
Journal of Industrial Engineering 4 (2009) 71- 78

 71

 A Cellular Learning Automata (CLA) Approach to Job Shop Scheduling
Problem

Masoud Abdolzadeha, Hassan Rashidia,*
aComputer Engineering Department, Islamic Azad University, Qazvin Branch, Qazvin, Iran

Received 15 Sep., 2009; Revised 5 Oct., 2009; Accepted 19 Oct., 2009

Abstract

Job shop scheduling problem (JSSP), as one of the NP-Hard combinatorial optimization problems, has attracted the attention of many
researchers during the last four decades. The overall purpose regarding this problem is to minimize maximum completion time of jobs,
known as makespan. This paper addresses an approach to evolving Cellular Learning Automata (CLA) in order to enable it to solve the
JSSP by minimizing the makespan. This approach is applied to several instances of a variety of benchmarks and the experimental results
show that it produces nearly optimal solutions, compared with other approaches.

Keywords: Job Shop; Scheduling; Makespan; Cellular Learning Automata.

1. Introduction

Scheduling problems in various systems is one of the
major challenges to reach high performance. In order to
simplify algorithms presentation and analyze real world
problems, scheduling problems are classified into
different groups. Each real world problem is assigned to
one of these groups and solved with appropriate solutions.
One of these problems is called Job Shop Scheduling
Problem (JSSP). This problem includes resource
assigning to a set of operations in their given time [2].
Industrial tasks ranging from assembling cars to
scheduling airplane maintenance crews are easily
modeled as instances of this problem, and improving
solutions by even as little as one percent can have a
significant financial impact. Furthermore, this problem is
interesting from a theoretical standpoint as one of the
most difficult NP-Hard problems to solve in practice and
only small groups of them can be solved by searching all
problem space [3].

A typical problem of JSSP with m machines and n Jobs
has (n!)m possible states in its search space. Thus for
problem with 10 jobs and 10 machines there are 7.2651 *
10183 possible states [9].

The approaches in literature to scheduling problem are
classifies in two groups. The first group identifies an
exact solution via integer programming, dynamic
programming, branch and bound (B&B) and enumeration

[19]. this group needs too much time and becomes
inefficient as the number of jobs increases. The second
group is meta-heuristic, which yields an approximate
solution in a very short time; the methods involved in the
group are very diverse, including a Genetic Algorithm
(GA), Simulated Annealing (SA), Tabu Search (TS), Ant
Colony Optimization (ACO), and Neural Networks (NN)
[1,4,5,6,7,10,14,15,17,20,21]. These algorithms use
problem search space and try to optimize the first or the
current solutions and repeat optimization to get terminate
criterion.

We propose an approach to JSSP based on the cellular
learning automate. There is no solution for the problem by
this approach. At the end-quarter of the 20th century,
Cellular Automata was proposed as a model to analyze
treatments of complex systems. Learning Automata was
presented at the beginning of 1960s which treats based on
learning algorithm. This model learns how to choose its
best action from a set of actions. The Cellular Learning
Automaton proposed was based on a combination of
cellular and learning automata. In this model, each cell is
equipped with a learning automaton that determines cell's
state, which is a specific solution. This paper optimizes
the solutions to the JSSP using features of CLA and
makes possible learning the position of jobs in job
sequence.

The rest of this paper is organized as follows: In
section 2, literature review of the JSSP is given. A
detailed description of the JSSP follows in section 3.
Section 4 summarizes the cellular learning automata. In

*Corresponding author E-mail: hrashi@essex.ac.uk

Masoud Abdolzadeh et al./ A Cellular Learning Automata (CLA) Approach to Job Shop Scheduling Problem

 72

section 5, our proposed algorithm is described. Section 6
is considered for reporting experimental results and their
subsequent comparison with other algorithms. Section 6
presents the conclusion and rounds up the paper.

