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Abstract 

Data uncertainty and multiple conflicting objectives are two crucial issues that the Decision Makers (DMs) must 

handle in making Aggregate Production Planning (APP) decisions in real practice. In order to address these two-

mentioned issues, this study presents a multi-objective multi-product multi-period APP problem in an uncertain 

environment. The model strives to minimize the total costs of the APP plan, total changing rate in workforce levels, 

and total holding inventory and backorder quantities simultaneously through the Robust Possibilistic Chance-

Constrained Programming (RPCCP) optimization approach. In this integrated approach, the RPCCP is applied for 

handling uncertain data. The RPCCP can not only handle any fuzzy position in the fuzzy model but also control the 

robustness of optimality and feasibility of the fuzzy model. Then, an Augmented Epsilon-Constraint (AUGMECON) 

technique is used to cope with multiple conflicting objectives. The AUGMECON technique can produce exact 

Pareto optimal solutions, which offer the DMs different selections to assess against conflicting objectives. Next, an 

industrial case study is provided to validate the applicability and effectiveness of the proposed methodology. The 

obtained outcomes indicate that the proposed RPCCP model outperforms the Possibilistic Chance-Constrained 

Programming (PCCP) model in terms of interested performance measurements (i.e., average and standard deviation 

of the objective function). In addition, a set of strong Pareto optimal solutions can be generated to accommodate 

alternative selections according to the DM’s preferences. Finally, by applying the Max-Min method, the best 

compromised (trade-off) solution is determined through a comparison among the attained Pareto solutions.      
 

Keywords - Aggregate production planning; robust possibilistic programming; chance-constrained; credibility 

measure; multiple-objective optimization; epsilon-constraint 
 

INTRODUCTION 

APP is defined as a medium to long range capacity planning 

process that determines the appropriate levels of production, 

holding inventory, subcontracting, backordering or lost 

sales, labor, capacity, and even pricing to satisfy market 

demand whilst minimizing total costs or maximizing total 

profit over a determined time horizon (from six to twelve, or 

even eighteen months) [1-4]. It helps to link the decisions of 

the short-term planning of operational and the long-term 

planning of strategic. Moreover, APP operating strategies 

play a vital role in enterprise resource planning and 
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organizational integration. Hence, APP has become a great 

interest that attracts many academics and practitioners. 

Since Holt et al. [5] proposed the HMMS (Holt, 

Modigliani, Muth, and Simon) rules, many researchers have 

proposed mathematical models to address APP problems. The 

HMMS model is an extensively applied scheme to deal with 

APP decision problems. The rules of its linear decision are 

useful to identify the suitable rate of production and the level 

of labor that minimizes total relevant costs, i.e., regular 

payroll, overtime, hiring, downsizing, and inventory holding 

costs. Nevertheless, when APP models are used, input data 

(demand and resources) are often considered to be 

deterministic or crisp values and with a single objective [6-

14]. 

In an actual production system, the input data for APP 

problems, such as market demand, operation costs, available 

resources, machine capacities, etc., are generally 

acknowledged to be complex and vague due to the fact that 

some information is insufficient or impossible to acquire 

accurately. There are two possible causes of data 

uncertainty: (1) environmental uncertainty due to the 

disruption from both ends of the supply chain (i.e., from 

upstream suppliers and downstream customers) and (2) 

system uncertainty due to the instability of internal 

processes and operations in an organization [15]. This 

uncertainty has a significant impact on deciding the APP 

plan. Therefore, if the uncertainty is neglected in the 

planning process, it will lead to negative influences on the 

performance of the company. To cope with the uncertainty 

in planning, many approaches have been developed, e.g., 

Stochastic Programming (SP), Possibilistic Programming 

(PP), and Robust Programming (RP). SP is a modelling 

optimization method that uncertain parameters are described 

by probability and randomness theory – based on known 

probability distributions [16-18]. Nevertheless, there are two 

main weaknesses in the SP approach. First, it depends on 

the collection of large historical data, which are tough to 

obtain in case of an APP problem. Second, the requirement 

of a large amount of uncertain data will raise the model’s 

complexity and result in a lack of computational efficiency. 

Also, probability theory might not provide us the right 

meaning to address several decision-making problems in 

real applications [19]. To improve these drawbacks, PP has 

been proposed as an efficient method that yields flexibility 

in dealing with imprecise/vague information since the 

uncertainty of data is represented by applying the 

possibilistic distributions that are according to the fuzzy set 

theory (incomplete available data and the subjective 

knowledge or experiences of the DMs/experts). Although 

this method has the ability to solve different types of 

uncertain parameters with high computational efficiency, 

the satisfaction and reliability levels of this method may not 

be guaranteed due to the fact that the obtained results are 

calculated by the expected or average value of imprecise 

data (the risk of the uncertain objective function cannot only 

be controlled by using imprecise parameter’s expected or 

average value). In contrast, the DMs usually consider 

reducing the impact of risks as low as possible in the 

decision-making process. In this regard, RP is a method that 

can help the DMs to control risk-aversion levels of output 

results, which was recommended to incorporate with PP to 

overcome the deficiency of the PP method [20]. The Robust 

Possibilistic Programming (RPP) approach has been applied 

in various fields. However, to the best of the author’s 

understanding, so far, such method has not been 

investigated yet in APP problems. 

Furthermore, in developing process of an APP plan, 

multi-objective decision making is needed. This is due to 

the fact that such a plan is usually prepared by taking inputs 

from different departments within an organization. These 

departments usually establish their own expectation for the 

plan on the basis that it would improve their performance. 

Therefore, departmental expectations are considered as the 

objectives of an APP plan. Obviously, the expectation from 

a department is not always aligned with those from other 

departments. In other words, they are conflicting objectives. 

As a result, developing an APP plan with conflicting 

objectives falls into the domain of multi-objective 

optimization. Typically, a multi-objective model provides a 

set of efficient/compromised solutions, which represent the 

effective trade-offs among the conflicting objectives. These 

solutions are popularly known as Pareto solutions or non-

dominated solutions [21]. From the literature, the 

conflicting objectives in the APP decision problems can be, 

for example, minimization of total costs, inventory 

investment, backlogged quantity, fluctuation of workforces, 

or maximization of total profits, utilization of facilities and 

their equipment, and customer service levels [22-28]. 

Taking into consideration of solving the APP model with 

many conflicting objective functions at the same time not 

only helps the DMs/planners to specify a bigger scope of 

these different options, but also makes the mathematical 

models of the APP problems much more practical. 

Regarding the enumerated issues such as APP 

decisions, uncertain data, multi-objective decision making 

in APP problems, and the use of uncertain modelling 

approaches, this study, thus, aims to propose an integrated 

approach that supports the DMs or planners for solving 

these issues to achieve better solutions, as well as make the 

APP problems become more compatible with real-life 

situations. Also, to differentiate this study from the other 

existing studies, a summary of key features of APP 

problems on the literature review is shown in Table 1. In 

summary, a developed multi-objective RPP model for a 

multi-product multi-period APP decision problem where 

these parameters such as production times and costs, 

machine capacity, and customer demand are considered as 

fuzzy numbers with triangular possibility distribution to 

describe the uncertain property encountered in practical 

production planning systems. There are three objective 

functions of the proposed model, which are to minimize the 

total costs of APP plan, total changing rate in workforce 
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levels, and total holding inventory and backorder quantities. 

By using the RPP method, the obtained results become more 

robust and reliable in terms of optimizing under uncertain 

environments. In addition, the proposed model may generate 

many new optimal solutions that can reflect the conflicting 

among objectives through applying the AUGMECON 

technique. This study will be helpful for the DMs or 

planners in identifying the optimal production and 

workforce levels in their APP problems, as uncertainty and 

multi-objective decision making are taken into 

consideration. 

Consequently, the key contributions of this paper can 

be listed as follows: 

• This study presents a mathematical model for a multi-

product multi-period APP problem that simultaneously 

takes into account two important issues, which are 

uncertainty and multi-objective decision making. 

• To cope with the uncertainty in the proposed 

optimization model, the RPCCP with credibility 

measure (the output results of the uncertain model are 

optimized based on the risk-averseness levels) is 

introduced. The combination of PCCP and RP 

approaches is capable of maintaining such a fuzziness 

property till the end of the optimization process, which 

can help to find the most appropriate fuzziness levels of 

the uncertain data. In addition, the robustness of both 

optimality and feasibility is taken into account. Thus, 

the proposed RPCCP can enable robust solutions.   

• For the multi-objective decision making, the 

AUGMECON technique is applied to express the 

conflicting attribute of objectives, analyze the trade-off 

among considered objectives as well as provide more 

selections for the DMs through obtaining Pareto 

optimal solutions. Moreover, the AUGMECON 

technique can ensure that the obtained solutions are 

strong Pareto solutions (Pareto frontier). Then, in order 

to evaluate and determine the best compromised (trade-

off) solution in a set of Pareto solutions, the Max-Min 

method is utilized. 

• The integrated application of RPCCP and 

AUGMECON in this study is the first of its kind for 

solving the multi- objective APP problem under 

uncertain environment. 

• The feasibility of the proposed model and its solution 

method are evaluated through a given industrial case 

study. 

 

The remainder of this paper is arranged as follows. In 

the next Section “A mathematical formulation of problem”, 

the description of interested APP problem and its 

assumptions, as well as associated model formulation, are 

presented. Subsequently, the proposed solving methodology 

(the background of Possibilistic Programming (PP), Robust 

TABLE 1 

SUMMARY OF THIS STUDY VS. THE RELEVANT STUDIES 
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[22] M M M D          MILP   ✓      
[6] S M S D          MILP     ✓    

[23] M M M F   ✓ ✓   ✓   FMOMILP  ✓       

[1] S M S D          MILP     ✓    

[24] M M M D       ✓   MOMILP    ✓     

[25] M M M D       ✓   MOMILP   ✓      

[7] M M S D          MILP     ✓    
[26] M M M F ✓   ✓   ✓   FMOMILP   ✓      

[8] M M S D          MILP     ✓    

[9] M M S D          MILP     ✓    
[10] M M S D          MILP     ✓    

[11] S M S D          MILP     ✓    

[12] M M S D          MILP     ✓    
[28] M M M D          MOMILP   ✓      

[3] M M S F   ✓ ✓ ✓  ✓   MILP  ✓       

[4] M M M F   ✓ ✓ ✓  ✓   FMOMILP    ✓   ✓  
This study M M M F ✓  ✓ ✓ ✓  ✓ ✓  FMOMILP      ✓ ✓ ✓ 

Abbreviations: S: Single, M: Multiple, D: Deterministic, F: Fuzzy, MILP: Mixed-integer linear programming, MOMILP: Multi-objective mixed-

integer linear programming, FMOMILP: Fuzzy multi-objective mixed-integer linear programming, FLP: Fuzzy linear programming, FGP: Fuzzy goal 

programming, FMOP: Fuzzy multi-objective programming, AUGMECON: Augmented epsilon-constraint technique, PCCP: Possibilistic chance-
constrained programming, RP: Robust programming. Others: Linear decision rules, solver software (i.e., Lingo, Gam, Cplex), heuristic, etc. 



Journal of Industrial Engineering International, 17(4), December 2021 

 

 

56 

 J     I     E     I  

 

Programming (RP), and AUGMECON technique) and the 

solving procedures of algorithm are provided in Section 

“Solution approach”. Then, the information of an industrial 

case study of considered APP problem for evaluating the 

applicability of the proposed solving methodology is 

described in Section “Case study”. In Section “Results and 

discussions”, the computational results, analysis, 

discussions, managerial implications of the APP problem, 

and its proposed solving methodology are reported. Finally, 

the conclusions, limitations, and future research directions 

are stated in Section “Conclusions”. 

MATHEMATICAL FORMULATION OF PROBLEM  

I. Problem Description 

A manufacturing company produces a quantity of product g, 

g ∈ G to fulfill the customer demand in each period of time t, 

t ∈ T. The main target of the APP is to specify the most 

suitable production level for satisfying the customer demand 

based on the adjustment of production time (i.e., regular time, 

overtime), hiring and downsizing labor, backordering, 

subcontracting, inventory, and other controllable variables. 

The basic structure of the APP is depicted in Figure 1. The 

APP problem here is aimed to minimize the total costs of the 

APP plan, total change rate in workforce levels, and total 

holding inventory and backorder quantities simultaneously. In 

addition, the problem is considered in an uncertain 

environment. Hence, the parameters (such as customer 

demand, operation costs, labor level, machine capacity) can 

vary subject to triangular fuzzy numbers in each planning 

period.  

