
 

Fuzzy Programming 
for Parallel Machines Scheduling: Minimizing Weighted 

Tardiness/Earliness and Flow Time through Genetic Algorithm 

Mohammad Asghari *,a, Samaneh Nezhadali b 
a MSc, Department of Industrial Engineering, Ferdowsi University of Mashhad, PO Box 91775-1111, Azadi Sq., Mashhad, Iran 

b MSc, Department of Management, Iran Chamber of Commerce, Industries and Mines, Mashhad, Iran 
Received 17 September, 2012; Revised 18 January, 2013; Accepted 20 February, 2013 

Abstract 

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager 
encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-
in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for appraising a 
multi-objective programing that minimize total weighted tardiness, earliness and total flowtime with fuzzy parameters on parallel 
machines, simultaneously with respect to the impact of machine deterioration. Besides, in this paper attempted to present a defuzzification 
approach and a heuristic method based on genetic algorithm (GA) to solve the proposed model. Finally, several dominant properties of 
optimal solutions are demonstrated in comparison with the results of a state-of-the-art commercial solver and the simulated annealing 
method that is followed by illustrating some instances for indicating validity and efficiency of the method. 
Keywords: Mathematical optimization, Fuzzy multi-objective model, Parallel machines scheduling, Weighted tardiness/earliness, Genetic 
algorithm.  

 
1. Introduction 

In classical scheduling problems, the processing time 
of jobs has been assumed constant. However, there are 
many situations that this time may be subject to change 
due to deterioration and/or learning phenomena (McKay 
et al. 2002). 

Scheduling with costs of earliness and tardiness has 
received considerable and increasing attention in recent 
researches. In many practical situations, it is required to 
guarantee that as many jobs as possible meet their due 
dates (i.e., to minimize the number of tardy jobs) since in 
such cases having a job missing its due date is very costly. 
Thus, minimization of the number of tardy jobs should be 
the primary concern. On the other hand, it is desirable to 
minimize the job earliness to minimize the inventory cost. 
Early/tardy scheduling problems are compatible with the 
concepts of just-in-time production and supply chain 
management, which has been adopted by many 
organizations. Indeed, these production strategies view 
both early and tardy deliveries as undesirable. By machine  
deterioration effect, we mean that each machine 
deteriorates at a different rate. This deterioration is 
considered in terms of cost that depends on the production 
rate, the machine operating characteristics, and the kind of 
work done by each machine. Moreover, job-processing  

 
 
 
times are increasing functions of their starting times and 
follow a simple linear deterioration. Browne and Yechiali 
(1990) first introduced it. Since then, deteriorating job 
scheduling problems have been widely discussed. Ruat et 
al. (2008) considered the problem of scheduling a given 
number of jobs on a single machine with time 
deteriorating job values and capacity constraints while the 
objective function is to maximize total revenue. 
Gawiejnowicz et al. (2006) considered a single machine 
time-dependent scheduling problem. They introduced two 
scenarios for a given sequence of job deterioration and 
formulated a greedy polynomial time approximation 
algorithm for each scenario. 

In recent decades, most of the researches have focused 
on Just-In-Time (JIT) scheduling models. For example, 
Sridharan and Zhou (1996) considered a single machine 
problem with total weighted earliness and tardiness and 
developed a solution procedure based on decision theory. 
Cai and Zhou (1999) studied a parallel machine stochastic 
scheduling problem to minimize expected total cost for 
early and tardy jobs. Mazzini and Armentano (2001) 
studied a general single machine problem with early and 
tardy costs and developed a heuristic. Wan and Yen 
(2002) studied a general single machine scheduling 
problem with distinct due windows and weighted 

*  Corresponding E-mail address: Mohammad.Asghari@stu-mail.um.ac.ir  

 

Journal of Optimization in Industrial Engineering 14 (2014) 61-73

61



earliness and tardiness costs, and developed a tabu search 
procedure. Wan and Yen (2009) considered the problem 
of single machine bicriteria scheduling to minimize the 
total weighted earliness subject to minimum number of 
tardy jobs. Guner et al. (1998) considered one machine 
scheduling to minimize the maximum earliness with 
minimum number of tardy jobs. They proposed a 
procedure to minimize the maximum earliness when the 
set of tardy jobs is specified, then, appraised a branch and 
bound algorithm to minimum number of tardy jobs.  