2. Literature Review

Job shop makespan minimization is a challenging
problem. However, efficient, polynomial time solutions
have been found for the problem. Work on optimal
solution procedures for general makespan problems has
focused most heavily on the development of implicit
enumeration, or branch and bound approaches. These
approaches were not able to solve larger problems. As
observed in [12], the applicability of implicit enumeration
schemes is limited to relatively small problems, and their
performance is quite sensitive to particular problem
instances and initial upper bound values.
Other research studies have investigated heuristic
approaches. Simple priority dispatching algorithms are the
most representative and the most widely used in practical
environments. While dispatching algorithms are
extremely fast and easy to implement, there are also
drawbacks. The performance of any given rule is typically
quite sensitive to problem characteristics, and it is
generally quite difficult to find one that dominates in any
particular environment. Such procedures are also
susceptible to very poor performance in certain
circumstances, due to the myopic nature of their decision-
making. With the rapid increase in computing power in
recent years, a growing body of research has focused on
development of more sophisticated heuristic methods,
which incorporate various forms of search and aim at
striking a better cost performance tradeoff than the
extremes that are provided by dispatch and optimal
solution procedures. One such notable approach
emphasizes bottleneck tracking as a heuristic
methodology for integrating optimal solutions to simpler,
one-machine sub problems. A series of shifting bottleneck
procedures have been defined which have demonstrated
very strong performance on a range of previously
published benchmarks, and provide a continuum of
increasingly more accurate solution procedures at
increasing computational expenses.
 Other work has explored the use of various local search
techniques as a basis for approximate solution which
yields a solution in a very short time; the methods
involved in the work are very diverse, including a Genetic
Algorithm (GA), Simulated Annealing (SA), Tabu Search
(TS), Ant Colony Optimization (ACO), and Neural
Networks (NN) [1,4,5,6,7,10,14,15,17,20,21]. These
techniques use problem search space and try to optimize
the first or the current solutions and repeat optimization to
get terminate criterion.

3. Job Shop Scheduling Problem

In this section, we define JSSP, describe the problem, and
provide solution representation methods.

3.1. Problem Definition

A JSSP can be defined by (n) jobs and (m) machines.
Each job consists of several operations. Each operation
should be processed by specified machine. Processing
time for each operation is fixed and predefined. In other
words, there is a sequel of machines proportionate to each
job that must be processed. We suppose all jobs are ready
at the beginning time. Initialization time of operations is
set to zero or as a part of processing time. There is no
precedence between jobs. Each machine can process just
one operation of a job and each job can be processed by
one machine at a time. There is no permission to interrupt
for operation processing.

We can define construction of JSSP as follows:
• A set of N independent Jobs. {Jj} 1≤j≤N
• Each Jj has a sequence of operations. (Gj)
• Each Gj is ordered as series of operations and Oi,j

determines the position of an operation in the job
sequence. There is precedence between the operations
of a job. In other words, operation Oi+1,j cannot be
processed before operation Oi,j.

• Each Oi,j needs to execute on a specific machine from
the machine set : {Mk} 1≤k≤m (m is the number of
machines). This issue implicitly makes an assignment
problem.

• There is a set of predefined processing time. Pi,j is the
processing time of Oi,j.

• Each machine processes operations sequentially.
• Cmax is the completion time of all jobs (makespan).

There are infinite buffers to queue operations before
and after each machine. Each possible scheduling must
determine start time of operations. Thus there is no
conflict between operations. The goal in the JSSP is to
find possible solutions that determine processing order of
operations and processing capacity of machines. In other
words, it identifies the set of finishing time for each
operation {Ci,j,k} and minimizes makespan.

3.2. Problem Representation

A table with n rows and m columns can be used to
represent a JSSP. Rows and columns present jobs and the
corresponding machines for their operations, respectively.
Each cell of the table contains machine number and its
processing time. Table 1 shows a typical JSSP with 2 jobs
and 3 machines.

Journal of Industrial Engineering 4 (2009) 71- 78

 73

Table 1
 A JSSP with 2 jobs and 3 machines

Job Machine(processing time)
1 1(3) 2(2) 3(5)
2 3(3) 2(5) 1(4)

Another way to represent JSSP is using of disjunction

graph G(V,C D). V is the set of nodes. In this set, there
is one node per each operation. Also, there are two
beginning (O) and finishing (*) nodes in this set. These
nodes distinguish start and stop time of scheduling,
respectively. C is the set of conjunction directional edges
of graph. The Members of C are used to present
processing order of operations. D is the set of disjunction
(bidirectional) edges. There is a disjunction edge between
each pair of operations on a machine in corresponding
graph. The Processing time of each operation is assigned
to corresponding node as weight. Figure 1 shows a
graphical schema of Table 1.

Fig. 1. Graphical representation of Table 1.