 
FIGURE 2 

TRIANGULAR (POSSIBILITY) DISTRIBUTION 

II. Assumptions of Mathematical Model 

To solve the interested fuzzy multi-objective mathematical 

APP model, some assumptions should be adhered: 

1. The demand for products is known but it is imprecise. 

2. The demand for products could either be totally 

fulfilled or be backordered. However, the backordered 

quantities of products must be compensated in the 

following period. 

3. The inventory quantities of products are specified at the 

beginning as well as the end of the planning horizon.  

4. At the beginning of the first planning period, an initial 

labor level is known. 

5. Overtime production and subcontracting are allowed. 

6. Total budget, machine capacity, labor levels, warehouse 

space at the manufacturing plant are bounded by their 

equivalent maximum levels. 

7. Subcontracting and backordering levels cannot exceed 

their maximum acceptable levels. 

8. All objective functions and constraints are constructed 

by linear forms. 

9. All imprecise parameters of the model are assumed to 

be triangular fuzzy numbers. 

 

III. Notations and Mathematical Model 

The notations and mathematical formulation are presented 

as below. It is noted that these fuzzy parameters are 

displayed with a tilde on. 

Notations 

Index sets: 

g Set of produced products, g = 1,…,G 

t Set of planning horizon, t = 1,…,T 

j       Set of objective function, j = 1,…,J 

l                   Set of fuzzy constraints, l = 1,…,L 

 

Objective functions: 

𝑍1 Total costs ($) 

𝑍2 Change in workforce level (persons) 

𝑍3 Holding and backordering quantities (units) 

 

APP 

• Regular-time production level in each period 

• Overtime production level in each period 

• Subcontracting level in each period 

• Inventory level in each period 

• Backlogged level in each period 

• Workforce level (hiring, downsizing) in each period 

Important parameters (Cost of regular-

time, overtime, hiring, downsizing, 

inventory, subcontract, etc.)  

Production resources and constraints  

Forecasted demand 

Company objectives 

Company policies  

FIGURE 1 

A BASIC APP PROCESS, ITS INPUTS AND OUTPUTS  
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Parameters: 
𝐷�̃�𝑔𝑡 Forecasted demand for product g-th in period t 

(units) 

�̃�𝑔𝑡 Manufacturing expense for product g-th in 

regular-time at period t ($/unit) 

�̃�𝑔𝑡  Manufacturing expense for product g-th in 

overtime in period t ($/unit) 

�̃�𝑔𝑡 Subcontracting expense for product g-th in 

period t ($/unit) 

𝑖�̃�𝑡 Holding inventory expense for product g-th in 

period t ($/unit) 

�̃�𝑔𝑡   Backordering charge for product g-th in period t 

($/unit) 

ℎ̃𝑡 Hiring rate for a worker in period t ($/person-

hour) 

𝑓𝑡 Downsizing rate for a worker in period t 

($/person-hour)  

𝑀𝑎𝑥�̃�𝑡 Workforce level limit in period t (person-hours) 

𝑀𝑎𝑥�̃�𝑡 Capacity limit of machine in period t (machine-

hours) 

𝑚ℎ̃𝑔𝑡 Machine’s required hours for manufacturing 

product g-th at period t (machine-hours/unit) 

𝑤ℎ𝑔𝑡  Worker’s required hours for manufacturing 

product g-th at period t (person-hours/unit) 

𝑀𝑎𝑥𝑊𝑡 Warehouse space limit in period t (ft2/unit) 

𝑤𝑠𝑔𝑡  Storage spaces for a unit of product g-th in 

period t (ft2/unit) 

𝑄𝑆𝑔𝑡
𝑚𝑎𝑥 Limit for subcontracted amount of product g-th 

in period t (units) 

𝑄𝐵𝑔𝑡
𝑚𝑎𝑥  Limit for backordered amount of product g-th 

in period t (units) 

𝑍𝑏𝑢𝑑𝑔𝑒𝑡  Available budget ($) 

Decision variables: 
𝑄𝑅𝑔𝑡  Quantity of product g-th manufactured in 

regular-time in period t (units) 

𝑄𝑂𝑔𝑡   Quantity of product g-th manufactured in 

overtime at period t (units) 

𝑄𝑆𝑔𝑡   Quantity of product g-th subcontracted in 

period t (units) 

𝑄𝐼𝑔𝑡  Quantity of holding inventory product g-th in 

the end of period t (units) 

𝑄𝐵𝑔𝑡   Quantity of backordered product g-th in period t 

(units) 

𝑁𝐻𝑡   Number of hired workers in period t (person-

hours) 

𝑁𝐹𝑡  Number of downsized workers in period t 

(person-hours) 

𝛼𝑙 Confidence levels (satisfaction levels) of fuzzy 

constraint l. 

 

 

 

Mathematical model 

 

Objective functions: 

• Minimize total costs 

In practice, the cost minimization is considered as a 

common decision that is made for solving the APP problem. 

Usually, the total costs of APP problem are the sum of the 

manufacturing cost, inventory cost, backordering cost, and 

costs of changing workforce levels over a time period T. 

However, the coefficients of costs in the objective function 

could be unclear (imprecise) due to some information being 

estimated, unobtainable or incomplete. Accordingly, the 

objective function of our APP problem is formulated in the 

following equations: 

 

𝑀𝑖𝑛 𝑍1̃ = ∑  𝐺
𝑔=1 ∑  𝑇

𝑡=1 (�̃�𝑔𝑡𝑄𝑅𝑔𝑡 + �̃�𝑔𝑡𝑄𝑂𝑔𝑡  

             + �̃�𝑔𝑡𝑄𝑆𝑔𝑡 + 𝑖̃𝑝𝑡𝑄𝐼𝑔𝑡 + �̃�𝑔𝑡𝑄𝐵𝑔𝑡)  

             +∑  𝑇
𝑡=1 (ℎ̃𝑡𝑁𝐻𝑡 + 𝑓𝑡𝑁𝐹𝑡)  

(1)  

 

The production costs are shown in the first five terms 

including regular-time and overtime production costs, 

subcontract cost, inventory holding cost, and backordering 

cost. The remaining portion indicates the costs of changing 

workforce levels, which are the costs of hiring and 

downsizing workers, where �̃�𝑝𝑡, �̃�𝑝𝑡, �̃�𝑝𝑡, 𝑖�̃�𝑡, �̃�𝑝𝑡, ℎ̃𝑡, and 𝑓𝑡 

are fuzzy parameters with the triangular possibility 

distribution. 

 

• Minimize total changes in labor level 

 

Under realistic circumstances of APP, the requirement 

about workforce can be easily calculated by aggregating the 

forecasted demand beforehand. Nevertheless, companies 

would find it difficult to have a much varying workforce 

planning due to labor skills, labor regulations, and other 

restrictions associated to the social welfare of the workforce. 

Moreover, the fluctuations of hiring and downsizing labor 

also result in a negative influence on labor productivity. Thus, 

it is necessary to manage and maintain the fluctuation in 

workforce levels as low as possible. To have a smoother 

workforce planning and to eliminate the negative impact of 

hiring and downsizing, the second objective function is 

considered as follows: 

 

𝑀𝑖𝑛 𝑍2 = ∑ (𝑁𝐻𝑡 + 𝑁𝐹𝑡)
𝑇
𝑡   (2)  

 

Equation (2) presents the second objective function that 

minimizes the difference between the downsizing and hiring 

number of workers.  
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• Minimize total holding inventory and backordered 

quantities 

 

According to the philosophy of Just-in-Time (JIT) in 

manufacturing planning and control, JIT is an approach that is 

used to minimize waste in the production system. One 

outstanding waste in manufacturing is inventory. Holding too 

high amount of inventory causes the company excessively 

high operating costs such as storage cost, occupied space cost, 

management cost. etc. Besides, there is always the limitation 

of warehouse space as well as the budget for investing in 

warehouse facilities. Thus, there is an attempt to reduce the 

inventory as low as possible to eliminate this waste. However, 

when the inventory level becomes too low, it could 

conversely lead to backorders (if the backlog is allowed) 

when the demand cannot be fulfilled because of a lack of 

available products). Therefore, when minimizing the total 

holding inventory quantity, the backordered quantity should 

also take into consideration to be minimized along with 

inventory quantity. With a summation of both quantities, both 

inventory level and backorder quantities can be minimized 

otherwise the obtained plan can be twisted by pursuing too 

much either on minimizing inventory or backordered 

quantities. 

 

𝑀𝑖𝑛 𝑍3 = ∑ ∑ (𝑄𝐼𝑔𝑡 + 𝑄𝐵𝑔𝑡)
𝑇
𝑡=1

𝐺
𝑔         (3)  

 

The third objective function is minimizing the sum of 

holding inventory and backordered quantities of all products 

in all planning periods, as presented in Equation (3). 

 These above objective functions are subject to the 

following constraints. 

 

Constraints: 

 

• Carrying inventory constraint 

𝐷�̃�𝑔𝑡 = 𝐼𝑄𝑔𝑡−1 − 𝑄𝐵𝑔𝑡−1 + 𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡       

                             + 𝑄𝑆𝑔𝑡 − 𝑄𝐼𝑔𝑡 + 𝑄𝐵𝑔𝑡;      ∀𝐺, ∀𝑇 
(4)  

 

𝑄𝐵𝑔𝑡 ≤ 𝑄𝐵𝑔𝑡
𝑚𝑎𝑥 ;      ∀𝐺, ∀𝑇  (5)  

 

The forecasted demand of a customer cannot be 

obtained exactly in the real world. Therefore, 𝐷�̃�𝑔𝑡  denotes 

for fuzzy estimated product demand g in each period t. 

Constraint (4) shows that the total amount of products, 

including inventory amount of products, regular time and 

overtime production amount of products, subcontracting 

quantities, and backordering quantities primarily must fulfill 

the forecasted demand. The demand can be either met or 

backordered in a specific period, but a backorder in the 

following period must be fulfilled. Constraint (5) presents 

that the backordering quantities of product g in period t that 

are limited by the allowed maximum backordered level. 

 

• Labor level constraints 

 

∑ 𝑤ℎ𝑔𝑡−1(𝑄𝑅𝑔𝑡−1 + 𝑄𝑂𝑔𝑡−1)
𝐺
𝑔=1 + 𝑁𝐻𝑡 −𝑁𝐹𝑡  

               −∑  𝐺
𝑔=1 𝑤ℎ𝑔𝑡(𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡) = 0;     ∀𝑇  

(6)  

 

∑  𝐺
𝑔=1 𝑤ℎ𝑔𝑡(𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡) ≤  𝑀𝑎𝑥�̃�𝑡;      ∀𝑇  (7)  

 

where Constraint (6) reflects the net changes, i.e., hiring and 

downsizing workers, of the level of workforce in the current 

period t from that of the previous t-1. Constraint (7) shows 

that the actual level of labor in period t is limited by the 

maximum available labor level. The maximum available 

labor level could be inaccurate because of the uncertain 

conditions of supply, demand, and labor skills in the market. 

 

• Machine capacity constraint 

 

∑  𝐺
𝑔=1 𝑚ℎ̃𝑔𝑡(𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡) ≤  𝑀𝑎𝑥�̃�𝑡;      ∀𝑇  (8)  

𝑄𝑆𝑔𝑡 ≤ 𝑄𝑆𝑔𝑡
𝑚𝑎𝑥;      ∀𝐺, ∀𝑇  (9)  

 

where 𝑚ℎ̃𝑔𝑡 and 𝑀𝑎𝑥�̃�𝑡   are imprecise data of the machine 

hour usage per a product g, and the maximum capacity limit 

of the machine in each period, respectively. Constraint (8) is 

set to limit the available machine capacity, where the hours 

of machine usage to produce all types of product in period t 

must not exceed the machine capacity limit. Likewise, this 

capacity limit could be fuzzy (in reality) since the machine’s 

available hours could be influenced by the availability as 

well as operating conditions of machines at any one time. 

Constraint (9) indicates that the subcontracted amount of 

product g in each period t that is limited by the maximum 

allowable subcontracted level. 

 

• Warehouse capacity constraint 

 

∑  𝐺
𝑔=1 𝑤𝑠𝑔𝑡𝑄𝐼𝑔𝑡 ≤ 𝑀𝑎𝑥𝑊𝑡;     ∀𝑇  (10)  

 

Constraint (10) presents the storage restriction of the 

warehouse in period t. That is, the amount of space for 

storing all units in each period t must not surpass the 

respective maximum available warehouse space.  

 

• Total budget constraint 

 

𝑍1̃ ≤ 𝑍𝑏𝑢𝑑𝑔𝑒𝑡   (11)  

 

Constraint (11) ensures that the total costs of the 

aggregate production plan are not allowed to exceed the 

total budget set by the company. 

