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Abstract 

Job shop scheduling problem (JSSP), as one of the NP-Hard combinatorial optimization problems, has attracted the attention of many 
researchers during the last four decades. The overall purpose regarding this problem is to minimize maximum completion time of jobs, 
known as makespan. This paper addresses an approach to evolving Cellular Learning Automata (CLA) in order to enable it to solve the 
JSSP by minimizing the makespan. This approach is applied to several instances of a variety of benchmarks and the experimental results 
show that it produces nearly optimal solutions, compared with other approaches.  
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1. Introduction 

Scheduling problems in various systems is one of the 
major challenges to reach high performance. In order to 
simplify algorithms presentation and analyze real world 
problems, scheduling problems are classified into 
different groups. Each real world problem is assigned to 
one of these groups and solved with appropriate solutions. 
One of these problems is called Job Shop Scheduling 
Problem (JSSP). This problem includes resource 
assigning to a set of operations in their given time [2]. 
Industrial tasks ranging from assembling cars to 
scheduling airplane maintenance crews are easily 
modeled as instances of this problem, and improving 
solutions by even as little as one percent can have a 
significant financial impact. Furthermore, this problem is 
interesting from a theoretical standpoint as one of the 
most difficult NP-Hard problems to solve in practice and 
only small groups of them can be solved by searching all 
problem space [3]. 

A typical problem of JSSP with m machines and n Jobs 
has (n!)m possible states in its search space. Thus for 
problem with 10 jobs and 10 machines there are 7.2651 * 
10183 possible states [9]. 

The approaches in literature to scheduling problem are 
classifies in two groups. The first group identifies an 
exact solution via integer programming, dynamic 
programming, branch and bound (B&B) and enumeration  

 

[19]. this group needs too much time and becomes 
inefficient as the number of jobs increases. The second 
group is meta-heuristic, which yields an approximate 
solution in a very short time; the methods involved in the 
group are very diverse, including a Genetic Algorithm 
(GA), Simulated Annealing (SA), Tabu Search (TS), Ant 
Colony Optimization (ACO), and Neural Networks (NN) 
[1,4,5,6,7,10,14,15,17,20,21]. These algorithms use 
problem search space and try to optimize the first or the 
current solutions and repeat optimization to get terminate 
criterion.  

We propose an approach to JSSP based on the cellular 
learning automate. There is no solution for the problem by 
this approach. At the end-quarter of the 20th century, 
Cellular Automata was proposed as a model to analyze 
treatments of complex systems. Learning Automata was 
presented at the beginning of 1960s which treats based on 
learning algorithm. This model learns how to choose its 
best action from a set of actions. The Cellular Learning 
Automaton proposed was based on a combination of 
cellular and learning automata. In this model, each cell is 
equipped with a learning automaton that determines cell's 
state, which is a specific solution. This paper optimizes 
the solutions to the JSSP using features of CLA and 
makes possible learning the position of jobs in job 
sequence. 

The rest of this paper is organized as follows: In 
section 2, literature review of the JSSP is given. A 
detailed description of the JSSP follows in section 3. 
Section 4 summarizes the cellular learning automata. In 
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section 5, our proposed algorithm is described. Section 6 
is considered for reporting experimental results and their 
subsequent comparison with other algorithms. Section 6 
presents the conclusion and rounds up the paper. 

2. Literature Review 

Job shop makespan minimization is a challenging 
problem. However, efficient, polynomial time solutions 
have been found for the problem. Work on optimal 
solution procedures for general makespan problems has 
focused most heavily on the development of implicit 
enumeration, or branch and bound approaches. These 
approaches were not able to solve larger problems. As 
observed in [12], the applicability of implicit enumeration 
schemes is limited to relatively small problems, and their 
performance is quite sensitive to particular problem 
instances and initial upper bound values. 
Other research studies have investigated heuristic 
approaches. Simple priority dispatching algorithms are the 
most representative and the most widely used in practical 
environments. While dispatching algorithms are 
extremely fast and easy to implement, there are also 
drawbacks. The performance of any given rule is typically 
quite sensitive to problem characteristics, and it is 
generally quite difficult to find one that dominates in any 
particular environment. Such procedures are also 
susceptible to very poor performance in certain 
circumstances, due to the myopic nature of their decision-
making. With the rapid increase in computing power in 
recent years, a growing body of research has focused on 
development of more sophisticated heuristic methods, 
which incorporate various forms of search and aim at 
striking a better cost performance tradeoff than the 
extremes that are provided by dispatch and optimal 
solution procedures. One such notable approach 
emphasizes bottleneck tracking as a heuristic 
methodology for integrating optimal solutions to simpler, 
one-machine sub problems. A series of shifting bottleneck 
procedures have been defined which have demonstrated 
very strong performance on a range of previously 
published benchmarks, and provide a continuum of 
increasingly more accurate solution procedures at 
increasing computational expenses. 
 Other work has explored the use of various local search 
techniques as a basis for approximate solution which 
yields a solution in a very short time; the methods 
involved in the work are very diverse, including a Genetic 
Algorithm (GA), Simulated Annealing (SA), Tabu Search 
(TS), Ant Colony Optimization (ACO), and Neural 
Networks (NN) [1,4,5,6,7,10,14,15,17,20,21]. These 
techniques use problem search space and try to optimize 
the first or the current solutions and repeat optimization to 
get terminate criterion. 