     Minimizing of weighted tardiness penalties is a 
familiar objective function in parallel machine scheduling. 
Bilge et al. (2004) used a tabu search method to schedule 
parallel machines with total weighted tardiness penalties. 
Yi and Wang (2003) introduced a model for scheduling 
grouped jobs on identical parallel machines. In their 
model a set-up time is incurred when one-machine 
changes from processing one type of component to a 
different type of component. The objective function here 
is to minimize the total earliness/tardiness penalties. 
Radhakrishnan et al. (2000) emphasized the JIT 
production philosophy, and used simulated annealing for 
parallel machine scheduling with earliness/tardiness 
penalties and sequence dependent set-up times. 

     The fuzzy approach represents an alternative way 
to model imprecision and uncertainty which is more 
efficient, especially when no historical information is 
available (Anglani et al. 2005). First, it was introduced as 
presentation scheme and calculus for uncertain or vague 
notions. The fuzzy set theory provides a conceptual 
framework (Wu and Lee 2008) that performs so 
efficiently in decreasing the scheduling problem 
computational complexity with respect to the same 
problem formulated by the probability theory. It should be 
noted that such an imprecision is due to the subjective and 
qualitative evaluations, rather than the effect of 
uncontrollable events.  

The use of the fuzzy sets theory in treating different 
scheduling problems has been so successful, particularly 
where judgment and intuition play an important role in, 
for example, customer demand (Ishii and Tada 1995), 
processing times (Kuroda and Wang 1996), production 
due dates (Hong and Chuang 1999), or job precedence 
relations (Ishii and Tada 1995). Prade et al. (1979) 
published the earliest paper in fuzzy scheduling. Ishii and 
Tada (1995) considered a single machine problem 
minimizing the maximum lateness of jobs with fuzzy 
precedence relations. Han et al. (1994) proposed same 
problem with fuzzy due dates. Ishibuchi and Murata 
(2000) presented a flow shop-scheduling problem with 
fuzzy parameters, such as fuzzy due dates and fuzzy 
processing times. Kuroda and Wang (1996) analyzed the 
fuzzy job shop-scheduling problem. Konno and Ishii 
(2000) discussed an open shop scheduling problem with 
fuzzy allowable time and fuzzy resource constraint. Itoh 
and Ishii (1999) proposed a single machine scheduling 
model dealing with fuzzy processing times and due dates. 
Litoiu and Tadei (2001) present some new models for 

real-time task scheduling with fuzzy deadlines and 
processing times. 

     In classical problems of parallel machine 
scheduling, all the parameters and variables were 
considered deterministic. However, since multiple sources 
of uncertainty and complex interrelation-ships at various 
levels between diverse entities exist in these kinds of 
problems, it is quite unreliable to set them as precise 
values. 

     Some researchers have modeled parallel machine 
problems by probability distribution that is usually 
predicted from historical data (Piersma and Romeijn 
1996). However, whenever statistical data is unreliable or 
even unavailable, stochastic models may not be the best 
choice. In this situation, fuzzy set theory may provide an 
alternative approach for dealing with the uncertainty. This 
is why it has found extensive applications in various 
fields. 

     In this area, a limited number of the studies in the 
current literature have been devoted to fuzzy parallel-
machine scheduling problems. Peng and Liu (2006) 
proposed a practical application. In addition to single-
objective scheduling models, they considered the multi-
objective FPMSPs and formulated as three-objective 
models, which not only minimize the fuzzy maximum 
tardiness, but also minimize the fuzzy maximum 
completion time (i.e., make span) and the fuzzy maximum 
idleness. Balin (2011) addressed parallel machine 
scheduling problems with fuzzy processing times and 
proposed a robust genetic algorithm (GA) approach 
embedded in a simulation model to minimize the 
maximum completion time. 

     In this paper, a fuzzy multi-objective parallel 
machines scheduling problem would be considered to 
minimize total weighted tardiness, earliness, aside of 
minimizing total flowtime and machine deteriorating cost, 
which is an extension of the problem studied by Mazdeh 
et al. (2010). 

     The job-scheduling problem with minimizing 
weighted tardiness in parallel machines is known NP-hard 
in the strong sense (Cao et al. 2005; Pfund et al. 2008), 
this is why the combinational problem with objective 
functions including minimizing the total tardiness, 
earliness, flowtime and machine deteriorating cost will 
also be NP-hard. In the past, a number of various methods 
such as branch and bound, cutting plane, and other 
heuristic approaches were introduced. In recent years, 
researches have used metaheuristic methods such as 
simulated annealing for same problems. 