 

• Non-negativity constraint 

 

𝑄𝑅𝑔𝑡 , 𝑄𝑂𝑔𝑡 , 𝑄𝑆𝑔𝑡 , 𝑄𝐼𝑔𝑡 , 𝑄𝐵𝑔𝑡 , 𝑁𝐻𝑡 , 𝑁𝐹𝑡 ≥ 0;  

                                                                            ∀𝐺, ∀𝑇  
(12)  
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Constraint (12) indicates that all decision variables are 

positive numbers. 

 

SOLUTION APPROACH 

This section demonstrates how the interested fuzzy multi 

objective mathematical APP model to address with 

uncertainty and multi-objective decision making. The 

controllable variables in APP model are theoretically assumed 

as deterministic and known in advance, but this is not true in 

the real world. Due to unobtainable or incomplete information 

or conditions, APP input parameters, e.g., forecasted market 

demand, relevant operation costs, and machine or warehouse 

capacities, are normally uncertain. Besides, these parameters 

have a significant influence on the strategy of the entire APP 

plan. Thus, the uncertainty of input data is one of the difficult 

issues that the DMs must face in planning.  

In order to handle these uncertain parameters, Robust 

Possibilistic Programming (RPP), which is a combination of 

Possibilistic Chance-Constrained Programming (PCCP) and 

Robust Programming (RP), is adopted. PCCP is capable of 

controlling the confidence level of satisfaction of 

possibilistic chance constraints (risk violation of 

constraints). However, the main drawback of PCCP is that it 

cannot control the risk of obtaining a worse objective 

function because the objective function value is computed 

by the expected (average) value of uncertain parameters. In 

this regard, RP is introduced to incorporate with PCCP to 

solve the drawback of PCCP. Generally, in the solving 

process of RPP, the uncertainty can cause two concerns: 

feasibility aspect and optimality aspect. The feasibility 

aspect concerns managing the relationship between the 

possibilistic fuzzy in both two sides of constraints while the 

optimality aspect concerns finding the optimal value of the 

fuzzy objective function. Having gained the advantages of 

both PCCP and RP, the proposed RPP can yield a solution 

with both aspects of feasibility and optimality (robust 

solution).  

Next, to handle the issue of multiple objectives, the 

AUGMECON technique is applied. This technique is well-

known as a posteriori method that is capable of producing 

efficient compromised solutions (a set of Pareto solutions) for 

the managers and DMs before making their final decision. 

From Pareto optimal solutions, the managers and DMs can then 

select the most suitable solution according to their aspiration 

level or they can select the best compromised (trade-off) 

solution by using the Max-Min method. A brief explanation of 

the proposed RPP, AUGMECON, and Max-Min approaches is 

presented in the next sub-section. 

I. Robust Programming (RP) 

RP is well-known as an efficient approach with the capability 

of providing risk-averse results in optimization problems under 

uncertain environments. The concept of robustness in a 

mathematical programming model is defined based on two 

separate parts, which are “robustness of feasible solution” and 

“robustness of optimal solution”. The robustness of a feasible 

solution implies that the solution of all the possible values of 

the uncertain parameters should be feasible. It makes an effort 

to minimize the violation and infeasibility of soft constraints in 

the mathematical programming model under uncertain 

conditions. The robustness of the optimal solution implies that 

the solution of the objective function should be near to the 

optimal ideal solution. In other words, it minimizes the 

maximum distance from the optimal ideal solution to the 

obtained solution of the objective function for most of the 

possible values of uncertain parameters. Once a solution is 

simultaneously satisfied with these two types of robustness, it is 

called a robust solution [29]. So, they are considered to be two 

main elements that are used to adjust the level of risk in output 

decisions. 

As stated in the study of Pishvaee et al. [20], RP 

approaches are categorized into three different types, which 

consist of (1) hard worst situation, (2) soft worst situation, 

and (3) realistic situation RP. In the hard worst situation RP 

approach, since the worst values of uncertain parameters are 

used to calculate for both objective function and constraints 

of the mathematical model, this approach can yield the 

solution with the highest level of safety to cope with any 

change in uncertain condition. For the soft worst situation 

robust programming, this approach is considered as a flexible 

form of the hard-worst situation approach. Although this 

approach uses the worst value of uncertain parameters for 

finding the minimum value of the objective function in the 

mathematical model, some constraints of the model are 

allowed to violate with a specified acceptable level (constraint 

violation concepts). The realistic robust programming is an 

approach that can institute a rational trade-off for the obtained 

robustness level of solution in the relationship between 

objective function and constraints, which is the robustness 

level of optimality and feasibility. It should be noted that both 

hard and soft worst situations of RP are special situations of 

the realistic RP situation. The advantages and disadvantages 

of these RP situations have been discussed and pointed out by 

the study of Pishvaee et al. [20]. Also, throughout this study, 

it is shown that the realistic situation of the robust 

possibilistic programming outperforms the others. Since this 

approach can not only generate feasible solutions 

corresponding to the possible value of uncertain parameters 

(from the most likely situation to the worst situation) but also 

attempt to find the solution that has the minimum deviation 

from the ideal optimal solution. Therefore, this approach is 

considered as a rational compromise between the robustness 

of feasibility solution and optimality solution. 

II. Possibilistic Programming (PP) Model 

In practical applications, collected input data are largely stained 

by epistemic uncertainty. To effectively control epistemic 

uncertainty, the PP model has been introduced. PCCP model is 

an improved form of the PP model, which is appropriate for 

dealing with uncertain problems. PCCP model is an immensely 
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effective approach in that the DMs can manipulate the 

confidence levels of chance constraints in relation to the given 

situation [30-33]. 

Considering a basic mathematical formulation of 

optimization model under uncertainty as follows: 

 

𝑀𝑖𝑛           𝑧 = �̃�𝑥  

  𝑆. 𝑡           𝐴𝑥 ≤ �̃�  

                   𝑆𝑥 = 0  

                   �̃�𝑥 ≤ ℎ̃  

                   𝐷𝑥 = �̃�  

                   𝑥 ≥ 0 

(13)  

 

where 𝑐 denotes the parameter of objective function. 𝐴, 𝑆, 

𝐵, 𝐷, 𝑘, ℎ, and 𝑔 represent the parameters on the left-hand 

and right-hand sides of the constraints. The parameters with 

the symbol (~) above the relevant letters are imprecise 

parameters that follow the triangular possibility distribution. 

𝑥 represents a continuous decision variable. To formulate a 

corresponding PCCP version of the model presented in 

Equation (13), the Expected Value (EV) operator is used for 

handling fuzzy parameters at the objective function while 

Credibility (Cr) measurement is used for handling fuzzy 

constraints. An explanation of Cr and EV is presented 

below. 

  

𝑀𝑖𝑛           𝐸𝑉[𝑧] = 𝐸𝑉[�̃�]𝑥   

  𝑆. 𝑡           𝐶𝑟{𝐴𝑥 ≤ �̃�} ≥ 𝛼1  

                   𝑆𝑥 = 0  

                   𝐶𝑟{�̃�𝑥 ≤ ℎ̃} ≥ 𝛼2  

                   𝐶𝑟{𝐷𝑥 = �̃�} ≥ 𝛼3  

                   𝑥 ≥ 0;  0.5 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1   

(14)  

 

Expected value (EV) operator 

 

Assume that a triangular fuzzy number �̃�  = (𝑎1, 𝑎2, 𝑎3) is 

specified by the DMs, whereby 𝑎1, 𝑎2, 𝑎3 denote the 

optimistic, the most likely, and the pessimistic values of the 

triangular fuzzy number, correspondingly (see Figure 2). 

The membership function of fuzzy number �̃� can be 

determined by the following equations: 

 

𝜇�̃�(𝑥) =

{
 
 

 
 𝑓𝑎(𝑥) =

𝑥 − 𝑎1
𝑎2 − 𝑎1

,   𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

             1                 𝑖𝑓 𝑥 = 𝑎2       

𝑔𝑎(𝑥) =
𝑎3 − 𝑥

𝑎3 − 𝑎2
,   𝑖𝑓 𝑎2 ≤ 𝑥 ≤ 𝑎3

         0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (15)  

 

 

The EV operator is deployed for converting the 

uncertain objective function to an equivalent crisp form. 

According to [34] and [35], if �̃� is a triangular fuzzy 

number, the expected interval of fuzzy number �̃�, denoted 

𝐸𝐼(�̃�), the expected value 𝐸𝑉(�̃�) of �̃� can be defined as 

follows: 

 

𝐸𝐼(�̃�) = [𝐸1
𝑎, 𝐸2

𝑎] 

               = [∫ 𝑓𝑎
−1(𝑥)𝑑𝑥, ∫ 𝑔𝑎

−1(𝑥)𝑑𝑥
1

0

1

0
]  

               = [
1

2
( 𝑎1 + 𝑎2),

1

2
( 𝑎2 + 𝑎3)]  

 

𝐸𝑉(�̃�) =
𝐸1
𝑎 + 𝐸2 

𝑎

2
=
 𝑎1 + 2 𝑎2 + 𝑎3

4
 

(16)  

 

Credibility measure 

 

In PCCP models, possibility and necessity reflect the two 

extremes of an uncertain parameter. Possibility measure is 

used to indicate the most optimistic value, whereas necessity 

measure is used to represent the most pessimistic value [36]. 

Let �̃� be a fuzzy variable with membership function µ and 

let r and b be real numbers. The possibility of a fuzzy event, 

denoted by b, can be specified by: 

 

𝑃𝑜𝑠{�̃� ≤ 𝑏} = 𝜇(𝑟) 𝑟≤𝑏
𝑠𝑢𝑝

  (17)  

 

The necessity degree of occurrence of this fuzzy event 

is specified by the following equation: 

 

𝑁𝑒𝑐{�̃� ≤ 𝑏} = 1 − 𝑃𝑜𝑠{�̃� ≤ 𝑏} = 1 − 𝜇(𝑟)𝑟>𝑏
𝑠𝑢𝑝

  (18)  

 

The measures of possibility and necessity, i.e., 𝑃𝑜𝑠{∙} 
and 𝑁𝑒𝑐{∙}, reflect the extreme optimistic and pessimistic 

attitudes, respectively. However, the extreme attitudes are 

not preferable in practices. Thus, to reflect an intermediate 

attitude of the DMs between these two extremes, another 

measure, known as the credibility measure, is introduced. 

The credibility measure (Cr) is computed by averaging the 

possibility and necessity measurements as shown below: 

 

𝐶𝑟{�̃� ≤ 𝑏} =
1

2
(𝑃𝑜𝑠{�̃� ≤ 𝑏} + 𝑁𝑒𝑐{�̃� ≤ 𝑏}) 

                     =
1

2
( 𝜇(𝑟) 𝑟≤𝑏
𝑠𝑢𝑝

+ 1 − 𝜇(𝑟)𝑟>𝑏
𝑠𝑢𝑝

) 

(19)  

 

According to the above equations, the possibility, 

necessity of {�̃� ≤ 𝑏} can be shown as follows: 

 

𝑃𝑜𝑠{�̃� ≤ 𝑏}  =  

{
 

 
0,                  𝑏 ≤ 𝑎1             
𝑏 − 𝑎1
𝑎2 − 𝑎1

,      𝑎1 ≤ 𝑏 ≤ 𝑎2   

1,                   𝑏 ≥ 𝑎2             

 

𝑁𝑒𝑐{�̃� ≤ 𝑏}  =  

{
 

 
0,                   𝑏 ≤ 𝑎2           
𝑏 − 𝑎2
𝑎3 − 𝑎2

,      𝑎2 ≤ 𝑏 ≤ 𝑎3 

1,                   𝑏 ≥ 𝑎3           

 

(20)  

 

Credibility is the power of being able to be believed or 

trustworthy. When the credibility value is 1, an event is 
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almost certain to occur [37]. The credibility of {�̃� ≤ 𝑏} is 

presented by: 

 

𝐶𝑟{�̃� ≤ 𝑏} =

{
  
 

  
 
0,                          𝑏 ≤ 𝑎1           
𝑏 − 𝑎1

2(𝑎2 − 𝑎1)
,        𝑎1 ≤ 𝑏 ≤ 𝑎2 

𝑎3 − 2𝑎 + 𝑏

2(𝑎3 − 𝑎2)
,     𝑎2 ≤ 𝑏 ≤  𝑎3

1,                           𝑏 ≥ 𝑎3           

 (21)  

