still, if the demand is met, the inventory may be non-

negative. When production exceeds demand and all batches 

are perfect, these batches will be sold at full price. Suppose 

the demand exceeds production, and all batches are perfect. 

In that case, the producer will sell all batches, and the 

shortages can become backorders if the customers are willing 

to wait for delivery until the next period. Alternatively, the 

shortages can also result in lost sales if the customer refuses 

to receive the product in the next period. When production 

exceeds demand and imperfect batches are produced, these 

items may be sold at a discount, and the remaining orders can 

become backorders or lost sales. Lastly, suppose the demand 

exceeds production and imperfect items are produced. In that 

case, non-defective batches can be sold at a discount, and the 

remaining orders may become either backorders or lost sales. 

In this work, we consider six different types of costs. 

Setup cost is incurred for all batches since it is the cost to 

prepare the equipment to process a distinct batch. Once 

production has been finished, the batches undergo a quality 

inspection, resulting in inspection costs. As previously 

explained, batches can be classified as perfect or imperfect, 

and the imperfect ones are divided into defective and non-

defective. All perfect and non-defective batches are stored, 

incurring holding costs, and all defective batches are rejected, 

incurring disposal costs. Backordering costs occur when the 

customer agrees to receive the order in the next period, and 

the lost sales cost is incurred when the customer does not 

accept the order in the next period. The lost sales cost 

includes the lost profit on the respective unit and any 

goodwill loss. Figure 1 represents all the costs involved in 

this manufacturing system. 
 

 

 

The production schedule is fixed, and the batches are 

manufactured at equally-spaced intervals T. Production has a 

periodic review policy. After having been produced, each 

batch is subject to quality control that classifies it as perfect 

or imperfect. X is the number of consecutive imperfect 

batches. As the production of an imperfect batch occurs 

independently, it is presumed that the probability distribution 

followed is a geometric distribution [38, 82]. Therefore, X is 

a geometric random variable with parameter θ equal to the 

probability of an imperfect batch occurrence. There will thus 

be cycles where imperfect batches are produced (XT) and 

cycles where all batches are perfect (T). As such, the length 

of any inventory cycle is defined by T’=(X+1)T.  

Figure 2 illustrates three consecutive cycles, where the 

first and second batches produced are imperfect (X=1), and 

the third produced batch is perfect. As a result, the first 

inventory cycle is T’ = 2T, and then T’ = T. 

FIGURE 1 
ROADMAP FOR THE COSTS IN THE STUDIED PRODUCTION SYSTEM  
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FIGURE 2 

THREE CONSECUTIVE CYCLES IN THE EPQ MODEL WITH IMPERFECT AND 

PERFECT BATCHES 

 

 

FUNDAMENTAL ASSUMPTIONS AND NOTATIONS 

This section presents the model notations, assumptions, the 

Total Cost Function, and the model optimisation. 

Additionally, we provide a step-by-step to prove the 

solution’s optimality. 

I. Notations  

The following notations are used in the model:  

Parameters: 

𝐶0: Setup cost per unit time 

𝐶𝑖: Inspection cost per unit time 

𝐶ℎ: Cost of holding a unit in inventory per unit time 

𝐶𝑑: Disposal cost per unit time 

𝐶𝑏: Cost of keeping a backordered unit per unit time 

𝐶𝑙: Lost sales cost (lost profit and goodwill loss) per unit 

𝐷: Demand rate 

𝑃: Production rate 

𝛽: Fraction of backordered shortage (0 < 𝛽 < 1) 

𝐾: Fraction of imperfect batches sold at a discount (0 <
 𝐾 < 1) 

𝑋: Number of consecutive imperfect batches 

manufactured per unit time 

𝜃: Probability of producing an imperfect batch 

 

Decision variables: 

𝑇: Time interval between two successive production runs 

𝑇’: Time interval between two successive perfect 

production runs (𝑇’ = (𝑋 + 1)𝑇) 

𝐹: Fraction of time intervals with positive inventory 

level 0 < 𝐹 < 1 

II. Assumptions  

The following assumptions are adopted to develop the 

proposed inventory model: 

 

• The planning horizon is infinite [51, 52, 69];  