Oij is the jth operation of job i and Pij is the processing
time of jth operation of job i. The two nodes (O) and (*)
are beginning and finishing nodes which determine start
and stop time of scheduling, respectively. JSSP solutions
can be shown in various methods. Three common
methods to represent JSSP solutions are as follows:
1. Disjunction graph: By determining the processing

order of machines, a scheduling can be defined. If we
convert disjunction edges (bidirectional edges) to
directional edges, the obtained graph shows a possible
scheduling solution. This graph should not have any
cycle.

2. Permutation: A schedule is represented by a set of
permutations of jobs on each machine. In other words,
there are m partitioned permutations of operation
numbers. A possible representation for a 3×3 problem
could be:
M1 M2 M3
132 231 213

3. Permutation with repetition: By repeating jobs for m
times (m is the number of machines), an un-partitioned
operation based representation can be used. The kth
occurrence of a job number would refer to kth operation
of that job. The sequence of operations, thus,
represents the priority in which they are to be

scheduled. We can produce a possible schedule by
scanning job numbers from left to right. Figure 2
shows a possible representation for a 3×3 problem. The
third number, for instance, shows the second operation
of job 2 (O22) that must be executed on machine M3
after first operation on the same job (O21). The next
number is the first operation of job 3 (O31) that must be
executed on machine M2 after O21.

Fig. 2. The un-partitioned permutation representation of 3×3 JSSP

problem
Different representation methods affect the used
algorithms. Thereby, the chosen presentation method
must be compatible with algorithm operators and should
not cause to produce impossible solutions. If so, the cost
of converting impossible solution to possible solution
should not be too much. We used permutation with
repetition representation method in the algorithm. The
second method (permutation) can be useful too, but, as the
occurrence of deadlock is possible in this method, we
must use a way to eliminate deadlock. Because this
elimination makes additional costs, the second method is
not useful in algorithm. In permutation with repetition
representation method, the jobs are scanned from left to
right order and then just one job can be chosen at a time,
but in the second method choosing m jobs is possible. For
instance, a typical representation for a 2*2 problem by
permutation method is as follows:

M1 M2
O12, O21 O22, O11

 We suppose each machine processes operations from
left to right order, and, then, O11 and O21 should be
processed after O12 and O22, respectively. On the other
hand, O11 and O21 are prior to O12 and O22, respectively.
Then, in this example, none of the operations can be
processed on the machines. Thus, sometimes deadlock
occurrence is not avoidable. One way to eliminate
deadlock is generating new permutation for a randomly
chosen machine.

4. Cellular Learning Automata

In this section, we briefly describe Learning Automata,
Cellular Automata and Cellular Learning Automata.

O11 O12 O13

*o

O21 O22 O23

P11=3 P12=2 P13=5

P21=3 P22=5 P23=4

O11 O21 O22 O31 O12 O32 O23 O13 O33

1 2 2 3 1 3 2 1 3

1 3 2

 2 3 1

 2 1 3

M1

M2

M3

Masoud Abdolzadeh et al./ A Cellular Learning Automata (CLA) Approach to Job Shop Scheduling Problem

 74

4.1. Learning Automata

Learning automata is a machine that can execute a
finite set of actions [18]. Each action has a certain
probability (unknown for the automaton) and is evaluated
by the environment. The results of evaluation are sent to
automaton as a positive or negative signal. Each action
gets reward by this signal. The aim is to learn to choose
the optimal action (i.e. the action with the highest
probability of being rewarded) through repeated
interaction on the system. Figure 3 illustrates how a
learning automata works in feedback connection with a
random environment.

Fig. 3. Interaction between environment and learning automaton.

An Environment is a triple E={α, β, c}, where
α={α1, α2 ,…, αs} , β={β1, β2, …, βm}, c= {c1,c2,…,cs} are
an action set with s actions, an environment response set
and the penalty probabilities set c containing s
probabilities, respectively. Each element ci of c
corresponds to one input of action αi. Learning automata
generates actions α(n). These actions are evaluated by
environment. The environment response (β) is sent to
learning automata to generate the next generation of
actions α(n+1). There are three types of environment
based on its response. Whenever β={β1,β2} is a two
members set, environment type is P. In this environment,
β1=1 is the punishment and β2=0 is the reward. A further
generalization of the environment, known as Q-model,
allows finite output set with more than two elements that
take values in the range [0,1]. A further step in this
direction is the S-model whose responses can take
continuous values over the unit range [0,1].