Let �̃� = (𝑎1, 𝑎2, 𝑎3) and �̃� = (𝑏1, 𝑏2, 𝑏3). Following the 

definition of credibility and fuzzy operations, the credibility 

of a fuzzy event characterized by {�̃� ≤ �̃�} can be 

demonstrated as follows: 

 

𝐶𝑟{�̃� ≤ �̃�}

=

{
  
 

  
 
1,                                         𝑎3 ≤ 𝑏1               
𝑎3 − 2𝑎2 + 2𝑏2 − 𝑏1
2(𝑎3 − 𝑎2 + 𝑏2 − 𝑏1)

,   𝑎2 ≤ 𝑏2, 𝑎3 > 𝑏1

𝑏3 − 𝑎1
2(𝑏3 − 𝑏2 + 𝑎2 − 𝑎1)

,   𝑎2 > 𝑏2, 𝑎1 < 𝑏3

0,                                         𝑎1 ≥ 𝑏3                

 
(22)  

 

Based on Equations (21) and (22), it can be shown that 

for (0 ≤ 𝛼 ≤ 0.5): 
 

𝐶𝑟{�̃� ≤ 𝑏} ≥ 𝛼 ⇔ 𝑏 ≥ (1 − 2𝛼)𝑎1 + (2𝛼)𝑎2 

 

𝐶𝑟{�̃� ≤ �̃�} ≥ 𝛼 ⇔ (1 − 2𝛼)𝑎1 + (2𝛼)𝑎2  

                                             ≤  (2𝛼)𝑏2 + (1 − 2𝛼)𝑏3 

(23)  

 

It can also be demonstrated that for (0.5 ≤ 𝛼 ≤ 1): 
 

𝐶𝑟{�̃� ≤ 𝑏} ≥ 𝛼 ⇔ 𝑏
≥ (2 − 2𝛼)𝑎2 + (2𝛼 − 1)𝑎3 

 

𝐶𝑟{�̃� ≤ �̃�} ≥ 𝛼 ⇔ (2 − 2𝛼)𝑎2 + (2𝛼 − 1)𝑎3 

                                     ≤  (2𝛼 − 1)𝑏1 + (2 − 2𝛼)𝑏2 

(24)  

 

Lastly, according to the proposed operators of the EV 

and Cr measure, an analogous crisp form of the provided 

uncertain optimization model in Equation (14) is derived as 

follows: 

 

𝑀𝑖𝑛        𝐸𝑉[�̃�]𝑥 = (
𝑐1 + 2𝑐2 + 𝑐3

4
) 𝑥 

  𝑆. 𝑡        𝐴𝑥 ≤  (2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2 

                𝑆𝑥 = 0 

                [(2 − 2𝛼2)𝐵2 + (2𝛼2 − 1)𝐵3]𝑥 

                                  ≤ (2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2 

                𝐷𝑥 = (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3 

                𝑥 ≥ 0;  0.5 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1 

(25)  

in which 𝛼𝑙, 𝑙 ∈ [1, 𝐿] are the minimum acceptable 

confidence levels (satisfaction levels) of chance constraints 

that could be specified based on the preferences of DMs. 

The uncertain objective function is calculated by expected 

value in which the attribute of the uncertain objective 

function cannot be interpreted. As a result, the DMs could 

face with high risks in some practical situations. This is also 

the main deficiency of the PCCP model. To overcome this 

deficiency, the RPP model is applied. 

Applying the PCCP model shown in Equation (25), the 

crisp corresponding formulation of the PCCP model for the 

Multi-Objective Aggregate Production Planning (MOAPP) 

problem can be derived as shown below: 

 

𝑀𝑖𝑛𝐸[𝑍1̃] = ∑  𝐺
𝑔=1 ∑   [(

𝑟𝑔𝑡
1 + 2𝑟𝑔𝑡

2 + 𝑟𝑔𝑡
3

4
 ) 𝑄𝑅𝑔𝑡

𝑇
𝑡=1  

                + (
𝑜𝑔𝑡
1 + 2𝑜𝑔𝑡

2 + 𝑜𝑔𝑡
3

4
 ) 𝑄𝑂𝑔𝑡 + (

𝑠𝑔𝑡
1 + 2𝑠𝑔𝑡

2 + 𝑠𝑔𝑡
3

4
 ) 𝑄𝑆𝑔𝑡  

                + (
𝑖𝑔𝑡
1 + 2𝑖𝑔𝑡

2 + 𝑖𝑔𝑡
3

4
 ) 𝑄𝐼𝑔𝑡 + (

𝑏𝑔𝑡
1 + 2𝑏𝑔𝑡

2 + 𝑏𝑔𝑡
3

4
 ) 𝑄𝐵𝑔𝑡] 

                + ∑  𝑇
𝑡=1 [(

ℎ𝑡
1+ 2ℎ𝑡

2+ ℎ𝑡
3

4
 ) 𝑁𝐻𝑡  +  (

𝑓𝑡
1+ 2𝑓𝑡

2+ 𝑓𝑡
3

4
 )𝑁𝐹𝑡]  

 

𝑀𝑖𝑛 𝑍2 = ∑ (𝑁𝐻𝑡 + 𝑁𝐹𝑡)
𝑇
𝑡   

 

𝑀𝑖𝑛 𝑍3 = ∑ ∑ (𝑄𝐼𝑔𝑡 + 𝑄𝐵𝑔𝑡)
𝑇
𝑡=1

𝐺
𝑔         

 

Subject to: 

 

(2 − 2𝛼1)𝐷𝑒𝑔𝑡
2 + (2𝛼1 − 1)𝐷𝑒𝑔𝑡

3 = 𝐼𝑄𝑔𝑡−1 − 𝑄𝐵𝑔𝑡−1 

                  + 𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡 + 𝑄𝑆𝑔𝑡 − 𝑄𝐼𝑔𝑡 + 𝑄𝐵𝑔𝑡;   ∀𝐺, ∀𝑇 

 

𝑄𝐵𝑔𝑡 ≤ 𝑄𝐵𝑔𝑡
𝑚𝑎𝑥 ;    ∀𝐺, ∀𝑇 

 

∑  𝐺
𝑔=1 𝑤ℎ𝑔𝑡−1(𝑄𝑅𝑔𝑡−1 + 𝑄𝑂𝑔𝑡−1) + 𝑁𝐻𝑡 − 𝑁𝐹𝑡  

                                −∑  𝐺
𝑔=1 𝑤ℎ𝑔𝑡(𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡) = 0;  ∀𝑇  

 

∑  𝐺
𝑔=1 𝑤ℎ𝑔𝑡(𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡)  

                          ≤ (2𝛼2 − 1)𝑀𝑎𝑥𝐿𝑡
1 + (2 − 2𝛼2)𝑀𝑎𝑥𝐿𝑡

2;   ∀𝑇  

∑  𝐺
𝑔=1 [(2 − 2𝛼3)𝑚ℎ𝑔𝑡

2 + (2𝛼3 − 1)𝑚ℎ𝑔𝑡
3 ](𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡)  

                      ≤ (2𝛼3 − 1)𝑀𝑎𝑥𝑀𝑡
1 + (2 − 2𝛼3)𝑀𝑎𝑥𝑀𝑡

2;    ∀𝑇  

 

𝑄𝑆𝑔𝑡 ≤ 𝑄𝑆𝑔𝑡
𝑚𝑎𝑥;    ∀𝐺, ∀𝑇 

 

∑  𝐺
𝑔=1 𝑤𝑠𝑔𝑡𝑄𝐼𝑔𝑡 ≤ 𝑀𝑎𝑥𝑊𝑡;   ∀𝑇  

 

𝐸[𝑍1̃] ≤ 𝑍𝑏𝑢𝑑𝑔𝑒𝑡  

 

𝑄𝑅𝑔𝑡 , 𝑄𝑂𝑔𝑡 , 𝑄𝑆𝑔𝑡 , 𝑄𝐼𝑔𝑡 , 𝑄𝐵𝑔𝑡 , 𝑁𝐻𝑡 , 𝑁𝐹𝑡   ≥ 0;  ∀𝐺, ∀𝑇 

 

0.5 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1 

III. Robust Possibilistic Programming (RPP) Models 

According to [20], RPP model is divided into six forms 

(RPP-I, RPP-II, RPP-III, MRPP, HWRPP, and SWRPP) in 

which RPP-II is considered to be the most efficient 
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approach. The effectiveness of this approach has also been 

verified through the studies of Mousazadeh et al. [38] and 

Fazli-Khalaf et al. [39]. Therefore, the form of RPP-II is 

applied in this study.  

Following the PCCP model, the Robust Possibilistic 

Programming model (RPP-II) can be presented as follows: 

 

𝑀𝑖𝑛       𝐸𝑉[𝑧] + 𝛾(𝑍𝑚𝑎𝑥 − 𝐸𝑉[𝑧]) 
               +𝛿[(2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2 − 𝑘1] 
               + 𝜋[𝐵3 − (2 − 2𝛼2)𝐵2 + (2𝛼2 − 1)𝐵3]𝑥 

               + 𝜌[(2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2 − ℎ1] 
               + 𝜎[𝑔3 − (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3] 
  𝑆. 𝑡       𝐴𝑥 ≤  (2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2 

               𝑆𝑥 = 0 

               [(2 − 2𝛼2)𝐵2 + (2𝛼2 − 1)𝐵3]𝑥 

                                  ≤ (2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2 

               𝐷𝑥 = (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3 

               𝑥 ≥ 0;  0.5 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1 

(26)  

 

where 𝑍𝑚𝑎𝑥 presents the objective function’s value in the 

pessimistic case (worst case). It is calculated as follows: 

 

𝑍𝑚𝑎𝑥 = 𝑐3𝑥  (27)  
 

From Equation (26), it can be seen that there are four 

more terms added along with the first term in the objective 

function. While the first term minimizes the expected value 

(average) of uncertain parameters, the second term 

represents the distance from the expected value to the worst 

value of the objective function. This term is used to control 

the robustness of the solution (optimality) through 

minimizing the maximum deviation of the expected and 

worst value. Besides, to compensate against the other terms, 

it is multiplied by the important weight 𝛾. The remaining 

terms are related to the robustness of feasibility, which are 

in an effort for specifying the appropriate confidence levels 

of fuzzy constraints (chance constraints). These terms 

indicate the distance from the worst-case value of uncertain 

parameters to the current value that are used in the 

equivalent chance constraints. In these terms, 𝛿, 𝜋, 𝜌 and 𝜎 

correspond to the penalty unit of possible violated 

constraints that contain uncertain parameters. They can be 

determined appropriately based on the practical application 

situation. Differently from the PCCP model, the confidence 

levels (𝛼𝑙) of chance constraints in the RPCCP model now 

become variables and they are able to be determined 

automatically by the model. 

 

RPP linearization 

 

As it can be realized that the chance constraints and 

objective function in Equation (26) become nonlinear with 

the imprecise technological coefficients. Hence, to solve the 

nonlinear model, it is required to be transformed into a 

linear one with an auxiliary variable 𝑀 = 𝛼2𝑥. Then, the 

above nonlinear model can be transformed into the 

corresponding linear one as follows [40]: 

 

𝑀𝑖𝑛    𝐸𝑉[𝑧] + 𝛾(𝑍𝑚𝑎𝑥 − 𝐸𝑉[𝑧])  
              + 𝛿[(2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2 − 𝑘1]  
              + 𝜋[𝐵3𝑥 − (2𝑥 − 2𝑀)𝐵2 + (2𝑀 − 𝑥)𝐵3]  
              + 𝜌[(2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2 − ℎ1]  
          + 𝜎[𝑔3 − (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3] 

  𝑆. 𝑡      𝐴𝑥 ≤  (2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2  

              𝑆𝑥 = 0  

           [(2 − 2𝛼2)𝐵2 + (2𝛼2 − 1)𝐵3]𝑥 

                              ≤ (2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2  

           𝐷𝑥 = (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3 

              0.5𝑥 ≤ 𝑀 ≤ 𝑥  

              𝑥 ≥ 0;  0.5 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1  

(28)  

IV. Multi-Objective Robust Possibilistic Programming 

(MORPP) Model 

The MORPP can be presented as follows: 

 

𝑀𝑖𝑛    𝜓1(𝑥) = 𝐸𝑉[𝑧] + 𝛾(𝑍𝑚𝑎𝑥 − 𝐸𝑉[𝑧]) 
            + 𝛿[(2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2 − 𝑘1] 
           + 𝜋[𝐵3𝑥 − (2𝑥 − 2𝑀)𝐵2 + (2𝑀 − 𝑥)𝐵3] 
            + 𝜌[(2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2 − ℎ1] 
            + 𝜎[𝑔3 − (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3] 
𝑀𝑖𝑛     𝜓2(𝑥)  

               ... 