• The demand rate is known and constant [52, 58];  

• Shortages are permitted and partially backordered 

[25, 38, 67]; 

• The production schedule is fixed, in which batches 

are manufactured at equally-spaced intervals T [25, 

38]; 

• Each produced batch is inspected, and imperfect 

batches occur independently from each other [25, 

38]; 

• Defective items are not reworked [25]; 

• The total quantity of any defective batch or shortage 

being backordered is routinely added to the amount 

of scheduled production [25, 38]; 

• An inspection of 100% of goods is performed [52, 

80];  

• In the inspection of the batches, the whole batch is 

considered either perfect or imperfect; there are no 

half-imperfect batches [38, 52];  

• The inspection process is perfect [60]; and 

• The defective batches are disposed of immediately 

without warehousing [20, 60]. 

Salehi, Taleizadeh, and Tavakkoli-Moghaddam [38] 

developed an EOQ model assuming that the total quantity of 

any rejected batch is routinely added to the batch quantity of 

the next planned delivery. Using the same reasoning of the 

authors, we assume that the total quantity of any defective 

batch or shortage being backordered is routinely added to the 

amount of scheduled production. Besides that, to render the 

model more appropriate for real-world situations, we 

considered that imperfect non-defective items may not be 

sold immediately and therefore have a holding cost. 

III. Total Cost Function  

This study includes three new costs in the total cost function 

of the EPQ model presented by Cunha et al. [25]. We added: 

(i) an inspection cost of all batches, (ii) a disposal cost of 

defective items, and (iii) the cost of holding the non-defective 

items, assuming that these items are not immediately sold. 

Therefore, the total cost function of the production system is 

expressed in terms of the following costs: setup cost, 

inspection cost, holding cost, disposal cost, backordering 

cost, and lost sales cost, as demonstrated in (1) with respect 

to F, T, and X. 
 

 

 

 

 

 

 

 

 

D

DFT

(1-F)DT

T T T

(2-F)DT

(1- )(2-F)DT

FT

(1-F)T

T’ T’

(1-F)DT

(1- )(1-F)DT

XT XT

• Lost Sales: DTX (1- )(1-K)

• Barckordering: DTX (1-K)

• Non Defective (sell with discount): 

DTX(1-K)
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𝑪(𝑭, 𝑻, 𝑿) = 𝐶0(𝑋 + 1) + 𝐶𝑖(𝑋 + 1) +
𝐶ℎ𝐷𝑇2𝐹2

2
(1 −

𝐷

𝑃
) +

𝐶ℎ𝐷𝑇2𝑋2𝐾

2
(1 −

𝐷

𝑃
) 

+
𝐶𝑑𝐷𝑇2𝑋2(1 − 𝐾)

2
 

+ 𝐶𝑙𝐷𝑇(1 − 𝛽)(𝑋(1 − 𝐾) + 1 − 𝐹) 

+ 
𝐶𝑏𝛽𝐷𝑇2(1 − 𝐹)2

2
 (1 −

𝐷

𝑃
𝛽) 

+ 
𝐶𝑏𝛽𝐷𝑇2𝑋2(1 − 𝐾)

2
( 1 −  

𝐷

𝑃
𝛽) 

+ 𝐶𝑏𝛽𝐷𝑇2𝑋(1 − 𝐾)(1 − 𝐹) 
 

 

 

Since X is the number of consecutive imperfect batches that 

occur independently, it is a geometric random variable with 

parameter 𝜃 equal to the probability of an imperfect batch. 

The probability mass function is P(𝑋 = 𝑥) = 𝜃𝑥(1 −
𝜃), 𝑥 ≥ 0. The expected value and the second moment of X 

are given by 𝐸(𝑋) =
𝜃

1−𝜃
 and 𝐸(𝑋2) =

𝜃

(1−𝜃)2 +
𝜃2

(1−𝜃)2 =

𝜃(1+𝜃)

(1−𝜃)2, respectively. Thus, the expected cost of any cycle in 

terms of F and T is given by: 

𝑪𝑪(𝑭, 𝑻)

= 𝐶0 ((
𝜃

1 − 𝜃
) + 1) + 𝐶𝑖 ((

𝜃

1 − 𝜃
) + 1)