In this paper, a genetic algorithm is used to solve the 
model and then the obtained results are compared with the 
output of commercial software, Lingo solver, to show the 
effectiveness of the proposed approach 

The remainder of this paper is organized as follows. In 
Section 2, the problem is defined and the objective 
functions are introduced in details. Next, the mathematical 
formulation is developed for the problem. In Section 3, 
we present a new solution method for it and describe an 

Mohammad Asghari et al./ Fuzzy Programming for Parallel...

62



approach in order to consider the four objectives as a 
single objective. In Section 4, some numerical examples 
of its occurrence are applied and the feasibility and 
effectiveness of the proposed method is demonstrated by 
comparing the simulated annealing method. Finally, 
concluding remarks are presented in the last Section. 

2. Problem formulation 

The following notations and definitions are used to 
describe a multi-objective on parallel machines 
scheduling problem that is an extension of studied 
problem by Mazdeh et al. (2010). 

     This problem considers a set of N independent jobs, 
J1,J2,. . . ,Jn, on a number of parallel machines selected 
from a set of M potential machines as each of these jobs 
exactly need one operation on one machine. Each job Ji 
has a processing time ݌෤௝  and a due date ሚ݀௝  that all 
processing times and due dates are considered as fuzzy 
numbers. Here machines are supposed to become worse at 
a different rate by allocating and then doing the jobs on 
them. This deterioration is a function of production rate, 
machine’s operating characteristics and the kind of work 
accomplished by each machine, which considered in 
terms of cost. 

A job is early if its completion time is smaller than the 
common due date. On the other hand a job is tardy if its 
processing ends after due date. As it is not known in 
advance whether a job will be completed before or after 
the due date. 

     The notations and other assumptions that would be 
applied in mathematical formulation are followed as 
below. 
 
2.1. Problem assumptions 
 

The following notations are the assumptions 
considered in the present model. 

• Each machine is able to process each job; 
• The machine can process at most one job at a 

time; 
• No processing is allowed; 
• Associated with job j (j=1, … ,n) there are a 

processing time ݌෤௝  and a due date ሚ݀௝; 
• Job processing time may be different by various 

machines; 
• Job processing time is described by a function of 

the starting time ( ෨ܲ jm = ajm + ෨ܾj ሚܵjm); 
• The growth rate of the processing time ( ෨ܾ௝ ) is 

independent of machine; 
• The jobs are considered independent of each 

other; 
 

2.2. Sets and indices 
 

The following shows nomenclature used in the model. 

Sets 
N The set of jobs that must be scheduled 
M The set of available machines  
i,j ϵ {0,1,…,N} are designated job, where job 0 is a dummy  
job and is always at the first position on a machine 
Parameters 
γi Earliness weight of job i 
βi Tardiness penalty of job i 
ri Arrived time of job i to queue 
ሚ݀ i Due date of job i 
෤ܽ௜௠ Processing fix time of job i on machine m 
෨ܾ௜ Growth rate of the processing time of job i  
ܿ̃௜௠ Cost of machine deterioration  

Decision variables 

௜ܺ௝௠ 1, if job j immediately follows job i in sequence 
 on machine m; 0, otherwise 

௜ܻ௠ 1, if job i assigned to machine m; 0, otherwise 
෨ܶ௜ Tardiness value of job i 
 ෨௜ Earliness value of job iܧ
෨ܲ௜௠ Processing time of job i on machine m 
ሚܵ௜௠ Starting time of job i on machine m 
 ሚ௜ Completion time of job iܥ

 
2.3. Mathematical model 
 
Base on the aforementioned descriptions and indices, a 
fuzzy nonlinear programming model is developed as 
follows: 
 

Minimize  

1ܨ =෍ߛ௜ܧ෨௜
௜∈ே

 (1) 

2ܨ =෍ߚ௜ ෨ܶ௜
௜∈ே

 (2) 

3ܨ =෍ܥሚ௜ − ௜ݎ
௜∈ே

 (3) 

4ܨ =෍ ෍ ௜ܻ௠ . ܿ̃௜௠
௠∈ெ௜∈ே

 (4) 