𝑀𝑖𝑛     𝜓𝑗(𝑥) 

  𝑆. 𝑡     𝐴𝑥 ≤  (2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2 

             𝑆𝑥 = 0 

             [(2 − 2𝛼2)𝐵2 + (2𝛼2 − 1)𝐵3]𝑥 

                                  ≤ (2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2 

             𝐷𝑥 = (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3 

             0.5𝑥 ≤ 𝑀 ≤ 𝑥 

             𝑥 ≥ 0;  0.5 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1 

(29)  

 

The epsilon-constraint technique is utilized in this study 

to handle the conflicting multi-objective mathematical model. 

This technique is well-known as the most efficient approach 

for multi-objective problems. The highlighted feature of the 

epsilon-constraint technique is that it can seek to produce 

Pareto optimal solutions (non-dominated optimal solutions) in 

relation to the conflicting objective functions. With a multi-

objective mathematical model, the concept of the epsilon-

constraint technique is to optimize one objective function 

considered as the main one or has the highest priority while 

the other objective functions are converted to be 

corresponding constraints and bounded with an amount of 

epsilon. 

When using the epsilon-constraint technique, two 

crucial things need to be regarded. Firstly, the range of each 

objective function must be defined over an efficient set, 

which is typically between two extreme points of each 

objective function (Negative Ideal Solution - NIS, and 

Positive Ideal Solution - PIS). Normally, the value of NIS 

and PIS of each objective function can be determined based 
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on the pay-off table (the table with the PIS value that is 

obtained by separately optimizing each objective function 

while the NIS value of each objective function is estimated 

by the minimum or maximum value in the equivalent 

column) [41,42]. Secondly, the Right-Hand Side (RHS) of 

epsilon-constraints (epsilon values), where these values 

should be changed systemically in each objective function’s 

range to generate various Pareto solutions, must be 

determined. One of the deficiencies in the basic epsilon-

constraint technique is that it could provide weak Pareto 

optimal solutions [43]. In order to improve this deficiency 

and ensure the efficiency of solutions, Mavrotas [43] 

proposed a new form of epsilon-constraint technique, which 

is called the AUGMECON technique. The advantages and 

disadvantages of this method have been discussed in the 

study of Mavrotas [43]. The definitions of dominated, weak 

and strong Pareto solutions are also presented in Appendix. 

Based on the efficient simple AUGMECON technique, 

the aforementioned MORPP model is transformed into a 

single objective one as presented below: 

 

𝑀𝑖𝑛      𝜓1(𝑥) = 𝐸𝑉[𝑧] +  𝛾(𝑍𝑚𝑎𝑥 − 𝐸𝑉[𝑧]) 

              − 𝜑 (
𝑠2(𝑥)

𝑟2
+
𝑠3(𝑥)

𝑟3
+. . . +

𝑠𝑗

𝑟𝑗
) 

              + 𝛿[(2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2 − 𝑘1] 
              + 𝜋[𝐵3𝑥 − (2𝑥 − 2𝑀)𝐵2 + (2𝑀 − 𝑥)𝐵3] 
              + 𝜌[(2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2 − ℎ1] 
              + 𝜎[𝑔3 − (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3] 
  𝑆. 𝑡      𝜓2(𝑥) = 𝜀2 − 𝑠2 

              𝜓3(𝑥) = 𝜀3 − 𝑠3 

               … 

              𝜓𝑗(𝑥) = 𝜀𝑗 − 𝑠𝑗 

              𝐴𝑥 ≤  (2𝛼1 − 1)𝑘1 + (2 − 2𝛼1)𝑘2 

              𝑆𝑥 = 0 

              [(2 − 2𝛼2)𝐵2 + (2𝛼2 − 1)𝐵3]𝑥 

                                  ≤ (2𝛼2 − 1)ℎ1 + (2 − 2𝛼2)ℎ2 

              𝐷𝑥 = (2 − 2𝛼3)𝑔2 + (2𝛼3 − 1)𝑔3  
              0.5𝑥 ≤ 𝑀 ≤ 𝑥 

              𝑥 ≥ 0;  0.5 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1; 𝑠𝑗 ≥ 0 

(30)  

where 𝜀2, 𝜀3, . . 𝜀𝑗 are the RHS values of the constrained 

objective functions in epsilon-constraint. 𝜑 is a very small 

number commonly determined between [10-3; 10-6]. In order 

to ensure the efficiency of obtained results, the rational 

surplus and slack variables are added into the constraints of 

the objective functions and set as equality constraints. 

Besides which, these variables are integrated as a second 

term into the objective function with a lower importance. 

Then, to eliminate the scaling problem in the second term, 

the surplus variables of respective objective functions, 

denoted as 𝑠2, 𝑠3, . . . 𝑠𝑗, are divided by the range of 

respective objective functions, denoted as 𝑟2, 𝑟3, . . . 𝑟𝑗.  

In the AUGMECON technique, the value of epsilon of 

objective functions is needed to be varied systemically so 

that new Pareto optimal solutions can be generated over the 

efficient set. To do that, after the range of each objective 

function is determined, it will be divided into equal portions 

(𝑝𝑗) and then the total grid points (𝑝𝑗 + 1) are utilized for 

varying the epsilon value of objective functions. With the 

range of objective function 𝑟𝑗  (2, . . 𝑗), the discretization step 

for the respective objective function can be computed by: 

 

𝑆𝑡𝑒𝑝𝑗 = (𝑟𝑗/𝑝𝑗)  (31)  

 

The RHS of the respective constraint in the f-th 

iteration in a particular objective function is computed as 

follows: 

 

𝜀𝑗
𝑙 = 𝜓𝑗

𝑚𝑖𝑛 + (𝑓 × 𝑆𝑡𝑒𝑝𝑗);    𝑓 = 0, . . . , 𝑝𝑗  (32)  

 

in which 𝜓𝑗
𝑚𝑖𝑛 is the minimum value of the j-th objective 

function (NIS) that is determined by the pay-off table and 𝑙 
is the counter of a particular objective function. 

The surplus variable corresponding to the innermost 

objective function will be checked after each iteration. For 

instance, considering the second objective function (𝑗 = 2), 

the bypass coefficient can be computed by the following 

equation: 

 

𝑏𝑝 = 𝑖𝑛𝑡 (𝑠2/𝑆𝑡𝑒𝑝2)  (33)  
 

where the 𝑖𝑛𝑡() function is used to return the integer value 

of a real number. Once the value of 𝑆𝑡𝑒𝑝2 is smaller than 

the surplus variable 𝑠2, this means that a similar solution 

will be achieved in the next iteration. The difference is that 

the value of the surplus variable will be 𝑠2 − 𝑆𝑡𝑒𝑝2. This 

leads to redundant iterations due to there is no new 

generated Pareto optimal solution. Hence, these redundant 

iterations should be bypassed in the solving process. The 

number of consecutive iterations that can be skipped is 

indicated by the bypass coefficient 𝑏𝑝. 

V. The Max-Min Method 

The Max-Min method is implemented to choose the best 

compromised (trade-off) solution among objectives, the 

formulation of selecting the final solution can be set as 

follows: 

 

𝐵𝑇𝑆 = ∑
𝑍𝑗

𝑍𝑗
𝑃𝐼𝑆

𝐽
𝑗=1   (34)  

 

where 𝑍𝑗
𝑃𝐼𝑆  (𝑗 = 1, . . . , 𝐽) is the PIS of objective function. 

VI. Performance Measures 

Usually, the performance of a multiple-objective model is 

evaluated by the actual values of objectives. However, their 

performances are not able to directly compare with each 

other if they have different units or scales. Hence, the 

objective functions should be normalized into a common 

scale (from 0.0 to 1.0) by using the membership function, 

which is called a satisfaction level. The satisfaction levels of 
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objective functions can be presented by the following 

equations. 

The satisfaction level of minimizing objective function: 

 

𝜇𝑧𝑗 = {

1                     
𝑧𝑗
𝑁𝐼𝑆−𝑧𝑗 

𝑧𝑗
𝑁𝐼𝑆−𝑧𝑗

𝑃𝐼𝑆

0                     

 

, 𝑧𝑗 ≤ 𝑧𝑗
𝑃𝐼𝑆              

 , 𝑧𝑗
𝑃𝐼𝑆 ≤ 𝑧𝑗 ≤ 𝑧𝑗

𝑁𝐼𝑆

, 𝑧𝑗 ≥ 𝑧𝑗
𝑁𝐼𝑆            

  (35)  

 

The satisfaction level of maximizing objective function: 

 

𝜇𝑧𝑗 = {

1                     
𝑧𝑗 – 𝑧𝑗

𝑁𝐼𝑆

𝑧𝑗
𝑃𝐼𝑆 – 𝑧𝑗

𝑁𝐼𝑆

0                     

  

, 𝑧𝑗 ≥ 𝑧𝑗
𝑃𝐼𝑆               

, 𝑧𝑗
𝑁𝐼𝑆 ≤ 𝑧𝑗 ≤ 𝑧𝑗

𝑃𝐼𝑆

, 𝑧𝑗 ≤ 𝑧𝑗
𝑁𝐼𝑆             

  (36)  

VII. Multi-Objective Robust Possibilistic Programming 

(MORPP) Model for APP Problems 

Following above descriptions, the final equivalent MOAPP 

model into the formulation of proposed RPCCP 

incorporating AUGMECON technique is presented as 

follows: 

 

𝑀𝑖𝑛    𝐸𝑉[𝑍1̃]  − 𝜑 (
𝑠2
𝑟2
+
𝑠3
𝑟3
) + 𝛾(𝑍1

𝑚𝑎𝑥 − 𝐸𝑉[𝑍1̃]) 

+ 𝜎∑ ∑ [𝐷𝑒𝑔𝑡
3 − (2 − 2𝛼1)𝐷𝑒𝑔𝑡

2 − (2𝛼1 − 1)𝐷𝑒𝑔𝑡
3 ]𝑇

𝑡
𝐺
𝑔   

+ 𝛿 ∑ [(2𝛼2 − 1)𝑀𝑎𝑥𝐿𝑡
1 + (2 − 2𝛼2)𝑀𝑎𝑥𝐿𝑡

2  − 𝑀𝑎𝑥𝐿𝑡
1]𝑇

𝑡   

+ 𝜋[∑ ∑ (𝑚ℎ𝑔𝑡
3 𝑄𝑅𝑔𝑡 − (2𝑄𝑅𝑔𝑡 − 2𝑀𝑔𝑡

1 )𝑚ℎ𝑔𝑡
2𝑇

𝑡
𝐺
𝑔   

                                                        +(2𝑀𝑔𝑡
1 − 𝑄𝑅𝑔𝑡)𝑚ℎ𝑔𝑡

3 ) 

      +∑ ∑ (𝑚ℎ𝑔𝑡
3 𝑄𝑂𝑔𝑡 − (2𝑄𝑂𝑔𝑡 − 2𝑀𝑔𝑡

2 )𝑚ℎ𝑔𝑡
2𝑇

𝑡
𝐺
𝑔   

                                                        +(2𝑀𝑔𝑡
2 − 𝑄𝑂𝑔𝑡)𝑚ℎ𝑔𝑡

3 )] 

+ 𝜌∑ [(2𝛼3 − 1)𝑀𝑎𝑥𝑀𝑡
1 + (2 − 2𝛼3)𝑀𝑎𝑥𝑀𝑡

2 −𝑀𝑎𝑥𝑀𝑡
1]𝑇

𝑡   

 

Subject to: 

 

∑ (𝑁𝐻𝑡 + 𝑁𝐹𝑡)
𝑇
𝑡 = 𝜀2 − 𝑠2  

 

∑ ∑ (𝑄𝐼𝑔𝑡 + 𝑄𝐵𝑔𝑡)
𝑇
𝑡=1

𝐺
𝑔  = 𝜀3 − 𝑠3         

 

(2 − 2𝛼1)𝐷𝑒𝑔𝑡
2 + (2𝛼1 − 1)𝐷𝑒𝑔𝑡

3 = 𝐼𝑄𝑔𝑡−1 − 𝑄𝐵𝑔𝑡−1 

                     +𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡 + 𝑄𝑆𝑔𝑡 − 𝑄𝐼𝑔𝑡 + 𝑄𝐵𝑔𝑡;    ∀𝐺, ∀𝑇 

 

𝑄𝐵𝑔𝑡 ≤ 𝑄𝐵𝑔𝑡
𝑚𝑎𝑥 ;    ∀𝐺, ∀𝑇 

 