Learning Automata can be classified into two main
families: Fixed Structure Learning Automata and Variable
Structure Learning Automata (VSLA). We consider a
VSLA in our algorithm and it operates as follows:

A VSLA is a quintuple <α,β,p,T> where α and β are
the same parameters as the environment's, and
p={p1,p2,…ps} is the action probability set, each being the
probability of performing every action in the current
internal automaton state. The function
P(n+1)=T[α(n),β(n),p(n)] is the reinforcement algorithm
which modifies the action probability vector p with
respect to the performed action and received response at
the next generation. This automaton operates as follows.

Based on the action probability set p, automaton randomly
selects an action αi, and performs it on the environment.
After receiving the environment's reinforcement signal,
automaton updates its action probability set based on the
following reinforcement scheme; the equations (1) for
favorable response, and equations (2) for unfavorable one.
When an action gets reward, its probability pi increases,
while the probability of all other actions decreases.

If β=0 (1)
)](1[)()1(nPanPnP iii −+=+

ijjnPanP jj ≠∀−=+ ,)()1()1(
If β=1 (2)

)()1()1(nPbnP ii −=+
ijjnPbrbnP jj ≠∀−+−=+ ,)()1()1/()1(

Where a and b are reward and penalty parameters. When
a=b, automaton is called "LRP". If b=0 and 0<b<<a<l,
the automaton is called "LRI" and "LRεp", respectively [8].

4.2. Cellular Automata

Cellular Automata consist of a regular array of cells,
each in one of finite number of states. The array can be in
any finite number of dimensions. The state of a cell at the
time t+ 1 in cellular automata is a function of the states of
a finite number of cells (called its "neighborhood") at the
time t. The simplest cellular automata would be one
dimensional with two possible states per cell and a cell's
neighbors defined to be the adjacent cells on either side of
it.

4.3. Cellular Learning Automata

CLA is obtained by combining cellular automata and
learning automata. It is a mathematical model for
dynamical complex systems that consists of a large
number of simple learning components. Any number of
learning automaton can reside in a specific cell.
Reinforcement signal for every automaton is computed
according to CLA rule and actions of other learning
automata residing in neighbor cells. This model has
learning capability of learning automata and collective
behavior and locality of cellular automata. A d
dimensional CLA is a quintuple CLA=(Zd ,Ø,A,N,F) that
:• Zd is a d-dimensional grid of cells.
• Ø is a finite set of states that each cell can possess.
• A is set of learning automata that each of them are
assigned to a specific cell.
• N = {X1 ,...,Xm } is finite subset of Zd that is called
neighborhood vector.
• F: Øm →β is local rule of CLA. β is a set of valid
reinforcement signals that can be applied to learning
automata.

β

Action

α(n) Random
environment

Learning automaton
Response

Journal of Industrial Engineering 4 (2009) 71- 78

 75

Like cellular automata, CLA operate subject to a rule.
The rule of CLA and the actions selected by neighboring
learning automata of any particular learning automaton
determine the reinforcement signal to the learning
automaton residing in that cell. In CLA, the neighboring
learning automata of any particular learning automaton
constitute its local environment, which is non-stationary
because it varies as action probability vector of
neighboring learning automata varies.

5. The Proposed Algorithm

In this section, a new approach to solving Job Shop
Scheduling Problem, using cellular learning automata is
proposed. To this end, first, a solution representation
method should be chosen. In this paper, permutation with
repetition is used. We used an array with a length of m*n
to represent solutions named Cell. Each cell has m*n
learning automata. Figure 4 shows the construction of
used CLA in our algorithm.

Fig. 4. The construction of CLA in the proposed algorithm

Where LA is the learning automata residing in each
cells. We consider two neighborhoods for each cell. Thus,
for cell i, neighbors are cell (i-1) and cell (i+1). Each cell
chooses its best neighbor based on makespan values. In
other words, the best neighbor for one cell is the cell that
has the lowest makespan value denoted here as LBi.
Furthermore, the best global cell based on makespan
value is denoted as GB and the best previous cell state set
to PB array.