Subject to  

෍ܺ଴௜௠
௜∈ே

≤ 1 ∀݉ ∈  (5) ,ܯ

෍ ෍ ௜ܺ௝௠
௠∈ெ௜∈ே,௜ஷ௝

= 1 ∀݆ ∈ ܰ, (6) 

Journal of Optimization in Industrial Engineering 14 (2014) 61-73

63



෍ ௜ܺ௝௠
௝∈ே,௜ஷ௝

≤ ௜ܻ௠ ∀݅ ∈ ܰ, ∀݉ ∈  (7) ,ܯ

෍ ௜ܺ௝௠
௜∈ே,௜ஷ௝

≤ ௝ܻ௠ ∀݆ ∈ ܰ,∀݉ ∈  (8) ,ܯ

෍ ௜ܻ௠
௠∈ெ

= 1 ∀݅ ∈ ܰ, (9) 

ሚܥ i ≥ ሚܵim + ෨ܲ im  ∀݅ ∈ ܰ, ∀݉ ∈  (10) ,ܯ

෨ܲ im + Ḿ(1-Yim) ≥ 
෤ܽ௜௠ + ෨ܾ௜ . ሚܵ௜௠  

∀݅ ∈ ܰ, ∀݉ ∈  (11) ,ܯ

ሚܵ௝௠ + Ḿ(1-Xijm) ≥ ܥሚ i  
∀݅ ∈ ܰ,	i≠j, ∀݆ ∈
ܰ,∀݉ ∈  ,ܯ

(12) 

ሚ଴ܥ = 0  (13) 

ሚܵ଴௠ = 0 ∀݉ ∈  (14) ,ܯ

,෨௜=Max{0ܧ ሚ݀ i-ܥሚ i}  ∀݅ ∈ ܰ, (15) 

෨ܶ௜=Max{0,ܥሚ i- ሚ݀ i}  ∀݅ ∈ ܰ, (16) 

෨ܶ௜ , ෨௜ܧ , ෨ܲ௜௠ , ሚܵ௜௠ , ሚ௜ܥ ∈ ܴା ∀݅ ∈ ܰ, ∀݉ ∈  (17) ,ܯ

௜ܺ௝௠ , ௜ܻ௠ ∈ {0, 1}  ∀݅, ݆ ∈ ܰ,∀݉ ∈  (18) ,ܯ

  
In the presented model, Eqs. (1) to (4) are the 

objective functions, namely minimizing total weighted 
earliness, tardiness, total flowtime and minimizing the 
cost of machine deterioration, respectively. More 
precisely, Eq. (2) states if Ci-di > 0 then delivering job i 
has been delayed and it causes tardiness. Otherwise, if Ci-
di < 0 it causes earliness that showed in Eq. (1). Eq. (4) 
states if a job is processed on one machine, machine 
deteriorating will happen. Constraint (5) ensures that only 
a job can follow the dummy job (i = 0) on each assigned 
machine. Sometimes, in a job-scheduling scheme, it is 
likely to schedule only one job on a machine, in this 
situation a dummy job helps us to define Xijm, which will 
be equal to zero when no job is scheduled and any job 
does not follow the dummy job on the machine. Eq. (6) 
assures a job must be processed on a machine and just 
followed by one job. Eqs. (7) and (8) state that if job i is 
immediately followed by j on machine m then both jobs i 
and j belong to machine m. Eq. (9) ensures that each job is 
assigned to only one machine. Eq. (10) relates the 
completion time of each job to its starting and processing 
time. Eq. (11) expresses the relation between the job 
processing time, its starting time and fix part of the 
processing time. Eq. (12) expresses that the job starting 
time is at least equal to the completion time of previous 
preceding job. Eq. (13) states that the completion time of 
the dummy job is equal to zero. Eq. (14) states that the 

starting time of the dummy job on each machine is equal 
to zero. Eq. (15) expresses the relation between the 
completion time of job, its due date and earliness variable 
and constraint (16) specifies the job tardiness. Finally, 
constraints in set (17) enforce the non-negativity 
restrictions on the corresponding decision variables and 
constraints in set (18) enforce the integrality restrictions 
on the binary variables. 