∑  𝐺
𝑔=1 𝑤ℎ𝑔𝑡−1(𝑄𝑅𝑔𝑡−1 + 𝑄𝑂𝑔𝑡−1)  

           +𝑁𝐻𝑡 − 𝑁𝐹𝑡 − ∑  𝐺
𝑔=1 𝑤ℎ𝑔𝑡(𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡) = 0;  ∀𝑇  

 

∑  𝐺
𝑔=1 𝑤ℎ𝑔𝑡(𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡)  

                         ≤ (2𝛼2 − 1)𝑀𝑎𝑥𝐿𝑡
1 + (2 − 2𝛼2)𝑀𝑎𝑥𝐿𝑡

2;    ∀𝑇 

  

∑  𝐺
𝑔=1 [(2 − 2𝛼3)𝑚ℎ𝑔𝑡

2 + (2𝛼3 − 1)𝑚ℎ𝑔𝑡
3 ](𝑄𝑅𝑔𝑡 + 𝑄𝑂𝑔𝑡)  

                      ≤ (2𝛼3 − 1)𝑀𝑎𝑥𝑀𝑡
1 + (2 − 2𝛼3)𝑀𝑎𝑥𝑀𝑡

2;    ∀𝑇  

 

𝑄𝑆𝑔𝑡 ≤ 𝑄𝑆𝑔𝑡
𝑚𝑎𝑥;    ∀𝐺, ∀𝑇 

∑  𝐺
𝑔=1 𝑤𝑠𝑔𝑡𝑄𝐼𝑔𝑡 ≤ 𝑀𝑎𝑥𝑊𝑡;      ∀𝑇  

 

𝐸[𝑍1̃] ≤ 𝑍𝑏𝑢𝑑𝑔𝑒𝑡  

 
𝑄𝑅𝑔𝑡

2
≤ 𝑀𝑔𝑡

1 ≤ 𝑄𝑅𝑔𝑡;      ∀𝐺, ∀𝑇 

 
𝑄𝑂𝑔𝑡

2
≤ 𝑀𝑔𝑡

2 ≤ 𝑄𝑂𝑔𝑡;      ∀𝐺, ∀𝑇 

 

𝑄𝑅𝑔𝑡 , 𝑄𝑂𝑔𝑡 , 𝑄𝑆𝑔𝑡 , 𝑄𝐼𝑔𝑡 , 𝑄𝐵𝑔𝑡 , 𝑁𝐻𝑡 , 𝑁𝐹𝑡   ≥ 0;    ∀𝐺, ∀𝑇 

 

0.5 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1; 𝑠2, 𝑠3 ≥ 0 

 

According to the DM’s preferences, the first objective 

function (total costs of APP plan) has a higher priority than 

the second and third objective functions (total changing rate 

in workforce levels and total holding inventory and 

backorder quantities). Thus, the first objective function is 

minimized while the two remaining objective functions are 

converted to be the respective constraints. 

VIII. Solution Procedures 

In summary, the solution procedure to deal with the 

MOMILP model for APP decision problem under uncertain 

environment can be described as follows: 

• Step 1: Formulate the multi-objective mathematical 

model with uncertain parameters for APP problems. 

• Step 2: Convert the fuzzy multi-objective mathematical 

model into a corresponding crisp model by applying the 

PCCP (the fuzzy objective functions are defuzzified 

based on fuzzy expected value method while the fuzzy 

constraints are defuzzified based on the possibilistic 

chance-constrained programming method with the 

credibility measure). 

• Step 3: Solve the PCCP model with different 

confidence levels of fuzzy constraints. 

• Step 4: Integrate robust optimization into the PCCP 

model. 

• Step 5: Make a comparison between the PCCP and 

RPCCP models to evaluate the efficiency and 

robustness of the obtained results from these models. 

• Step 6: Determine the NIS and PIS of objective 

functions by using a pay-off table. 

• Step 7: Apply the AUGMECON technique to solve the 

MOAPP model. 

• Step 8: Present a set of various Pareto optimal solutions 

with their respective performances. 

• Step 9: Use the Max-Min method for finding the best 

compromised (trade-off) solution. 
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CASE STUDY 

An industrial case of a ball screw manufacturing company is 

used to illustrate the effectiveness of the proposed method. 

The company plans to produce two types of standard ball 

screws, which are external and internal recirculation 

(Product 1 and Product 2, respectively). The planning 

horizon is assumed to be 4 months, from January to April. 

The input parameters for the planning process are presented 

in Tables 2 – 5, including forecasts of the product demand, 

production costs, and capacity information. It should be 

noted that some of these parameters, i.e., forecasts, 

workforce levels, machine capacities, are presented as 

triangular fuzzy numbers on monthly basis. Other related 

data are described in Table 6. 

 
TABLE 2 

FORECASTED DEMAND OF BOTH PRODUCTS 

Month Product 

�̃�1𝑡 (units) �̃�2𝑡 (units) 

1 (900, 1000, 1080) (900, 1000, 1080) 
2 (2750, 3000, 3200) (450, 500, 540) 

3 (4600, 5000, 5300) (2750, 3000, 3200) 

4 (1850, 2000, 2100) (2300, 2500, 2650) 

 
 

TABLE 3 

RELATED OPERATING COSTS OF BOTH PRODUCTS 

 Product 1 Product 2 

�̃�𝑝𝑡 ($/unit) (17, 20, 22) (8, 10, 11) 

�̃�𝑝𝑡 ($/unit) (26, 30, 33) (12, 15, 17) 

�̃�𝑝𝑡 ($/unit) (22, 25, 27) (10, 12, 13) 

�̃�𝑝𝑡 ($/unit) (0.27, 0.30, 0.32) (0.13, 0.15, 0.16) 

�̃�𝑝𝑡 ($/unit) (35, 40, 44) (16, 20, 23) 

 

TABLE 4 
MAXIMUM LABOR, MAXIMUM MACHINE, AND WAREHOUSE SPACE DATA 

Month 
𝑀𝑎𝑥�̃�𝑡  
(person–hours) 

𝑀𝑎𝑥�̃�𝑡  

(machine–hours) 

𝑀𝑎𝑥𝑊𝑡  

(ft2) 

1 (175, 300, 320) (360, 400, 430) 10,000 

2 (175, 300, 320) (450, 500, 540) 10,000 

3 (175, 300, 320) (540, 600, 650) 10,000 

4 (175, 300, 320) (450, 500, 540) 10,000 

 
TABLE 5 

MAXIMUM SUBCONTRACTING AND BACKORDERING LEVELS 

Month 𝑀𝑎𝑥𝑄𝑆𝑔𝑡 (Units)  𝑀𝑎𝑥𝑄𝐵𝑔𝑡 (Units) 

Product 1 Product 2  Product 1 Product 2 

1 400 500  500 500 

2 400 500  500 500 
3 400 500  500 500 

4 400 500  500 500 

 

TABLE 6 
OTHER RELEVANT DATA 

Product Initial 
holding 

inventory 

level 
(units) 

Ending 
holding 

inventory 

level in 
the fourth 

month 
(units) 

Storage 
space of 

products in 

warehouse 

(ft2) 

Labor 
hours for 

producing 

products 
(person–

hours 
/unit) 

Machine hours 
for producing 

products 

(machine–
hours/unit) 

1 400 300 2 0.05 (0.09, 0.10, 0.11) 

2 200 200 3 0.07 (0.07, 0.08, 0.09) 

Hiring cost ($/person/hour) (8, 10, 11) 

Downsizing cost ($/person/hour) (2.0, 2.5, 3.2) 

Initial labor level (persons) 300 

Total available budget ($) 400,000 

 

RESULTS AND DISCUSSIONS 

By using the information from the industrial case discussed 

in the previous section, the mathematical model of the 

multi-objective APP decision problem is coded and solved 

by IBM ILOG Cplex Optimization Software on the 

computer with an Intel(R) Core (TM) i5-8250U CPU @ 

1.60GHz with 16GB. The outcomes of the model are 

assessed and discussed in this section. 

I. Results of PCCP Model with Different Confidence Levels 

To assess and investigate the performance of the PCCP 

model for the MOAPP problem, it will be solved with 

various confidence levels from 0.5 to 1 as a single objective 

optimization model. The objective function’s value of each 

objective under different confidence levels is presented in 

Table 7 and depicted in Figure 3. 

 

 
FIGURE 3 

OBJECTIVE FUNCTION VALUE OF PCCP MODEL  



Journal of Industrial Engineering International, 17(4), December 2021 

 

 

54 

 J     I     E     I  

 

 

TABLE 7 

RESULTS OF PCCP MODEL WITH DIFFERENT CONFIDENCE LEVELS 

Confidence levels Objective function 

Z1 ($) Z2 (persons) Z3 (units) 

0.5 284,843 42 1,858 
0.6 288,457 42 2,226 

0.7 292,726 42 2,595 

0.8 299,276 60 4,941 
0.9 310,049 80 5,398 

1 326,742 100 7,030 

 

From the obtained results in Table 7 and Figure 3, they 

highlight that increasing the confidence level will result in 

enhancing the values of all objective functions. This also 

means that these objective functions become worse or less 

desirable. The reasons for having such a worse solution can 

be interpreted as follows. There is a compromise or trade-

off between the optimal value of objectives and the 

satisfaction of constraints (the risk of constraint violation). 

The set of feasible solutions will be smaller when the level 

of constraint satisfaction is higher and in reverse. At this 

point, the confidence level is represented for the level of the 

constraint satisfaction. Therefore, when the confidence level 

is set highly, the optimal objective values become worse. In 

fact, the PCCP model would operate in a risk-averse manner 

as the confidence level is increased. 

In the PCCP approach, the confidence levels of a fuzzy 

constraint are usually pre-determined and relying on the 

experiences, knowledge, or subjective analyzes of the DMs. 

In fact, the solutions with respect to different confidence 

levels are evaluated in accordance with the objective 

function value. However, this objective function is 

determined based on the average (expected) value of fuzzy 

numbers. So, some disadvantages of this approach can be 

figured out as follows: 

• It cannot guarantee the best possible solution for a pre-

determined confidence level because of the DM’s 

subjective adjustment. In addition, the number of 

experiments, needed for finding suitable confidence 

levels, dramatically increases with the number of 

chance constraints. Consequently, it is time-consuming. 

• The differences between the objective function and its 

expected value are not considered. Thus, this can put 

the DMs in high risks and the outcomes could not be 

trustable. 

To solve these problems of the PCCP approach, a 

RPCCP approach, which is a combination of PCCP and RP, 

is developed and modified from the previous study of 

Pishvaee et al. [20].  

II. Results of RPCCP Model 

Typically, fuzzy parameters in a mathematical model need 

to be defuzzified before it is solved. The purpose of this 

defuzzification process is to convert the values of these 

parameters from fuzzy to crisp numbers such that the model 

can be solved as a deterministic model. However, applying 

the defuzzification at the early stage of the optimization 

process results in the lost fuzziness property, with which a 

better solution can be found. Therefore, the fuzziness of the 

model’s parameters should be maintained as long as 

possible. To facilitate such a strategy, the RPCCP approach 

is implemented in this study. By using this method, the 

confidence levels of constraints, i.e., customer demand 

constraint (𝛼1), labor level constraint (𝛼2), and machine 

capacity constraint (𝛼3), are considered as decision 

variables and optimized to find the most appropriate levels. 

The obtained results of objective functions from the RPCCP 

model of APP problem are numerically presented in Table 

8. 

The objective functions are solved separately to find their 

own best solution. According to the presented results in Table 

8, the minimum expected value of total costs (Z1) is $ 284,830, 

the deviation from the expected value to the worst value of total 

costs is $33,415. In relation to the value of total costs, the 

optimal minimum confidence levels for restrictions of demand, 

labor level, and machine capacity are 55%, 67%, and 100%, 

respectively. The minimum value of total changes in workforce 

level (Z2) is 29 persons. Regarding the value of Z2, the optimal 

minimum confidence levels for restrictions of demand, labor 

level, and machine capacity are 100%, 64.5%, and 100%, 

respectively. The minimum value of total inventory and 

backordered quantities (Z3) is 1,859 units. Relating to the value 

of Z3, the optimal minimum confidence levels for restrictions 

of demand, labor level, and machine capacity are 50%, 50%, 

and 100%, respectively. The deviations of the second (Z2) and 

third (Z3) objective functions are not considered since these two 

objective functions do not contain uncertain parameters. 