+
𝐶ℎ𝐷𝑇2𝐹2

2
(1 −

𝐷

𝑃
)

+
𝐶ℎ𝐷𝑇2𝐾

2
(1 −

𝐷

𝑃
) (

𝜃(1 + 𝜃)

(1 − 𝜃)2 )

+
𝐶𝑑𝐷𝑇2(1 − 𝐾)

2
(

𝜃(1 + 𝜃)

(1 − 𝜃)2
)

+ 𝐶𝑙𝐷𝑇(1 − 𝛽) ((
𝜃

1 − 𝜃
) (1 − 𝐾) + 1 − 𝐹)

+
𝐶𝑏𝛽𝐷𝑇2(1 − 𝐹)2

2
( 1 −  

𝐷

𝑝
𝛽)

+ +
𝐶𝑏𝛽𝐷𝑇2(1 − 𝐾)

2
( 1 −  

𝐷

𝑃
𝛽) (

𝜃(1 + 𝜃)

(1 − 𝜃)2 )

+ 𝐶𝑏𝛽𝐷𝑇2(1 − 𝐾)(1 − 𝐹) (
𝜃

1 − 𝜃
) 

(2) 

As aforementioned, the length of any cycle is given by 

𝑇’ = (𝑋 + 1)𝑇. Thus, the expected length of each inventory 

 

 

 

 

cycle is 𝑇’ = (𝐸(𝑋) + 1) 𝑇 =
𝑇

1−𝜃
. Accordingly, the total 

cost function is: 

 

𝑻𝑪(𝑭, 𝑻) =
𝐶𝐶(𝐹, 𝑇)

𝐸(𝑇′)

=
𝐶0

𝑇
+

𝐶𝑖

𝑇
+

𝐶ℎ𝐷𝑇𝐹2 ( 1 −  
𝐷
𝑃

) (1 − 𝜃)

2

+
𝐶ℎ𝐷𝑇𝐾 ( 1 − 

𝐷
𝑃

) 𝜃(1 + 𝜃)

2(1 − 𝜃)

+
𝐶𝑑𝐷𝑇(1 − 𝐾)𝜃(1 + 𝜃)

2(1 − 𝜃)

+ 𝐶𝑙𝐷(1 − 𝛽)(−𝜃𝐾 + 1 − 𝐹(1 − 𝜃))

+
𝐶𝑏𝛽𝐷𝑇(1 − 𝐹)2 ( 1 − 

𝐷
𝑃

𝛽) (1 − 𝜃)

2

+
𝐶𝑏𝛽𝐷𝑇 ( 1 − 

𝐷
𝑃

𝛽) 𝜃(1 + 𝜃)(1 − 𝐾)

2(1 − 𝜃)

+ 𝐶𝑏𝛽𝐷𝑇𝜃(1 − 𝐹)(1 − 𝐾) 

(3) 

IV. Procedure for determining the optimal values  

To perform model optimisation, the function 𝑇𝐶(𝐹, 𝑇) needs 

to be minimised subject to the constraint 0 ≤ 𝐹 ≤ 1. To 

minimise the function 𝑇𝐶(𝐹, 𝑇), the total cost function has to 

be derived for F and T. To simplify (3) and to derive the total 

cost function, artificial variables were used, as proposed by 

Cunha et al. [25]. The total cost function can be rewritten as: 

Setup Cost 

Lost Sale Cost 

Disposal Cost 

Holding Cost of Non-Defective Items Holding Cost of Perfect Items Inspection Cost 

Backordering Cost 

when inventory < 0 

 Backordering Cost 

when there are 

imperfect batches 

 

Backordering Cost when inventory < 0 and 

there are imperfect batches 

 

(1) 
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𝑻𝑪(𝑭, 𝑻) =
𝛼1

𝑇
+ 𝑇(𝛼2𝐹2 + 𝛼3 − 2𝛼3𝐹

+ 𝛼4 − 𝛼4𝐹 + 𝛼5)
− 𝛼6𝐹 + 𝛼7 

(4) 

Where: 

𝑊 =  (1 −
𝐷

𝑃
) 