3. Deterministic linear programming  

The presented model is known as a fuzzy nonlinear 
programming. To solve this model, at first, the fuzzy 
numbers will be converted into the interval type by α-cut. 
After that, the interval numbers transmit in deterministic 
format through applying the convex conversion 
(Appendix A). In this approach, a fix value for α is 
determined by decision maker for showing risk as a result 
of which larger α means that the decision maker has 
accepted more risk since he has not considered the 
uncertainty of fuzzy numbers and vice versa. 
 
3.1. Conversion fuzzy numbers into interval form 
 

Fuzzy numbers used in the paper such as processing 
time have been assumed to be triangular that has been 
illustrated in Fig 1. This figure shows fuzzy number ෨ܲ௜௠ 
with triangular membership function that is noted as 
൫ ௜ܲ௠

௟ , ௜ܲ௠
௠ , ௜ܲ௠

௨ ൯. 
 

 
Fig. 1. Membership function of triangular fuzzy number 

 
The membership function of this number is as follows: 
 
(ܲ)௉෨೔೘ߤ

=

⎩
⎪
⎨

⎪
⎧ ܲ − ௜ܲ௠

௟

௜ܲ௠
௠ − ௜ܲ௠

௟ , ௜ܲ௠
௟ ≤ ܲ ≤ ௜ܲ௠

௠ 					

ܲ − ௜ܲ௠
௨

௜ܲ௠
௠ − ௜ܲ௠

௨ , ௜ܲ௠
௠ ≤ ܲ ≤ ௜ܲ௠

௨ 				

0,																								ܲ ≤ ௜ܲ௠
௟ 		, ܲ ≥ ௜ܲ௠

௨

 
(19) 

 
Lemma 1: The α-cut on this membership function for 
ߙ ∈ {0,1}  presents close interval ൣ ௜ܲ௠

௟ , ௜ܲ௠
௨ ൧  which can 

௜ܲ௠
௟  ௜ܲ௠

௠  ௜ܲ௠
௨  

 (ݔ)௉೔೘ߤ

1 

ܲ݅݉ 

Mohammad Asghari et al./ Fuzzy Programming for Parallel...

64



result: ෨ܲ௜௠ഀ = ൣ ௜ܲ௠
௟ 	, ௜ܲ௠

௨ ൧ = .ߙ] ௜ܲ௠
௠ + (1 − (ߙ ௜ܲ௠

௟ 		,
.ߙ ௜ܲ௠

௠ + (1 − (ߙ ௜ܲ௠
௨ ]  

(We define ෨ܲ௜௠ഀ  as Interval number (1)) 
Proof: With consideration of the α-cut on membership 
function of number ෨ܲ௜௠ that shown in Fig 2, we will have 
a new upper and lower bound for this number. 

 
Fig. 2. α-cut on membership function of triangular fuzzy number 

෨ܲ௜௠ 
 

According to Fig 2 following equations can be resulted: 
 

ߙ

௜ܲ௠
௅ − ௜ܲ௠

௟ =
1

௜ܲ௠
௠ − ௜ܲ௠

௟ 					

⇒ ൫ߙ					 ௜ܲ௠
௠ − ௜ܲ௠

௟ ൯
= ௜ܲ௠

௅ − ௜ܲ௠
௟  

																																																		⇒ 					 ௜ܲ௠
௅

= .ߙ ௜ܲ௠
௠ + (1 − (ߙ ௜ܲ௠

௟  

(20) 

 
ߙ

௜ܲ௠
௨ − ௜ܲ௠

௎ =
1

௜ܲ௠
௨ − ௜ܲ௠

௠ 					

⇒ )ߙ					 ௜ܲ௠
௨ − ௜ܲ௠

௠ )
= ௜ܲ௠

௨ − ௜ܲ௠
௎  

																																																		⇒ 					 ௜ܲ௠
௎

= .ߙ ௜ܲ௠
௠ + (1 − (ߙ ௜ܲ௠

௨  

(21) 

 
Others like ෨ܲ௜௠  are converted into the interval form 

through α-cut on these numbers. However, due date ( ሚ݀௜) 
defined different with membership function as following 
that has been introduced same Hwang and Yoon (1981) 
and has been illustrated in Fig 3. 
 