Since the JSSP is the ordering problem and each
element of the cell represents an operation of jobs, thus,
for every learning automaton, actions 'set α(n) must be
chosen based on this purpose.
Two kinds of actions' sets can be used in this paper:
• In a form of a set with two actions as follows:

a) Preserve current position of Oij in the cell.
b) Move Oij to other position.

• In a form of a set with n actions (n is the number of
jobs) that each action (αi) is "choose operation (i)".
In the first method, the probability set has two

members for each learning automata which is initialized
with 0.5 values for each action. Actions are chosen based
on corresponding probability. If the cell has a lower
makespan value in the next generation, we reward actions
whose corresponding operation positions (Oij) are suitable

and try to preserve their position in the cell. Otherwise, by
selecting the other action and changing position of Oij the
other states are checked.

In the second method, probability set has n members
for each learning automata which is initialized with 1/n
values for each action. Like above, the operations of jobs
with suitable positions are rewarded and by increasing
their corresponding action probability, situation
preserving chance is grown. Otherwise, by decreasing
corresponding probability and increasing the other jobs'
probabilities, possibility of choosing job's operation in the
next generation is weakened.

In the first method, to prevent convergence and local
minimums, we forced the probabilities of actions lie in the
range of [1-Pmax, Pmax]. Pmax is parameter with Pmax>0.5
values. If the actions probabilities exceed from this range,
we convert them to this range.

In the second method, to prevent premature
convergence and local minimums, we used an operator
similar to the mutation operator in genetic algorithm. If
cells stay in one state for several generations, we change
some elements' position randomly.

Reinforcement signal is considered as β={0,1}. If
reward signal is generated for environment, βij=0.
Otherwise, if punishment signal is generated, βij=1. This
approach uses learning automata with type LRP.
The stages of our proposed algorithm are as follows:
1. First generate initial cells with action probabilities

equal to 1/k values (k is the number of actions) for each
learning automaton. Each cell has m*n learning
automata.

2. Generate actions based on probabilities vector for each
learning automata.

3. Generate new cells (Xi) using learning automata.
4. Obtain makespan value for the new cell and compare it

with PBi. If the new cell has a better makespan value,
replace it. (update PBi)

5. Choose the best neighbor (LBi) for each cell based on
makespan values.

6. Choose the best global cell too (GB).
7. According to the following conditions generate

reinforcement signal for each learning automaton and
update probability vectors.
If (Xi.Cmax<=LBi.Cmax && Xi.Cmax<=PBi.Cmax &&
Xi.Cmax<=GB.Cmax)
 { For each j residing in cell i
 If(Xij==PBij && Xij==LBij && Xij==GBj)
 Reward Xij

 Else
 Penalt Xij
 }
Where Xij, PBij and LBij are the jth elements of Xi, PBi

and LBi, respectively. Cmax is the makespan value. In the
aforementioned algorithm, reinforcement signal is
generated for each cell based on current and previous
makespan values and the neighbor cell' states. Then, the

Cell1 Cell2 Cell i Cell i+1 Cell q-1 Cell q

L
A

L
A

L
A

L
A

L
A

L
A

Masoud Abdolzadeh et al./ A Cellular Learning Automata (CLA) Approach to Job Shop Scheduling Problem

 76

probability vectors are updated and a new generation of
the cells is produced. This algorithm is applied on all cells
simultaneously and will be repeated until a termination
criterion is met.

6. Simulation Results

We used C# language to implement our algorithm and
perform a simulation. The Simulation is executed on PC
platform with configuration of:
• 1.86 GHz CPU,
• 1MB RAM and
• Windows XP operating system.

In order to analyze performance of the algorithm, it
was tested on several instances of some benchmarks such
as ABZ7, ABZ8, LA19, LA21, LA22, LA24, LA38 and
LA40. These benchmarks are shown on Table 2. In this
simulation, we used CLA with type of LRP and with
reward and penalty rates α=β=0.1.

The algorithm is repeated on all the mentioned
benchmarks until a termination criterion is met. In order
to show convergence process, we took makespan values
of a randomly chosen benchmark LA19 along the 1000
iterations with 100 initial cells. Figure 5 illustrates the
convergence process of the algorithm on LA19
benchmark.

Fig. 5. Convergence process of the simulated algorithm on LA19

benchmark

The vertical axis shows makespan values and
horizontal axis represents the spent CPU time. In the
beginning of the optimization, the best makespan value is
1223. After 1000 iterations, the best obtained makespan
value is 845. We see that the makespan is significantly
decreasing over the execution time. The convergence rate
is higher initially but it reduces as we proceed to the next
iterations. This process continues until the solution
converges to the optimal solution, 842.