A comparison of objective functions between the PCCP 

and RPCCP model is graphically presented in Figure 4. The 

TABLE 8 

OBTAINED RESULTS OF RPCCP MODEL 

Objective functions Expected 

value of 
objective 

function 

Deviation from the 

expected value to the 
worst value of the 

objective function 

Optimal minimum confidence levels 

Customer 

demand 
constraint 

(𝛼1) 

Labor level 

constraint 

(𝛼2) 

Machine 

capacity 
constraint 

(𝛼3) 

Total costs (Z1) $ 284,830 $33,415 55% 67% 100% 
Total changes in workforce level (Z2) 29 persons - 100% 64.5% 100% 

Total inventory and backordered quantities (Z3) 1,859 units - 50% 50% 100% 

The important weight (𝛾 = 0.15). Penalty unit of possible violated constraints (𝛿 = 𝜋 = 𝜌 = 𝜎 = 0.001). 
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results indicate that across different confidence levels, the 

results of the RPCCP model are much better than those of 

the PCCP model in terms of the objective function values. 
 

 

 

 
FIGURE 4 

COMPARISON OF PCCP AND RPCCP MODEL 

 

Based on Figure 4 and the obtained results from Table 

8, the aforementioned disadvantages of the PCCP model can 

be solved by the RPCCP model. In this RPCCP model, the 

terms of optimality robustness (the distance from the worst 

to the mean values of the objective function), and the 

feasibility robustness (violation of constraints) are included 

in the objective function and optimized simultaneously. 

Thus, the RPCCP model can yield a balanced solution 

between the robustness of risks and feasibility of the 

expected value, which can provide enough information for 

an obtained solution under the impact of uncertainties. 

The efficiency and reliability of the proposed RPCCP 

model are also evaluated. Specifically, its solutions are 

compared with the solutions of the PCCP model under 

nominal data. The obtained solutions of these two 

approaches are examined under 10 scenarios of data 

(realization), which are randomly generated from the range 

of corresponding uncertain parameters. For instance, a fuzzy 

number following the triangular possibility distribution is 

denoted as �̃� = (𝑎1, 𝑎2, 𝑎3). Hence, the realization will be 

formed by generating uniform random numbers between the 

pessimistic and optimistic values of fuzzy parameters (e.g., 

𝑎𝑟𝑒𝑎𝑙 = [𝑎1, 𝑎3]). Then, the obtained solutions (𝑥∗) from 

solving the RPCCP model under nominal data, which are 

altered in the realization model, as presented below:  

 

 

 

𝑀𝑖𝑛           𝜓1(𝑥) = 𝑐𝑟𝑒𝑎𝑙𝑥
∗ +  𝛿𝑅𝑘 + 𝜋𝑅𝐵 + 𝜌𝑅ℎ + 𝜎𝑅𝑔 

  𝑆. 𝑡           𝐴𝑥∗ ≤ 𝑘𝑟𝑒𝑎𝑙 + 𝑅
𝑘 

                   𝑇𝑥∗ = 0 

                   𝐵𝑟𝑒𝑎𝑙𝑥
∗ − 𝑅𝐵 ≤ ℎ𝑟𝑒𝑎𝑙 + 𝑅

ℎ 

                   𝐷𝑥∗ + 𝑅𝑔 = 𝑔𝑟𝑒𝑎𝑙  
                   𝑅𝑘 , 𝑅𝐵 , 𝑅ℎ , 𝑅𝑔 ≥ 0 

 

In the above realization model, 𝛿, 𝜋, 𝜌 and 𝜎 represent 

the penalty values of constraint’s violation and are assumed 

to be equal. 𝑅𝑘 , 𝑅𝐵 , 𝑅ℎ and 𝑅𝑔 are deviation variables that 

determine the value of violation of the chance constraints 

under different random realizations. Based on the Average 

and Standard Deviation (SD) of the objective function, the 

performance of the RPCCP model will then be measured 

and evaluated. 

In this study, only the first objective function (total 

costs of APP plan) involves uncertain parameters. 

Therefore, only this objective function is used to test under 

this realization. It is assumed that the penalty value of the 

constraint’s violation is equal to $25. The measurement and 

evaluation of the results obtained by the RPCCP and PCCP 

model with different confidence levels are shown and 

illustrated in Table 9 and Figure 5, respectively. 
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TABLE 9 

THE PERFORMANCE OF OBTAINED RESULTS UNDER REALIZATION OF PCCP AND RPCCP MODEL 

No. 

Realization 

Total costs of the realization model ($) 

PCCP model solutions with different confidence levels 
RPCCP 

0.5 0.6 0.7 0.8 0.9 1 

1 270,971.89 267,398.16 264,057.40 261,943.39 262,441.73 266,914.63 257,352.72 

2 280,534.92 276,961.24 273,622.15 271,534.84 271,837.15 275,911.05 266,917.10 

3 293,426.52 289,852.85 286,513.88 284,424.38 284,625.32 288,583.55 279,808.84 
4 300,645.63 297,071.98 293,710.47 291,527.65 291,737.14 295,863.40 287,028.99 

5 302,970.85 299,397.23 296,016.96 293,752.23 294,149.60 298,895.52 289,354.46 
6 307,401.63 303,827.99 300,326.92 297,496.33 297,478.34 302,167.59 293,785.92 

7 312,010.17 308,436.55 304,882.42 301,813.67 302,339.22 308,850.58 298,395.14 

8 315,670.92 312,097.34 308,635.73 306,031.28 306,905.45 313,430.70 302,057.31 
9 316,540.07 312,966.48 309,637.14 307,665.93 309,054.67 315,856.96 302,926.53 

10 326,635.08 323,061.47 319,844.90 318,407.11 319,911.69 326,117.90 313,021.52 

Average 302,680.77 299,107.13 295,724.80 293,459.68 294,048.03 299,259.19 289,064.85 

SD 17,093.59 17,093.63 17,086.06 17,087.20 17,404.89 18,303.31 17,095.48 

 

 
FIGURE 5 

COMPARISON OF PCCP AND RPCCP MODEL 

 

According to Table 9 and Figure 5, the average values 

of the objective function of the RPCCP model under 

different realizations are lower than the average values of 

the objective function of all the PCCP models with different 

confidence levels. Besides that, the SD of the RPCCP model 

is also in an acceptable range. Throughout these obtained 

results, the robustness and application of the RPCCP model 

can be justified. It could also say that the RPCCP is a more 

efficient approach to cope with uncertain situations. 

Additionally, a sensitivity analysis on different penalty 

values of the violated constraints for the RPCCP model and 

PCCP model with different confidence levels under the 

realization model is also conducted. The diffident penalty 

values of violated constraints are presented in Table 10. 

 
TABLE 10 

DIFFERENT PENALTY VALUES IN THE REALIZATION MODEL ($) 

Number 1 2 3 4 5 6 

Penalty values 

(𝛿 = 𝜋 = 𝜌 = 𝜎) 
10 20 30 40 50 60 

The value of the objective function (total costs) with 

various penalty values of violated constraints is used to 

compare the RPCCP model and PCCP model with different 

confidence levels, which are illustrated in Figure 6.  
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FIGURE 6 

THE TOTAL COSTS OF RPCCP AND PCCP MODEL UNDER DIFFERENT PENALTY VALUES OF CONSTRAINT VIOLATION 

 

According to Figure 6, the penalty value of chance-

constraints violation has an important impact on the 

performance of the RPCCP models. As the penalty value of 

chance-constraints violation is high, the PCCP model with 

the confidence levels of 0.8, 0.9, and 1 (optimization under 

the worst situation: risk-averse models) has better 

performances. In contrast, as the penalty value of chance-

constraints violation is low, the RPCCP model shows to 

outperform the others.    

III. Results of Multi-Objective RPCCP Model by Using 

Augmented Epsilon-Constraint (AUGMECON) Technique 

To cope with the conflicting multiple objective problem, the 

AUGMECON technique is employed. To apply this 

method, firstly, the NIS and PIS of each objective are 

needed to be determined. As aforementioned, the pay-off 

table method is used. Therefore, a pay-off table for 

identifying the NIS and PIS of each objective function is 

generated and presented in Table 11.  

According to Table 11, the bold values are the PISs of 

the objective functions, which are obtained by optimizing 

each objective function. The NIS values of the objective 

functions are then estimated by the maximum or minimum 

value in the equivalent column (it depends on the type of 

objective function). If the objective is minimization, the 

NISs will be determined by the following equation: 

 

𝑍𝑗
𝑁𝐼𝑆 = 𝑚𝑎𝑥{𝑍𝑗(𝑣𝑞

∗);  𝑗 ≠ 𝑞}  (37)  

where 𝑣𝑞
∗ is the PISs for respective objective functions 𝑍𝑗.  

As the objective function is maximization, the NIS is 

determined by the equation as follows: 

 

𝑍𝑗
𝑁𝐼𝑆 = 𝑚𝑖𝑛{𝑍𝑗(𝑣𝑞

∗);  𝑗 ≠ 𝑞}  (38)  

 

Based on Equation 37 (as all objective functions are 

minimization) and the results as shown in Table 11, the NIS 

and PIS of each objective function can be easily obtained, as 

numerically presented in Table 12. 

After the bound of each objective function is 

determined by the pay-off table, the bound of the second 

and third objective functions will be separated into 20 equal 

parts (see Table 13). In addition, the second and third 

objective functions are transformed to be the constraints. 

Therefore, the multi-objective model becomes a single 

TABLE 11 
PAYOFF TABLE FOR OBTAINING PISS AND NISS 

Objective functions Symbol Type Unit 𝑣1
∗ 𝑣2

∗ 𝑣3
∗ 

Total costs Z1 Min ($) 284,830  332,576 310,121   

Total changes in workforce level Z2 Min (Persons) 63 29 503 
Total inventory and backordered quantities Z3 Min (Units) 6,760  12,958 1,859   

 TABLE 12 
OBTAINED PISS AND NISS FOR EACH OBJECTIVE FUNCTION 

Objective functions Symbol Unit PIS  NIS 

Type Value  Type Value 

Total costs Z1 ($) Min 284,830  Max 310,121 

Total changes in workforce level Z2 (Persons) Min 29  Max 503 

Total inventory and backordered quantities  Z3 (Units) Min 1,859  Max 12,958 
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objective model and then being solved regarding to the first 

objective function.  

According to the pay-off table, the bound of the second 

objective function 𝑟2 = 474 persons and the bound of the 

third objective function 𝑟3 = 11,009 units. These two bounds 

are divided into 20 equal intervals with 𝑆𝑡𝑒𝑝2 = 24 and 

𝑆𝑡𝑒𝑝3 = 555. The AUGMECON process is demonstrated as 

follows: 

 

𝐹𝑜𝑟 𝑣 =  0. . .20 

    𝜀3 =  12,958 −  𝑣 × 555 

        𝐹𝑜𝑟 𝑢 =  0. . .20 

           𝜀2 =  509 −  𝑢 × 24 

          𝑆𝑜𝑙𝑣𝑒 𝑀𝑜𝑑𝑒𝑙 (30)  
        𝑁𝑒𝑥𝑡 𝑢  
𝑁𝑒𝑥𝑡 𝑣  

It is assumed that we are in the 11th innermost (𝑢 = 10) 

and the 6th outermost (𝑣 = 5) iteration, where 𝜀2 = 269 and 

𝜀3 = 10.183 (these values are bold in Table 13). Having 

solved the model, the obtained value of 𝑠2 and 𝑠3 are 207 

and 3,392, respectively. This means that the second and 

third objective functions’ values in this iteration will be 

presented as Table 13. 

This can be concluded that it is redundant to solve the 

next iterations with 𝑢 = 12, 13, … , 19 (italic values in Table 

13). This is since the same Pareto optimal solutions will be 

obtained with 𝑍2 = 62. The only difference between these 

solutions is the surplus variables. For example, with 𝑢 =
12, the surplus variable 𝑠2 will be 207 − 24 = 183 or with 

𝑢 = 19, the surplus variable 𝑠2 will be 207 − (8 × 24) =
15. Therefore, the redundant iterations can be bypassed and 

directly come to 𝑢 = 20 with 𝜀2 = 53 from 𝑢 = 11 (see 

Table 13). The bypass coefficient (denoted by 𝑏𝑝) is 

computed as follows: 𝑏𝑝 = 𝑖𝑛𝑡 (204/24) = 9. By using the 

bypass coefficient, the redundant iterations can be 

eliminated. This helps to save time in the solving process of 

the algorithm. 