3. Job Shop Scheduling Problem 

In this section, we define JSSP, describe the problem, and 
provide solution representation methods. 

3.1. Problem Definition  

A JSSP can be defined by (n) jobs and (m) machines. 
Each job consists of several operations. Each operation 
should be processed by specified machine. Processing 
time for each operation is fixed and predefined. In other 
words, there is a sequel of machines proportionate to each 
job that must be processed. We suppose all jobs are ready 
at the beginning time. Initialization time of operations is 
set to zero or as a part of processing time. There is no 
precedence between jobs. Each machine can process just 
one operation of a job and each job can be processed by 
one machine at a time. There is no permission to interrupt 
for operation processing. 

We can define construction of JSSP as follows: 
• A set of N independent Jobs. {Jj} 1≤j≤N 
• Each Jj has a sequence of operations. (Gj)  
• Each Gj is ordered as series of operations and Oi,j 

determines the position of an operation in the job 
sequence. There is precedence between the operations 
of a job. In other words, operation Oi+1,j cannot be 
processed before operation Oi,j. 

• Each Oi,j needs to execute on a specific machine from 
the machine set : {Mk} 1≤k≤m (m is the number of 
machines). This issue implicitly makes an assignment 
problem. 

• There is a set of predefined processing time. Pi,j is the 
processing time of Oi,j. 

• Each machine processes operations sequentially. 
• Cmax is the completion time of all jobs (makespan). 

There are infinite buffers to queue operations before 
and after each machine. Each possible scheduling must 
determine start time of operations. Thus there is no 
conflict between operations. The goal in the JSSP is to 
find possible solutions that determine processing order of 
operations and processing capacity of machines. In other 
words, it identifies the set of finishing time for each 
operation {Ci,j,k} and minimizes makespan. 

3.2. Problem Representation  

A table with n rows and m columns can be used to 
represent a JSSP. Rows and columns present jobs and the 
corresponding machines for their operations, respectively. 
Each cell of the table contains machine number and its 
processing time. Table 1 shows a typical JSSP with 2 jobs 
and 3 machines. 
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Table 1 
 A JSSP with 2 jobs and 3 machines 

Job Machine(processing time) 
1 1(3) 2(2) 3(5) 
2 3(3) 2(5) 1(4) 
 
Another way to represent JSSP is using of disjunction 

graph G(V,C  D). V is the set of nodes. In this set, there 
is one node per each operation. Also, there are two 
beginning (O) and finishing (*) nodes in this set. These 
nodes distinguish start and stop time of scheduling, 
respectively. C is the set of conjunction directional edges 
of graph. The Members of C are used to present 
processing order of operations. D is the set of disjunction 
(bidirectional) edges. There is a disjunction edge between 
each pair of operations on a machine in corresponding 
graph. The Processing time of each operation is assigned 
to corresponding node as weight. Figure 1 shows a 
graphical schema of Table 1. 

 
Fig. 1. Graphical representation of Table 1. 

Oij is the jth operation of job i and Pij is the processing 
time of jth operation of job i. The two nodes (O) and (*) 
are beginning and finishing nodes which determine start 
and stop time of scheduling, respectively. JSSP solutions 
can be shown in various methods. Three common 
methods to represent JSSP solutions are as follows: 
1. Disjunction graph: By determining the processing 

order of machines, a scheduling can be defined. If we 
convert disjunction edges (bidirectional edges) to 
directional edges, the obtained graph shows a possible 
scheduling solution. This graph should not have any 
cycle.  