(݀)ௗ෨೔ߤ =

⎩
⎪
⎨

⎪
⎧ 1,																							݀ ≤ ݀௜∗
݀ − ݀௜௠

݀௜∗ − ݀௜௠
, ݀௜∗ ≤ ݀ ≤ ݀௜௠

0,																								݀ ≥ ݀௜௠
 (22) 

Fig. 3. Membership function of due date 
 

This number can be converted to the interval form by 
applying α-cut as follows: 
 
ሚ݀௜ഀ = [݀௜௅ 	, ݀௜௎] = [0			, .ߙ ݀௜∗ +
(1 −   [௜௠݀(ߙ

Interval number (2) 

 
3.2. Conversion to deterministic programming 
 

If we substitute interval numbers in the model, fuzzy 
programming is converted to interval programming. Now, 
the numbers should be defuzzified. In this paper, 
deterministic numbers are obtained via applying convex 
conversion. Hence, the interval programming converts 
into deterministic programming.  
     Follows, interval numbers convert into deterministic 
form by applying convex conversion context that present 
in Appendix A. 
 
3.3. Solving multi-objective optimization 
 

I use a general form of multi-objective programming 
that is a family of Lp-metrics and is adopted from Hwang 
& Yoon, (1981). This method considers the minimum 
deviation from the ideal solution as follows: 
 

Min   f1(x), f2(x), …, fn(x) 
S.t: x ϵ X 

(23) 

 
That f1(x), f2(x), …,fn(x) are the objective functions and 

x is the feasible region. First, an ideal solution for each 
objective function separately will be obtained by 
following problems solving:  
 

fi*=Min fi(x)  (i=1, …,n) 
S.t:   x ϵ X 

(24) 

 
Then, will be obtained without unit function with 

dividing the each function in its optimum value. Thus, 

௜ܲ௠
௟  ௜ܲ௠

௠  ௜ܲ௠
௨  

௜ܲ௠

1 

 (ܲ)௉೔೘ߤ

௜ܲ௠
௎  ௜ܲ௠

௅  

α 

 ௗ෨೔(d)ߤ

݀௜
∗ ݀௜

௠ 

1 

݀௜ 

Journal of Optimization in Industrial Engineering 14 (2014) 61-73

65



multi-objective programming problem can satisfactorily 
solve by following new objective function: 
 

Min ൥෍ ௜߱
௣ ቆ ௜݂(ݔ) − ௜݂

ି

௜݂
ା − ௜݂

ି ቇ
௣

௜

൩

భ
೛

 

											S. t:																ݔ ∈ ܺ 

(25) 

 
Where each function is weighted using ‘‘ω’’ to denote 

the importance of objective functions. This weight 
adjustment is used for alimenting and balancing between 
functions that will be determined by decision makers just 
as following relationship can be established. 
෍߱௜
௜

= 1 

߱௜ ≥ 0										݅ ∈ (1, … , ݊) 
(26) 

 
Obviously, the result is dependent on the value of p. 

Generally, p is 1 or 2. However, other values of p also can 
be used. 

4. Solution algorithm 

 
4.1. Genetic algorithms 
 

This section presents a genetic algorithm with real 
number encoding which uses an adaptive mutation 
process to change the probability. Because in practical 
application a small fixed mutation probability can only 
result in a premature convergence, although, the mutation 
probability has been usually considered stable throughout 
the whole search process. 
 
Step 1. (Initialization) 
 

For getting the initial population, at first, all 
constraints of the problem excluding the follower’s 
objective function are considered and some individuals 
satisfying these constraints are randomly generated by 
Lingo solver to guarantee that all the individuals are 
feasible to the problem. Note that before proceeding with 
the GA it is necessary to code the state of the network and 
determine the chromosome structure. Hence, coding of 
the potential solution is the first important aspect of a 
correct implementation of the GA. This is while; a proper 
coding will result in better solutions with less time 
consumption (Fig 4). 

… 2 1 Machine 
 … 3 2 1 … 3 2 1 Job 

 
 

1 0 1 
 

0 1 0 
Random 
array 

Fig. 4. The chromosome structure 
 

Step 2. (Fitness function) 
 

The objective function as given by Eq. (25) is used 
also in the GA as fitness function. 
 
Step 3. (Crossover operator) 
 

The crossover operator recombines the genes of two 
selected chromosomes to generate a new crossover child 
to be formed in the next generation. It aims to take the 
best features of each parent and mix the remaining 
features in forming the offspring. Crossover helps genetic 
algorithm to converge to the best individual. 

In this study has been used uniform crossover, which 
is widely used in the literature because of its efficiency in 
identifying, inheriting and protecting common genes and 
recombining non-common genes (Sywerda 1989; Page et 
al. 1999; Falkenauer 1999).  