 
TABLE 13 

GRID POINTS OF THE SECOND AND THIRD OBJECTIVE FUNCTIONS 

Objective function Z2 Z3 

Counter u v 

Grid points 

0 509 12,958 

1 485 12,403 

2 461 11,848 

3 437 11,293 

4 413 10,738 

5 389 10,183 

6 365 9,628 

7 341 9,073 

8 317 8,518 
9 293 7,963 

10 269 7,408 

11 245 6,854 
12 221 6,299 

13 197 5,744 

14 173 5,189 
15 149 4,634 

16 125 4,079 

17 101 3,524 
18 77 2,969 

19 53 2,414 

20 29 1,859 

 

𝑍2 = 𝜀2 − 𝑠2 = 269 − 207 = 62  

        and 𝑍3 = 𝜀3 − 𝑠3 = 10,138 − 3,392 = 6,746 

 

By applying the AUGMECON technique to solve the 

MOAPP model, the Pareto solutions can be obtained and 

illustrated in Table 14.  

Based on Table 14, there is a trade-off among objective 

functions. Throughout many given solutions, the DMs can 

realize how much the other objectives must be sacrificed 

from varying or improving one objective. Having known 

that, it is very helpful for the DMs as they can choose the 

most satisfied solution according to their preferences. 
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These results are further assessed by using the Max-

Min approach. The purpose of using this method is to obtain 

the best Pareto solution with the smallest deviation from 

each objectives’ ideal solution. By applying the method to 

the solutions in Table 14, the second solution (BTS = 

6.7668) is chosen as the best Pareto solution. The detailed 

production plan of this best solution by the Max-Min 

method can be displayed in Table 15. 

According to Table 15, the produced quantities of 

Product 1 in the regular–time production from the first 

month to the fourth month are 630, 2,975, 4,999, and 2,296 

units, respectively. It can also be seen that the quantities of 

ending inventory of product 1 from the first month to the 

fourth month are 30, 5, 4, and 300 units, respectively, and 

there is no subcontracting unit. Product 2 shows 3,150, 

1,475, 215, and 2,160 units of regular–time production from 

the first month to the fourth month. Product 2 also indicates 

a higher level of ending inventory with 2,350, 3,325, 540, 

and 200 units from the first month to the fourth month, 

respectively. Subcontracting is also not required. The 

number of dismissed workers is 48 persons in the first 

month. Thirteen new workers are employed in the third 

month and one person is hired in the fourth month. 7,110, 

9,985, 1,628, and 1,200 ft2 of warehouse space to keep 

Product 1 and Product 2 from the first month to the fourth 

month are required, respectively. With this plan, the total 

costs, the total fluctuation of workforce level, and the total 

inventory and backordered quantities are $284,830, 62 

persons, and 6,746 units, respectively. 

According to the above obtained results and 

discussions, it can be inferred that the proposed approach in 

this study can provide some significant contributions as 

follows: 

1) Dealing with the uncertainty  

• RPCCP are divided into three types: (1) hard worst 

situation, (2) soft worst situation, and (3) realistic 

situation. Therefore, RPCCP provides a degree of 

flexibility for the DMs to make a choice of any 

points within the range of fully optimistic and 

pessimistic under the impact of uncertainties.  

• RPCCP can be able to deal with uncertainties in 

both objective functions and constraints. 

• As compared to other methods so-called the 

traditional defuzzification methods (e.g., the 

weighted average method, the ranking method), 

these methods do not provide any information 

regarding to the likelihood of violating constraints 

(feasibility concept). In contrast, having relied 

TABLE 14 

A SET OF PARETO OPTIMAL SOLUTIONS. 

No. 
 Satisfaction levels  Objective function values  

BTS 
 𝜇𝑧1(%) 𝜇𝑧2(%) 𝜇𝑧3(%)   Z1 ($)  Z2 (persons)  Z3 (units)  

1  99.33 95.15 50.05   285,151  52 7,403  6.7765 

2  100 93.04 55.97   284,830  62 6,746  6.7668 

3  99.73 87.13 60.10   284,959  90 6,288  7.4864 

4  99.49 81.65 65.09   285,074  116 5,734  8.0853 

5  99.19 75.53 70.02   285,216  145 5,186  8.7910 
7  98.81 66.88 75.02   285,399  186 4,632  9.9075 

8  97.98 50.42 80.04   285,796  264 4,074  12.2983 

9  97.09 35.65 85.01   286,220  334 3,523  14.4172 
10  95.68 37.13 90.20   286,894  327 2,947  13.8684 

 
TABLE 15 

OPTIMAL PRODUCTION PLAN IN THIS INDUSTRIAL CASE 

Items Symbol Unit Month 

1 2 3 4 

Product 1 Regular–time production 𝑄𝑅1𝑡 units 630 2,975 4,999 2,296 

 Overtime production  𝑄𝑂1𝑡 units 0 0 0 0 

 Subcontracted  𝑄𝑆1𝑡 units 0 0 0 0 

 Inventory  𝑄𝐼1𝑡 units 30 5 4 300 

 Backordered  𝑄𝐵1𝑡 units 0 0 0 0 

        

Product 2 Regular–time production 𝑄𝑅2𝑡 units 3,150 1,475 215 2,160 

 Overtime production  𝑄𝑂2𝑡 units 0 0 0 0 

 Subcontracted  𝑄𝑆2𝑡 units 0 0 0 0 

 Inventory 𝑄𝐼2𝑡 units 2,350 3,325 540 200 

 Backordered 𝑄𝐵2𝑡 units 0 0 0 0 

        

Total hired workers  𝑁𝐻𝑡 persons 0 0 13 1 

Total downsized workers 𝑁𝐹𝑡 persons 48 0 0 0 

Machine capacity  machine-hours 353 450 540 447 

Warehouse space  ft2 7,110 9,985 1,628 1,200 

Total costs Z1 $ 284,830    
Total changes in workforce level Z2 persons 62    

Total inventory and backordered quantities  Z3 units 6,746    
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upon the fuzzy relation between fuzzy numbers, 

the defuzzification method (chance-constrained) of 

the proposed RPCCP approach can not only help 

avoid being defuzzified earlier in the process of 

defuzzification but also seek the most appropriate 

confidence levels (fuzziness levels) of fuzzy 

constraints. This is one of the outstanding features 

of this proposed approach. 

• The deviation from the worst value to the expected 

value and constraint violation penalty are 

optimized simultaneously in the objective function 

of the model. So, the approach can yield a solution 

with both aspects of feasibility and optimality 

(robust solution). 

 

2) Dealing with the multi-objective decision making 

• The approach can generate various Pareto optimal 

solutions (strong Pareto solutions), which offer the 

DMs alternative choices to select when dealing 

with the multiple conflicting objectives.  

• The satisfaction level of the DMs from solutions is 

taken into consideration, which helps the DMs to 

evaluate the efficiency of the obtained solutions. 

IV. Managerial Implications 

In order to create an effective and realistic production 

plan, it is necessary for companies to have a suitable and 

efficient approach to deal with these two issues of dealing 

with uncertain data and multi-objective decision making 

problems. Through this study, some significant implications 

for companies can be indicated as follows: 

• In real-world applications, the credibility level is 

usually employed to reflect the occurrence of a fuzzy 

event and often represent parameters with unknown 

values in a mathematical programming model. By 

specifying an appropriate credibility level, uncertain 

parameters are converted into crisp analogous 

parameters. This creates a deterministic scenario. If 

multiple credibility levels are given, each level 

determines a scenario in which a set of optimal results 

(operational decision variables) are obtained.  

Therefore, having a series of scenarios ranging from 

optimistic to pessimistic situations provides valuable 

inputs for the management to develop effective 

operational and strategic plans against future 

uncertainties. 

• Practically, it is difficult for the company to control the 

fuzziness levels of constraints such as workforce level 

and maximum machine capacity or even customer 

demand cannot be controlled. However, having known 

the optimal fuzziness level of these constraints will help 

the company in making effort to run its operations 

toward the obtained fuzziness level. For example, if the 

optimal fuzziness level of the maximum machine 

capacity is relatively on the RHS of the maximum 

available machine capacity, the company can spend 

more budget on buying more machines to enhance the 

machine capacity and vice versa. Thus, the argument 

between increased expenditure and gained benefits can 

be assessed by their worthiness. 

• From the aspect of making decisions as multiple 

conflicting objectives are considered simultaneously, 

this study can generate a set of Pareto optimal solutions 

(different compromised solutions). Therefore, it is 

extremely beneficial to managers or planners in 

choosing appropriate solutions following each 

company’s policy. 

CONCLUSIONS 

To deal with two important issues in APP decision 

problems, which are the uncertainty of input data and multi-

objective decision making, this study proposed a multi-

objective multi-product multi-period APP decision problem 

in an uncertain environment. The considered uncertain 

parameters (following the triangular possibility distribution) 

of the APP model in the study included customer demand, 

operation time, operation cost, and machine capacity. Our 

APP model strived to simultaneously minimize total costs, 

holding inventory and backordered quantities, and variation 

in workforce levels with regard to the restriction of available 

budget, workforce levels, and machine and warehouse 

capacities. 

In handle the fuzzy multiple objective APP model, a 

RPP, which is an integration of PCCP, RP, and 

AUGMECON technique has been developed. The PCCP and 

RP approaches were used for handling the uncertain data 

while the AUGMECON technique was used for handling 

multiple conflicting objectives. 

The applicability and efficiency of the proposed 

methodology for the fuzzy multi-objective APP problem 

have been evaluated via a case study. Throughout the 

obtained results from the RPCCP model, as compared to the 

basic PCCP model, it was shown that the RPCCP model 

outperformed the basic PCCP model in terms of the 

measurement of average and SD of the objective function 

under the realization. Additionally, the RPCCP can not only 

maintain the fuzziness of data (avoid being defuzzified too 

early) but also seek the most appropriate (confidence) levels 

of fuzzy constraints. For multi-objective decision making, 

by applying the AUGMECON technique, the proposed 

approach had the ability to produce a set of Pareto optimal 

solutions, which made a rational trade-off among objective 

functions, as well as provided the DMs different alternative 

selections. Besides, the best compromised (trade-off) 

solution was also defined through a comparison by using the 

Max-Min method. 

The primary limitation of the proposed approach is that 

all uncertain parameters in the proposed model are 

represented by the triangular possibility distribution. In fact, 

based on incomplete available data, subjective knowledge, 

or experiences of the DMs/experts, other appropriate 

distribution forms can be generated and then applied for the 
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proposed model. In addition, there were only a few 

parameters (i.e., labor level, machine capacity, and customer 

demand) that are considered to be uncertain or imprecise 

parameters in the problem. With the proposed approach, 

more numbers of parameters could be considered to be 

fuzzy. The following may also be considered to be possible 

further studies. 

• From the aspect of developing the model, the APP 

model could be extended by adding other important 

issues such as machine utilization, multiple 

manufacturing plants, labor skills, varying lead time, 

etc. Additionally, when the APP models are developed 

or expanded with the consideration of multiple different 

objectives, the business and sustainability aspects can 

also be embedded. 

• From the aspect of solving approach, once APP models 

become very large and too complex to be solved by IBM 

ILOG CPLEX software (as it was used in this study), it is 

necessary to investigate the suitability of using 

metaheuristic algorithms such as Genetic Algorithm 
(GA), Ant Colony, and so on for any possibility to obtain 

optimal or closed to optimal results within acceptable 

solving time. 
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APPENDIX 

In Multi-Objective Linear Programming (MOLP) 

problems, a solution is called a “Pareto optimal solution” 

when none of the objective functions is possible to be 

enhanced without worsening, at least, one other objective 

function. Consequently, the Pareto frontier, can be 

constructed by a set of Pareto optimal solutions to provide the 

DMs a whole picture of compromise solutions from which 

they can select the most satisfied one based on their 

preferences.  

A MOLP problem with j objective functions of 

minimization can be described in a mathematical form as 

follows: 

 

𝑀𝑖𝑛    [𝜓1(𝑥), 𝜓2(𝑥), . . . , 𝜓𝑗(𝑥)]  

𝑆. 𝑡.     𝑥 ∈ 𝑋  

 

Now, a point �̂� ∈ 𝑋 is called: 

• A dominated solution if there exist 𝑥 ∈ 𝑋 such that 

𝜓𝑗(𝑥) < 𝜓𝑗(�̂�) ∀ 𝑖; 

• A weak Pareto optimal solution if and only if there does 

not exist 𝑥 ∈ 𝑋 such that 𝜓𝑗(𝑥) < 𝜓𝑗(�̂�) ∀ 𝑖; 

• A strong Pareto optimal solution if and only if there 

does not exist 𝑥 ∈ 𝑋 such that 𝜓𝑗(𝑥) ≤ 𝜓𝑗(�̂�) ∀ 𝑖;

 