2. Permutation: A schedule is represented by a set of 
permutations of jobs on each machine. In other words, 
there are m partitioned permutations of operation 
numbers. A possible representation for a 3×3 problem 
could be: 
M1  M2  M3 
132  231  213 

3. Permutation with repetition: By repeating jobs for m 
times (m is the number of machines), an un-partitioned 
operation based representation can be used. The kth 
occurrence of a job number would refer to kth operation 
of that job. The sequence of operations, thus, 
represents the priority in which they are to be 

scheduled. We can produce a possible schedule by 
scanning job numbers from left to right. Figure 2 
shows a possible representation for a 3×3 problem. The 
third number, for instance, shows the second operation 
of job 2 (O22) that must be executed on machine M3 
after first operation on the same job (O21). The next 
number is the first operation of job 3 (O31) that must be 
executed on machine M2 after O21. 

 
Fig. 2. The un-partitioned permutation representation of 3×3 JSSP 

problem 
Different representation methods affect the used 
algorithms. Thereby, the chosen presentation method 
must be compatible with algorithm operators and should 
not cause to produce impossible solutions. If so, the cost 
of converting impossible solution to possible solution 
should not be too much. We used permutation with 
repetition representation method in the algorithm. The 
second method (permutation) can be useful too, but, as the 
occurrence of deadlock is possible in this method, we 
must use a way to eliminate deadlock. Because this 
elimination makes additional costs, the second method is 
not useful in algorithm. In permutation with repetition 
representation method, the jobs are scanned from left to 
right order and then just one job can be chosen at a time, 
but in the second method choosing m jobs is possible. For 
instance, a typical representation for a 2*2 problem by 
permutation method is as follows: 

M1       M2 
O12, O21 O22, O11 

 We suppose each machine processes operations from 
left to right order, and, then, O11 and O21 should be 
processed after O12 and O22, respectively. On the other 
hand, O11 and O21 are prior to O12 and O22, respectively. 
Then, in this example, none of the operations can be 
processed on the machines. Thus, sometimes deadlock 
occurrence is not avoidable. One way to eliminate 
deadlock is generating new permutation for a randomly 
chosen machine. 

4. Cellular Learning Automata 

In this section, we briefly describe Learning Automata, 
Cellular Automata and Cellular Learning Automata. 

 

O11 O12 O13 

*o

O21 O22 O23 

P11=3 P12=2 P13=5 

P21=3 P22=5 P23=4 

O11 O21 O22 O31  O12  O32  O23  O13    O33 

1   2   2   3   1   3   2   1   3 

1                        3   2   

    2         3                   1 

          2       1                   3 

M1 
 
M2 
 
M3 
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4.1. Learning Automata  

Learning automata is a machine that can execute a 
finite set of actions [18]. Each action has a certain 
probability (unknown for the automaton) and is evaluated 
by the environment. The results of evaluation are sent to 
automaton as a positive or negative signal. Each action 
gets reward by this signal. The aim is to learn to choose 
the optimal action (i.e. the action with the highest 
probability of being rewarded) through repeated 
interaction on the system. Figure 3 illustrates how a 
learning automata works in feedback connection with a 
random environment. 
 

Fig. 3. Interaction between environment and learning automaton. 

An Environment is a triple E={α, β, c}, where        
α={α1, α2 ,…, αs} , β={β1, β2, …, βm}, c= {c1,c2,…,cs} are 
an action set with s actions, an environment response set 
and the penalty probabilities set c containing s 
probabilities, respectively. Each element ci of c 
corresponds to one input of action αi. Learning automata 
generates actions α(n). These actions are evaluated by 
environment. The environment response (β) is sent to 
learning automata to generate the next generation of 
actions α(n+1). There are three types of environment 
based on its response. Whenever β={β1,β2} is a two 
members set, environment type is P. In this environment, 
β1=1 is the punishment and β2=0 is the reward. A further 
generalization of the environment, known as Q-model, 
allows finite output set with more than two elements that 
take values in the range [0,1]. A further step in this 
direction is the S-model whose responses can take 
continuous values over the unit range [0,1].  