The rates of reward and penalty (α and β) affects the
premature convergence rate. We tested the algorithm on
LA19 benchmark with three different reward and penalty
rates. Figure 6 shows convergence process of the
algorithm on three rates α=β=0.1, α=β=0.3 and α=β=0.5
during 500 iteration.

Fig. 6. Convergence process of the simulated algorithm on LA19

benchmark with three different reward and penalty rates

The horizontal axis shows the optimization process and
the vertical axis represents makespan values. Figure 6
shows that the premature convergence rate is significantly
higher when the reward and penalty rates possess higher
values.

The results of simulation are compared with some
other approaches. These approaches are: Electro
Magnetism, Tabu search with neighborhood structure
known as N6, T12 tabu list method and 4628 moves and
Genetic algorithm with simple operators, 100 individuals
and 3000 generations that have represented good results.
Table 2 illustrates the experimental results of the
approaches on the mentioned benchmarks. The
comparisons in Table 2 are graphically shown in Figure 7.
For more information about implementation details and
parameters' values of the so-called approaches, refer to [7,
16, 11, 13].A comparisons of percentage of errors among
approaches are calculated in Table 3. As the table depicts,
our algorithm most often performs better than the others.

Journal of Industrial Engineering 4 (2009) 71- 78

 77

Table 2

Simulation results of solving JSSP using CLA

benchmark
Problem

size
(n×m)

Optimal value
(makespan)

Electro
Magnetism

Tabu
Search

Genetic
Algorithm

Our
algorithm

(Best)

Our
algorithm

(worst)

Our
algorithm

(mean)
S.d

CPU
Time
Used

Abz7 20×15 656 744 696 700 696 726 714.22 11.0
07 1617

Abz8 20×15 638 798 697 720 716 745 726.81 10.6
3 1330

LA19 10×10 842 886 860 850 845 866 855 6.86 314

LA21 15×10 1046 1143 1099 1074 1092 1119 1106 13.8
1 125

LA22 15×10 927 962 962 940 934 963 946.28 9.93 192

La24 15×10 935 1006 989 984 972 992 985.82 7.31 99

LA38 15×15 1196 1381 1254 1273 1264 1309 1284.33 14.8
6 516

LA40 15×15 1222 1425 1261 1278 1259 1275 1269.08 9.43 469

 Table 3
 A comparison of percentages of error among solution results

benchmark
Problem size

(n×m)

Percentage error
Electro

Magnetism
Tabu

Search
Genetic

Algorithm
Our algorithm

(Best)

Abz7 20×15 13.41463 6.097561 6.707317 6.097561

Abz8 20×15 25.07837 9.247649 12.85266 12.22571

LA19 10×10 5.225653 2.137767 0.950119 0.356295

LA21 15×10 9.273423 5.066922 2.676864 4.397706

LA22 15×10 3.77562 3.77562 1.402373 0.755124

La24 15×10 7.593583 5.775401 5.240642 3.957219

LA38 15×15 15.46823 4.849498 6.438127 5.685619

LA40 15×15 16.61211 3.191489 4.582651 3.027823

Fig. 7. Results of comparison of the proposed algorithm with other approaches

Masoud Abdolzadeh et al./ A Cellular Learning Automata (CLA) Approach to Job Shop Scheduling Problem

 78

The horizontal axis shows the benchmarks with
detailed corresponding makespan values for each and the
vertical axis represents makespan values. The Figure 7
shows that our proposed algorithm often produces
solutions with lower makespan values than the other
approaches. These values are approach the results of
genetic algorithm.

7. Conclusion

In this paper, we used Cellular Learning Automata
based approach to solve the Job Shop Scheduling
Problem. The approach was presented in a new
algorithmic form embracing two kinds of actions' sets.
These actions were generated to transfer cells into the best
states by changing positions of operations of the jobs. The
algorithm could determine the best position of jobs'
operation in the execution sequence using the learning
aspect of CLA. The results of simulation on several
instances of the problem showed that our proposed
algorithm often produces optimal or near to optimal
solutions. According to our results, the obtained
makespan values were significantly better than the other
approaches.