(5) 

𝑌 = ( 1 − 
𝐷

𝑃
𝛽) 

(6) 

 𝛼1 = 𝐶0 + 𝐶𝑖 (7) 

𝛼2 =  
𝐷(1 −  𝜃)(𝐶ℎ𝑊 + 𝐶𝑏𝛽𝑌)

2
 

(8) 

𝛼3 =
𝐶𝑏𝛽𝐷𝑌(1 − 𝜃)

2
 

(9) 

𝛼4 =  𝐶𝑏𝛽𝐷𝜃(1 − 𝐾) (10) 

 𝛼5 =
𝐷𝜃(1+𝜃)(𝐶ℎ𝐾𝑊+𝐶𝑑(1−𝐾)+𝐶𝑏𝛽𝑌(1−𝐾)

2(1− 𝜃)
 

(11) 

 𝛼6 = 𝐶𝑙𝐷(1 − 𝛽)(1 + 𝜃) (12) 

 𝛼7 = 𝐶𝑙𝐷(1 − 𝛽)(1 − 𝜃𝐾) (13) 

Again, (4) can be rewritten as: 

                  𝑻𝑪(𝑭, 𝑻) =
𝛼1

𝑇
+ 𝑇𝑟(𝐹) + 𝑞(𝐹)                  (14)   (14) 

Where: 

     𝑟(𝐹) = 𝛼2𝐹2 + 𝛼3 − 2𝛼3𝐹 + 𝛼4 − 𝛼4𝐹 + 𝛼5        (15) (15) 

                  𝑞(𝐹) = −𝛼6𝐹 + 𝛼7                                          (16) 

 

Aiming to minimise the total cost, the partial derivatives 

of (14) were computed with respect to the decision variables 

T (cycle length) and F (fraction of time interval with the 

positive level of inventory), and both derivatives were set 

equal to zero. The optimal value of cycle length is: 

 

𝑇∗(𝐹) = √
𝛼1

𝑟(𝐹)

=  √
𝛼1

𝛼2𝐹2 + 𝛼3 − 2𝛼3𝐹 + 𝛼4 − 𝛼4𝐹 + 𝛼5
 

              (17) 

The optimal value of the fraction of time interval with 

the positive inventory level is: 

𝐹∗(𝑇) =
2𝛼3𝑇 + 𝛼4𝑇 + 𝛼6

2𝛼2𝑇
 

(18) 

 

By substituting 𝐹∗(𝑇) given by (18) into (17) and after 

algebraic transformations, we finally have: 

 

𝑇∗

= √
4𝛼1𝛼2 − 𝛼6

2

 𝛼4 + 4𝛼2𝛼3 + 4𝛼2𝛼4 − 4𝛼3𝛼4 − 2𝛼4
2 + 4𝛼2𝛼5

 

 
(19) 

 

V. Proof of the solution’s optimality  

As discussed in the previous section, (17) shows the optimal 

value of the cycle length. The discriminant of 𝑟(𝐹) =
𝛼2𝐹2 + 𝛼3 − 2𝛼3𝐹 + 𝛼4 − 𝛼4𝐹 + 𝛼5 is as follows: 

∆ = (2𝛼3 + 𝛼4)2  − 4𝛼2(𝛼3 + 𝛼5) (20) 

Once the discriminant shown in (20) is always negative 

and there are no roots, the unique optimal value of the cycle 

length that minimises the cost function is given by (17). The 

latter provides the optimal value for each period of the cycle 

when the inventory is positive. Because the discriminant 

presented in (20) has no roots, r(𝐹) is either positive for all 

𝐹 or negative for all 𝐹. Therefore, for each F, (17) gives a 
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unique root 𝑇∗ = 𝑇∗(𝐹) that minimises the cost function 

given by (14). By substituting the expression for 𝑇∗(𝐹) in 

(17) into (14), it is established that: 

𝑇�̂�(𝐹) =  
𝛼1

√
𝛼1

𝑟(𝐹)

+  √
𝛼1

𝑟(𝐹)
𝑟(𝐹) + 𝑞(𝐹)

= 2√𝛼1 𝑟(𝐹) + 𝑞(𝐹) 

 

(21) 

This equation provides the minimum cost for each value 

of F, and because 𝑇�̂�(𝐹) is a continuous function of F, it has 

one or more local minimum points within the interval (0, 1). 