Learning Automata can be classified into two main 
families: Fixed Structure Learning Automata and Variable 
Structure Learning Automata (VSLA). We consider a 
VSLA in our algorithm and it operates as follows: 

A VSLA is a quintuple <α,β,p,T> where α and β are 
the same parameters as the environment's, and 
p={p1,p2,…ps} is the action probability set, each being the 
probability of performing every action in the current 
internal automaton state. The function 
P(n+1)=T[α(n),β(n),p(n)] is the reinforcement algorithm 
which modifies the action probability vector p with 
respect to the performed action and received response at 
the next generation. This automaton operates as follows. 

Based on the action probability set p, automaton randomly 
selects an action αi, and performs it on the environment. 
After receiving the environment's reinforcement signal, 
automaton updates its action probability set based on the 
following reinforcement scheme; the equations (1) for 
favorable response, and equations (2) for unfavorable one. 
When an action gets reward, its probability pi increases, 
while the probability of all other actions decreases.  

If β=0      (1) 
)](1[)()1( nPanPnP iii −+=+  

ijjnPanP jj ≠∀−=+ ,)()1()1(  
If β=1      (2) 

)()1()1( nPbnP ii −=+  
ijjnPbrbnP jj ≠∀−+−=+ ,)()1()1/()1(

Where a and b are reward and penalty parameters. When 
a=b, automaton is called "LRP". If b=0 and 0<b<<a<l, 
the automaton is called "LRI" and "LRεp", respectively [8]. 

4.2. Cellular Automata  

Cellular Automata consist of a regular array of cells, 
each in one of finite number of states. The array can be in 
any finite number of dimensions. The state of a cell at the 
time t+ 1 in cellular automata is a function of the states of 
a finite number of cells (called its "neighborhood") at the 
time t. The simplest cellular automata would be one 
dimensional with two possible states per cell and a cell's 
neighbors defined to be the adjacent cells on either side of 
it. 

4.3. Cellular Learning Automata   

CLA is obtained by combining cellular automata and 
learning automata. It is a mathematical model for 
dynamical complex systems that consists of a large 
number of simple learning components. Any number of 
learning automaton can reside in a specific cell. 
Reinforcement signal for every automaton is computed 
according to CLA rule and actions of other learning 
automata residing in neighbor cells. This model has 
learning capability of learning automata and collective 
behavior and locality of cellular automata. A d 
dimensional CLA is a quintuple CLA=(Zd ,Ø,A,N,F) that 
:• Zd is a d-dimensional grid of cells.  
• Ø is a finite set of states that each cell can possess. 
• A is set of learning automata that each of them are 
assigned to a specific cell. 
• N = {X1 ,...,Xm } is finite subset of Zd that is called 
neighborhood vector. 
• F: Øm →β is local rule of CLA. β is a set of valid 
reinforcement signals that can be applied to learning 
automata. 

β 

Action 

α(n) Random 
environment 

Learning automaton 
Response 
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Like cellular automata, CLA operate subject to a rule. 
The rule of CLA and the actions selected by neighboring 
learning automata of any particular learning automaton 
determine the reinforcement signal to the learning 
automaton residing in that cell. In CLA, the neighboring 
learning automata of any particular learning automaton 
constitute its local environment, which is non-stationary 
because it varies as action probability vector of 
neighboring learning automata varies. 

5. The Proposed Algorithm 

In this section, a new approach to solving Job Shop 
Scheduling Problem, using cellular learning automata is 
proposed. To this end, first, a solution representation 
method should be chosen. In this paper, permutation with 
repetition is used. We used an array with a length of m*n 
to represent solutions named Cell. Each cell has m*n 
learning automata. Figure 4 shows the construction of 
used CLA in our algorithm. 

 
 

 
 

Fig. 4. The construction of CLA in the proposed algorithm 
 

Where LA is the learning automata residing in each 
cells. We consider two neighborhoods for each cell. Thus, 
for cell i, neighbors are cell (i-1) and cell (i+1). Each cell 
chooses its best neighbor based on makespan values. In 
other words, the best neighbor for one cell is the cell that 
has the lowest makespan value denoted here as LBi. 
Furthermore, the best global cell based on makespan 
value is denoted as GB and the best previous cell state set 
to PB array.  

Since the JSSP is the ordering problem and each 
element of the cell represents an operation of jobs, thus, 
for every learning automaton, actions 'set α(n) must be 
chosen based on this purpose. 
Two kinds of actions' sets can be used in this paper: 
• In a form of a set with two actions as follows: 

a) Preserve current position of Oij in the cell. 
b) Move Oij to other position. 