References

[1] M. E. Aydin, T. C. Fogarty, A simulated annealing Algorithm for
multi-agent systems: a job shop scheduling application. Journal of
Intelligent Manufacturing, 15, Netherland, 805-814, 2004.

[2] K. R. Baker, Introduction to sequencing and scheduling, John
Wiley and sons Inc, New York, 1974.

[3] J. Carlier, E. Pison, An algorithm for solving the job shop
problem. The Institute of Management Science, Vol. 35, U.S.A,
164-176, 1989.

[4] C. Cheng-Chung, S. F. Smith, Applying constraint satisfaction
techniques to job shop scheduling. Annals of Operations
Research, Springer, Volumn 70, 327 – 357, 1997.

[5] F. L. Cheng-Fa, A New Hybrid Heuristic Technique for Solving
Job-shop Scheduling Problem. Technology and Applications,
IEEE, 2003.

[6] P. Fattahi, M. Saidi-Mehrabad, F. Jolai, Mathematical modelling
and heuristic approaches to flexible job shop scheduling
problems. Journal of Intelligent Manufacturing, Springer, Vol. 18,
Number 3, 2007.

[7] F. GEYIK, I. Hakki-Cedimoglu, The strategies and parameters of
tabu search technique for job-shop scheduling. Journal of
Intelligent Manufacturing, Springer, Vol 15, Number 4, 2004.

[8] B. Jafarpour, M. R. Meybodi, S. Shiry, A Hybrid Method for
Optimization (Discrete PSO + CLA). International Conference on
Intelligent and Advanced Systems, IEEE, 2007.

[9] A. Jain, S. Meeran, Deterministic job-shop scheduling: past,
present and future. European Journal of Operational Research,
Vol. 113, 390-434, 1999.

[10] S. K. A. C. Kahraman, Meta heuristic Techniques for Job Shop
Scheduling Problem and a Fuzzy Ant Colony Optimization
Algorithm. Springer, Vol. 201, Berlin Heidelberg, 2006.

[11] T. Kun, H. Zhifeng, C. Ming, PSO with Improved Strategy and
Topology for Job Shop Scheduling. Springer Verlag Berlin
Heidelberg, 2006.

[12] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan, D. B.
Shmoys, Sequencing and scheduling: Algorithms and complexity.
Technical Report, Report Centre Mathematics and Computer
Science, Amsterdam, 1989.

[13] D. S. Leea, V. S. Vassiliadisb, J. M. Park, A novel threshold
accepting meta-heuristic for the job-shop scheduling problem.
Computers & Operations Research 31, Elsevier, 2199–2213,
2004.

[14] H. Rong-Hwa, Y. Chang-Lin, Ant colony system for job shop
scheduling with time windows. The International Journal of
Advanced Manufacturing Technology, Springer, Vol. 39,
Numbers 1-2, London, 2007.

[15] M. Saidi-Mehrabad, P. Fattahi, Flexible job shop scheduling with
tabu search algorithms. The International Journal of Advanced
Manufacturing Technology, Springer, Volume 32, Numbers 5-6,
2006.

[16] S. M. THashemi, P. Jahanbazi, An Electro magnetism method for
job shop scheduling problem with makespan by improving lower
bound. Computer society of Iran, 2007.

[17] Y. Takeshi, N. Ryohei, Genetic Algorithms for Job-Shop
Scheduling Problems. Proceedings of Modern Heuristic for
Decision Support, UNICOM seminar, London, 67-81, 1997.

[18] M. A. L. Thathachar, P. S. Sastry, Varieties of Learning
Automata: An overview. Transaction on Systems, Man and
Cybernetics-Part B: Cybernetics, IEEE, Vol.32, Number 6, 711-
722, 2002.

[19] G. R. Weckman, C. V. Ganduri, D. A. Koonce, A neural network
job-shop scheduler. Journal of Intelligent Manufacturing,
Springer, Vol 19, Number 2, 2007.

[20] J. C. Werner, M. E. Aydin, Fogarty, T.C., Evolving genetic
algorithm for Job Shop Scheduling problems. Proceedings of
ACDM, PEDC, University of Plymouth, UK, 2000.

[21] S. V. Zwaan, C. Marques, Ant Colony optimisation for Job Shop
Scheduling. ISR– Instituto de Sistemas e Robótica Instituto
Superior Técnico (IST), 1998.