The smallest value minimum is the global minimum of the 

cost function. So, to discover the global minimum, the first 

and second derivatives of (21) with respect to 𝐹 are computed 

as follows: 

𝑇�̂�′(𝐹) = √𝛼1  (
𝑟′(𝐹)

√𝑟(𝐹)
) + 𝑞′(𝐹)

=  √𝛼1 (
2𝐹𝛼2 − 2𝛼3 − 𝛼4

√𝐹2𝛼2 + 𝛼3 − 2𝐹𝛼3 + 𝛼4 − 𝐹𝛼4+𝛼5

)

− 𝛼6 

 

(22

) 

 

𝑇�̂�′′(𝐹) = √𝛼1 [
2 𝑟′′(𝐹)𝑟(𝐹) − (𝑟′(𝐹)2

2𝑟(𝐹)3/2
]  

=  √𝛼1 (
8𝛼2𝛼3 − 8𝐹𝛼2𝛼3 + 4𝛼2𝛼4 − 2𝐹𝛼2𝛼4 + 4𝛼2𝛼5 + 4𝛼3

2 + 𝛼4
2 + 2𝛼3𝛼4

2√(𝐹2𝛼2 + 𝛼3 − 2𝐹𝛼3 + 𝛼4 − 𝐹𝛼4+𝛼5)3
) 

(23) 

Assuming the inventory level to be positive, with F=1, 

if (22) is 𝑇�̂�′(1) ≥ 0, then (21) has a unique minimum in the 

open interval (0, 1). Otherwise, if 𝑇�̂�′(1) < 0, then (21) 

reaches the minimum at the boundary point (𝐹 = 1). The 

model is solved using the algorithm presented in Cunha et al. 

[25] and Salehi, Taleizadeh, and Tavakkoli-Moghaddam 

[38]. Hence, to determine the optimal values to F, T and TC, 

we follow the next steps. 

 

(1) Calculate 𝑇�̂�′(1), presuming the inventory to be 

positive (F=1), using (22);  

(2) If 𝑇�̂�′(1) < 0, then go to stage 3. Otherwise, go to 

stage 4; 

(3) To calculate the cycle length 𝑇∗ that minimises the 

total cost, assume that 𝐹 = 1 and replace it in (17). 

Then, compute the total cost using (3) and compare 

that to the cost of losing all demand (𝐶𝑙𝐷). If the 

total cost is greater than the cost of losing all 

demand, then the producer would allow the 

inventory level to always be negative during the 

cycle length that should be infinite. The optimal 

value of decision variables is 𝐹∗ = 0 and 𝑇∗ = ∞. 

Otherwise, if the producer does not allow the 

inventory to be negative (𝐹∗ = 1) in any cycle 

length, 𝑇∗  is calculated using (17); 

(4) If 𝑇�̂�′(1) is non-negative, determine 𝑇∗ using (19); 

(5) Replace the optimal cycle length value (𝑇∗) into (18) 

to find the fraction of cycle length in which the 

inventory level is positive (𝐹∗); and  

(6) Determine the cost function by (4). 

 

NUMERICAL EXAMPLE  

To demonstrate the application and usefulness of the model, 

we present a numerical example, following the parameters 

based on Jaggi, Khanna, and Kishore [58] and Pentico, 

Toews, and Drake [83]. Thus, the parameters values are set 

to 𝐷 = 1100 units per year; 𝐶𝑜= $275; 𝐶ℎ = $2 per unit time; 

𝐶𝑏 = $3.2 per unit time; 𝐶𝑙 = $4; 𝛽 = 0.77; 𝐾 = 0.4; 𝑃 = 9200 

units per year; 𝜃 = 0.10; 𝐶𝑖 = $10 per unit time; 𝐶𝑑 = $8 per 

unit time. Following the solution algorithm presented in the 

previous section, the optimal values obtained from this work 

were 𝐹∗ = 1, 𝑇∗ = 0.46 and 𝑇𝐶∗= $1090.53. 