• In a form of a set with n actions (n is the number of 
jobs) that each action (αi) is "choose operation (i)". 
In the first method, the probability set has two 

members for each learning automata which is initialized 
with 0.5 values for each action. Actions are chosen based 
on corresponding probability. If the cell has a lower 
makespan value in the next generation, we reward actions 
whose corresponding operation positions (Oij) are suitable 

and try to preserve their position in the cell. Otherwise, by 
selecting the other action and changing position of Oij the 
other states are checked.  

In the second method, probability set has n members 
for each learning automata which is initialized with 1/n 
values for each action. Like above, the operations of jobs 
with suitable positions are rewarded and by increasing 
their corresponding action probability, situation 
preserving chance is grown. Otherwise, by decreasing 
corresponding probability and increasing the other jobs' 
probabilities, possibility of choosing job's operation in the 
next generation is weakened. 

In the first method, to prevent convergence and local 
minimums, we forced the probabilities of actions lie in the 
range of [1-Pmax, Pmax]. Pmax is parameter with Pmax>0.5 
values. If the actions probabilities exceed from this range, 
we convert them to this range. 

In the second method, to prevent premature 
convergence and local minimums, we used an operator 
similar to the mutation operator in genetic algorithm. If 
cells stay in one state for several generations, we change 
some elements' position randomly. 

Reinforcement signal is considered as β={0,1}. If 
reward signal is generated for environment, βij=0. 
Otherwise, if punishment signal is generated, βij=1. This 
approach uses learning automata with type LRP.  
The stages of our proposed algorithm are as follows: 
1. First generate initial cells with action probabilities 

equal to 1/k values (k is the number of actions) for each 
learning automaton. Each cell has m*n learning 
automata. 

2. Generate actions based on probabilities vector for each 
learning automata. 

3. Generate new cells (Xi) using learning automata. 
4. Obtain makespan value for the new cell and compare it 

with PBi. If the new cell has a better makespan value, 
replace it. (update PBi) 

5. Choose the best neighbor (LBi) for each cell based on 
makespan values. 

6. Choose the best global cell too (GB). 
7. According to the following conditions generate 

reinforcement signal for each learning automaton and 
update probability vectors. 
If (Xi.Cmax<=LBi.Cmax && Xi.Cmax<=PBi.Cmax &&     
Xi.Cmax<=GB.Cmax) 
   {   For each j residing in cell i 
        If(Xij==PBij && Xij==LBij && Xij==GBj) 
 Reward Xij 

         Else 
 Penalt Xij  
   } 
Where Xij, PBij and LBij are the jth elements of Xi, PBi 

and LBi, respectively. Cmax is the makespan value. In the 
aforementioned algorithm, reinforcement signal is 
generated for each cell based on current and previous 
makespan values and the neighbor cell' states. Then, the 

Cell1 Cell2 Cell i Cell i+1 Cell q-1 Cell q 

L
A 

L
A 

L
A 

L
A 

L
A 

L
A 
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probability vectors are updated and a new generation of 
the cells is produced. This algorithm is applied on all cells 
simultaneously and will be repeated until a termination 
criterion is met. 

6. Simulation Results 

We used C# language to implement our algorithm and 
perform a simulation. The Simulation is executed on PC 
platform with configuration of: 
• 1.86 GHz CPU, 
• 1MB RAM and  
• Windows XP operating system. 

In order to analyze performance of the algorithm, it 
was tested on several instances of some benchmarks such 
as ABZ7, ABZ8, LA19, LA21, LA22, LA24, LA38 and 
LA40. These benchmarks are shown on Table 2. In this 
simulation, we used CLA with type of LRP and with 
reward and penalty rates α=β=0.1.  

The algorithm is repeated on all the mentioned 
benchmarks until a termination criterion is met. In order 
to show convergence process, we took makespan values 
of a randomly chosen benchmark LA19 along the 1000 
iterations with 100 initial cells. Figure 5 illustrates the 
convergence process of the algorithm on LA19 
benchmark.  

 

 
Fig. 5. Convergence process of the simulated algorithm on LA19 

benchmark 

The vertical axis shows makespan values and 
horizontal axis represents the spent CPU time. In the 
beginning of the optimization, the best makespan value is 
1223. After 1000 iterations, the best obtained makespan 
value is 845. We see that the makespan is significantly 
decreasing over the execution time. The convergence rate 
is higher initially but it reduces as we proceed to the next 
iterations. This process continues until the solution 
converges to the optimal solution, 842. 