The model was solved using MATLAB software. 

Despite the inclusion of three more costs in the total cost 

function, the proposed solution algorithm showed a good 

performance once the optimal values were achieved in few 

seconds compared to other algorithms in the literature. After 

calculating the optimal solution with the data above, a 

sensitivity analysis is performed to verify how the parameter 

changes affect the optimal 𝐹∗, 𝑇∗ and 𝑇𝐶∗. The results of this 

analysis are presented in Table 2.  

 

 

 
 

TABLE 2 

SENSITIVITY ANALYSIS  

Parameters Changes 
Optimal Values % Changes 

T* F* TC* T* F* TC* 



Journal of Industrial Engineering International, 17(2), Apr. 2021  

 

 

 J     I     E     I JIEI@azad.ac.ir  

 

9 

D   1100.0 0.462 1.00 1090.53       

 50% 1650.0 0.388 1.00 1258.19 84% 100% 115% 

 25% 1375.0 0.419 1.00 1183.12 91% 100% 108% 

 -25% 825.0 0.528 1.00 974.20 114% 100% 89% 

 -50% 550.0 0.638 1.00 822.10 138% 100% 75% 

Co   275.0 0.462 1.00 1090.53       

 50% 412.5 0.563 1.00 1358.61 122% 100% 125% 

 25% 343.8 0.515 1.00 1231.13 112% 100% 113% 

 -25% 206.3 0.403 1.00 931.67 87% 100% 85% 

 -50% 137.5 0.333 1.00 744.78 72% 100% 68% 

Ch   2.0 0.462 1.00 1090.53       

 50% 3.0 0.399 1.00 1287.36 86% 100% 118% 

 25% 2.5 0.427 1.00 1192.58 92% 100% 109% 

 -25% 1.5 0.509 1.00 979.23 110% 100% 90% 

 -50% 1.0 0.572 1.00 855.58 124% 100% 78% 

Cb   3.2 0.462 1.00 1090.53       

 50% 4.8 0.455 1.00 1111.23 98% 100% 102% 

 25% 4.0 0.459 1.00 1100.92 99% 100% 101% 

 -25% 2.4 0.467 1.00 1080.05 101% 100% 99% 

 -50% 1.6 0.471 1.00 1069.48 102% 100% 98% 

Cl   4.0 0.462 1.00 1090.53       

 50% 6.0 0.463 1.00 1019.69 100% 100% 94% 

 25% 5.0 0.463 1.00 1055.11 100% 100% 97% 

 -25% 3.0 0.463 1.00 1125.95 100% 100% 103% 

 -50% 2.0 0.388 0.96 1179.38 84% 96% 108% 

Ci   10.0 0.462 1.00 1090.53       

 50% 15.0 0.467 1.00 1101.29 101% 100% 101% 

 25% 12.5 0.465 1.00 1095.92 101% 100% 100% 

 -25% 7.5 0.461 1.00 1085.11 100% 100% 100% 

 -50% 5.0 0.459 1.00 1079.67 99% 100% 99% 

Cd   8.0 0.462 1.00 1090.53       

 50% 12.0 0.437 1.00 1163.03 95% 100% 107% 

 25% 10.0 0.449 1.00 1127.30 97% 100% 103% 

 -25% 6.0 0.477 1.00 1052.63 103% 100% 97% 

 -50% 4.0 0.493 1.00 1013.49 107% 100% 93% 

𝜃   0.1 0.462 1.00 1090.53       

 50% 0.2 0.424 1.00 1132.71 92% 100% 104% 
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 25% 0.1 0.443 1.00 1109.75 96% 100% 102% 

 -25% 0.1 0.483 1.00 1075.02 104% 100% 99% 

 -50% 0.1 0.503 1.00 1063.22 109% 100% 97% 

𝛽    0.8 0.462 1.00 1090.53       

 50% 1.2 0.325 0.22 936.28 70% 22% 86% 

 25% 1.0 0.385 0.76 1188.18 83% 76% 109% 

 -25% 0.6 0.466 1.00 962.27 101% 100% 88% 

 -50% 0.4 0.470 1.00 833.40 102% 100% 76% 

K   0.4 0.462 1.00 1090.53       

 
50% 0.6 0.484 1.00 1016.40 105% 100% 93% 

 
25% 0.5 0.473 1.00 1053.76 102% 100% 97% 

 
-25% 0.3 0.453 1.00 1126.73 98% 100% 103% 

 