The rates of reward and penalty (α and β) affects the 
premature convergence rate. We tested the algorithm on 
LA19 benchmark with three different reward and penalty 
rates. Figure 6 shows convergence process of the 
algorithm on three rates α=β=0.1, α=β=0.3 and α=β=0.5 
during 500 iteration. 

 
 

 
Fig. 6. Convergence process of the simulated algorithm on LA19 

benchmark with three different reward and penalty rates 

The horizontal axis shows the optimization process and 
the vertical axis represents makespan values. Figure 6 
shows that the premature convergence rate is significantly 
higher when the reward and penalty rates possess higher 
values.  

The results of simulation are compared with some 
other approaches. These approaches are: Electro 
Magnetism, Tabu search with neighborhood structure 
known as N6, T12 tabu list method and 4628 moves and 
Genetic algorithm with simple operators, 100 individuals 
and 3000 generations that have represented good results. 
Table 2 illustrates the experimental results of the 
approaches on the mentioned benchmarks. The 
comparisons in Table 2 are graphically shown in Figure 7. 
For more information about implementation details and 
parameters' values of the so-called approaches, refer to [7, 
16, 11, 13].A comparisons of percentage of errors among 
approaches are calculated in Table 3. As the table depicts, 
our algorithm most often performs better than the others.  
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Table 2 

Simulation results of solving JSSP using CLA 

benchmark 
Problem 

size 
(n×m) 

Optimal value 
(makespan) 

Electro 
Magnetism 

Tabu 
Search 

Genetic 
Algorithm 

Our 
algorithm 

(Best) 

Our 
algorithm 

(worst) 

Our 
algorithm 

(mean) 
S.d 

CPU 
Time 
Used 

Abz7 20×15 656 744 696 700 696 726 714.22 11.0
07 1617 

Abz8 20×15 638 798 697 720 716 745 726.81 10.6
3 1330 

LA19 10×10 842 886 860 850 845 866 855 6.86 314 

LA21 15×10 1046 1143 1099 1074 1092 1119 1106 13.8
1 125 

LA22 15×10 927 962 962 940 934 963 946.28 9.93 192 

La24 15×10 935 1006 989 984 972 992 985.82 7.31 99 

LA38 15×15 1196 1381 1254 1273 1264 1309 1284.33 14.8
6 516 

LA40 15×15 1222 1425 1261 1278 1259 1275 1269.08 9.43 469 

 
                                  Table 3 
                                  A comparison of percentages of error among solution results 

benchmark 
Problem size 

(n×m) 

Percentage error 
Electro 

Magnetism 
Tabu 

Search 
Genetic 

Algorithm 
Our algorithm 

(Best) 
     

Abz7 20×15 13.41463 6.097561 6.707317 6.097561 

Abz8 20×15 25.07837 9.247649 12.85266 12.22571 

LA19 10×10 5.225653 2.137767 0.950119 0.356295 

LA21 15×10 9.273423 5.066922 2.676864 4.397706 

LA22 15×10 3.77562 3.77562 1.402373 0.755124 

La24 15×10 7.593583 5.775401 5.240642 3.957219 

LA38 15×15 15.46823 4.849498 6.438127 5.685619 

LA40 15×15 16.61211 3.191489 4.582651 3.027823 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 7. Results of comparison of the proposed algorithm with other approaches 
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The horizontal axis shows the benchmarks with 
detailed corresponding makespan values for each and the 
vertical axis represents makespan values. The Figure 7 
shows that our proposed algorithm often produces 
solutions with lower makespan values than the other 
approaches. These values are approach the results of 
genetic algorithm. 

7. Conclusion 

In this paper, we used Cellular Learning Automata 
based approach to solve the Job Shop Scheduling 
Problem. The approach was presented in a new 
algorithmic form embracing two kinds of actions' sets. 
These actions were generated to transfer cells into the best 
states by changing positions of operations of the jobs. The 
algorithm could determine the best position of jobs' 
operation in the execution sequence using the learning 
aspect of CLA. The results of simulation on several 
instances of the problem showed that our proposed 
algorithm often produces optimal or near to optimal 
solutions. According to our results, the obtained 
makespan values were significantly better than the other 
approaches. 
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