  

 

 
FIGURE 3 

SENSITIVITY ANALYSIS OF T* 

 

As to the others parameters, such as the fraction of the 

time interval with the positive inventory level (F*), this 

parameter is only affected by two costs. F* decreases when 

𝐶𝑙 decreases by 50% and when the fraction of backordered 

batches (𝛽) increases by 25% and 50%. Finally, the total cost 

(TC*) is influenced positively by the setup cost (𝐶0 ), the 

holding cost (𝐶ℎ), the cost of keeping a backorder (𝐶𝑏), the 

inspection cost (𝐶𝑖 ), the disposal cost (𝐶𝑑 ), and the demand 

(D). As these parameters increase, TC* also increases, and if 

they decrease, TC* also does. The only cost that negatively 

affects TC* is the lost sales cost (𝐶𝑙). Regarding demand (D) 

decrease, T* varies in the opposite direction and its value 

increase. 

The sensitivity analysis also shows that when the 

probability of producing an imperfect batch (𝜃) increases, T* 

decreases. Thus, this analysis makes it evident that with the 

increase in imperfect batches' probability, it will be necessary 

to produce more batches, as many batches will be detected as 

imperfect. Hence, the duration of time between two 

production runs (T*), decreases. Similarly, if demand (D) 

increases, T* varies in the opposite direction to speed up 

production and meet demand. Considering F*, it is 

unaffected by the increase or decrease of 𝜃. TC* is directly 

affected by 𝜃; if 𝜃 increases, TC* will also increase, and if 𝜃 

decreases, TC* also decreases. 

Considering the fraction of backordered batches (𝛽), the 

increase of 𝛽 will make T* decrease, and the decrease of 𝛽 

will make T* increase. Additionally, if 𝛽 increases, F* will 

be affected negatively. On the other hand, if 𝛽 decreases, F* 

will not be affected. Analysing TC*, we can conclude that 

TC* is positively affected by 𝛽. If 𝛽 increases, TC* will also 

increase, and if 𝛽 decreases, TC* also will. As to the fraction 

of imperfect batches sold at a discount (𝐾), TC* will decrease 

if 𝐾 increases and the opposite also happens. 𝐾 also does not 

affect F*. If 𝐾 increases, T* also increases, and if 𝐾 

decreases, T* also does.  

DISCUSSION AND MANAGERIAL IMPLICATIONS 

This study takes into account the behavioural factors of the 

real-world scenarios, considering a flawed manufacturing 

system with permissible shortages, which can be partially 

backordered or lead to lost sales. The imperfect products can 

be distinguished as non-defectives and defectives through an 

inspection process. Then, they are sold at a discount (in case 

of non-defectiveness) or disposed of after the production 

process. Moreover, non-defective items need to be stocked 

while they are not sold at a discount because it depends on 

the customer's willingness to buy them. Thus, this model 

indicates the best-integrated decisions for a manufacturing 

system, allowing the managers to better use the available 

resources. Compared to similar models in the literature, this 

model provides a good framework for a complex 

manufacturing system with inspection, partial backordering, 
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discount for imperfect-quality batches, lost sales conditions, 

warehousing conditions for non-defective items, and disposal 

of defective items. This makes our model closer to real-life 

inventory systems and more robust, trying to cover some gaps 

in the inventory systems literature. Cunha et al. [25], for 

instance, do not consider the inspection process to identify 

imperfect items and the holding cost for imperfect-quality 

batches, therefore not accounting for the fact that these 

products may not be sold instantly. Gharaei, Hoseini 

Shekarabi, and Karimi [20] do not take into account shortages 

in terms of backorders and lost sales in all periods, not 

considering that shortages are very common in any 

production system.  

The sensitivity analysis allows us to analyse how the 

changes in the variables affect the total cost function, which 

provides a useful tool for strategic decision-making. Among 

all costs, 𝐶0 is the cost that most affects TC*. The setup cost 

(𝐶0) followed by the holding cost (𝐶ℎ) are the variables with 

the highest inclination once they are the most elastic 

variables. In other words, the variation of these variables 

cause the most significant change in the total cost (TC). Thus, 

since savings in holding costs result in a total cost reduction, 

it is better to sell imperfect items at a discount as quickly as 

possible rather than stock them. Here, managers need to 

design strategies to make imperfect items more attractive to 

the customers, for instance, by increasing the discount over 

the imperfect items.  

On the other hand, inspection cost (𝐶𝑖) together with 

backordering cost (𝐶𝑏) are the costs that least affect TC*. 

These costs have the least variation in the total cost (TC). This 

finding is important when a decision must be made and where 

trade-offs exist. Additionally, we have concluded that the lost 

sales cost (𝐶𝑙) is the only cost that negatively affects the total 

cost (TC), i.e., when this variable decreases, the total cost 

increases. This finding means that there must be a lost sales 

cost small enough to not warrant production. In this scenario, 

it would be more efficient to keep the negative inventory for 

a longer period. Moreover, as 𝐶𝑖 affects the total cost less than 

𝐶𝑙, it is worth investing in screening and inspection 

procedures to ensure higher process quality and reduce the 

risk of defective products and, consequently, the cost of lost 

sales. Figure 4 presents the sensitivity analyses of variable 

costs. 

 

FIGURE 4  
SENSITIVITY ANALYSIS OF VARIABLE COSTS 

 

CONCLUSIONS AND SUGGESTIONS   

This study develops an EPQ model including imperfect 

items, distinguishing them into defective and non-defective 

where defective products are disposed of, and non-defective 

products can be sold at a lower price. Additionally, this study 

incorporates partial backordering, lost sales conditions, and 

inspection to evaluate the quality of the batches. Through a 

numerical example, the behaviour of decision variables was 

explored, primarily by examining the optimal total cost, when 

the values of the parameters of the model were varied. This 

sensitivity analysis was carried out to demonstrate how 

decision-making can be performed strategically to reduce the 

total cost when certain variables change. The parameter that 

most affects the optimal total cost is the setup cost. In 

contrast, the inspection cost is the parameter that least affects 

the optimal total cost. It is interesting to note that although 

the inspection cost has been added to the model, it does not 

significantly increase the total cost. This shows a positive 

finding to the companies since the inspection is an important 

procedure to identify and separate perfect, imperfect, and 

defective items.  

Moreover, the literature review presented here provides 

an overview of the work on inventory systems and it can be 

useful for academics interested in this field of research. 

According to the literature findings, quality management 

influences consumer satisfaction that translates into 

reputation and revenue – the company's ultimate goal. In 

agreement with the literature and this work's findings, 

manufacturers should explore sources of imperfections, 

identifying their causes to minimise the proportion of 

defective items, once the costs of disposal and holding the 

non-defective items increase the total cost. 

Although this study investigates many real-life costs and 

considerations, our model still suffers from some limitations. 

This research does not consider the rework of imperfect 

items. Rework plays an important role in reverse logistics 

since second-hand products are reworked to reduce waste, 
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environmental damages, and overall production/inventory 

costs. 

Another limitation of this research is that the model 

considers inspection as a perfect process. However, the 

human inspection process is imperfect, often involving 

errors. We also consider 100% of inspection, which is not 

always possible, especially when inventory levels are large. 

Future studies may extend the present model in a few 

directions: it can extend this model to consider inspection 

errors, addressing both Type I and Type II inspection errors, 

and considering sampling inspection rather than perform 

100% screening. Future studies may also apply different 

costs, e.g., assuming that defective items are not disposed of 

immediately and need to be stored, while having different 

holding costs. Another suggestion is to address other forms 

of demand, such as stochastic demand, as research gaps also 

exist in the integration of strategical with operational 

decisions [84] - [85]. Finally, an interesting avenue of 

research can address sustainability issues such as inventory 

emissions costs (cost of inventory holding emissions and cost 

of production emissions), as environmental and sustainability 

issues are receiving enormous attention in business 

environments and academic researches. 
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