This crossover function creates a random vector and 
selects the genes where the vector is a 1 from the first 
parent, the genes where the vector is a 0 from the second 
parent, and combines the genes to form the child. For 
example, if the “1 0 1 0 1 0 0” and “0 1 0 0 0 1 1” string 
are defined as parents and “1 0 0 1 0 0 0” the binary 
vector, the function returns “1 1 0 0 0 1 1” as the child. 
 
Step 4. (Mutation operator) 
 

Mutation is another commonly used operator that let 
the GA explore a wider region of the solution space. This 
operator is carried with a fixed probability as a transition 
from current solution to its neighborhood in a local search 
algorithm. Mutation operates alternatively on the first or 
on the second chromosome, usually by introducing 
random gene changes. 

In this paper, a special mutation operator named as 
scramble mutation (Leu et al. 1994) is employed with an 
adaptive process for changing the probability. All the 
vector elements are mutated according to the below 
mutation procedure and minimum mutation probability of 
0.05. 
 
௠ାଵ݌

= ቐ
௠݌ ௦௧௘௣݌	− 				; 					if	ܨ௠	remained	unchanged
௠݌ 																				; 					if	ܨ௠	declined																								
௙௜௡௔௟݌ 															; 					if	݌௠ ௦௧௘௣݌	− ௙௜௡௔௟݌	> 							

 

p0 = 1.0 
pstep = 0.001 
pfinal = 0.05  

(27)

 
where, m denotes the generation number and p stands for 
the probability of applying the mutation operator to an 
individual. 
 

Mohammad Asghari et al./ Fuzzy Programming for Parallel...

66



Step 5. (Selection) 
 

During this phase, the mating pool for the 
reproduction step is formed by choosing a set of 
individuals from the current population to keep good 
individuals and eliminate the bad ones from one 
generation to another (Oguz and Ercan 2005). In the 
proposed algorithm we used the best known selection 
strategy Roulette Wheel (Holland 1975), also known as 
fitness proportionate selection for mating.  

The fitness values of the members within the 
population in this selection strategy are scaled as the total 
rescaled fitness values equals to 1. First, the fitness values 
of all population members divide by the members sum in 
order to calculate expected values of each individual in 
the population then generate a uniform random number 
within the interval (0, 1), and finally the individual whose 
cumulative rescaled fitness value is greater than or equal 
to the generated number is the one selected parent. 
 
Step 6. (Termination condition) 
 

We use the maximum number of generations as a 
stopping rule and record the optimum in every generation, 
N×M, where N and M are the number of jobs and 
machines, respectively. 
 
4.2. Simulated annealing 
 

In this paper, for comparison, simulated annealing 
(SA) (Davis 1987; Kirkpatrick et al. 1983) is adopted as 
an another search method for the problem. Here, observe 
that SA searches for solutions by exchanging the job 
processing order for each machine. 

The algorithm of SA used in this paper is summarized 
as follows. 
 

Step 1. Generate one solution (schedule) through the 
random selection in Step 4 of an active scheduling 
generating algorithm and denote it by Xc. Set an initial 
temperature T0. 
 

Step 2. Represent the job process sequence for each 
machine of a solution Xc

 by the corresponding matrix, and 
select one machine at random. Select two jobs of the 
machine and exchange them. For example in the problem 
of 3 jobs and 3 machines, when the first job (J3) and the 
second job (J1) of machine 3 (M3) are selected and the 
result after exchange becomes as shown in Fig 5. 
 

ଵܯ
ଶܯ
ଷܯ

ቌ
ଵܬ ଶܬ ଷܬ
ଶܬ ଵܬ ଷܬ
ଷܬ ଵܬ ଶܬ

ቍ	⇒ 	
ଵܯ
ଶܯ
ଷܯ

ቌ
ଵܬ ଶܬ ଷܬ
ଶܬ ଵܬ ଷܬ
ଵܬ ଷܬ ଶܬ

ቍ 

Fig. 5. Example of job processing order and job exchange 
 

Step 3. Based on the job processing sequence after job 
exchange, dissolve the conflict occurred in Step 4 of an 
active scheduling generating algorithm, and generate a 
new solution. If the obtained solution is different from the 
solution before job exchange, set the solution as a 
neighborhood solution X and go to Step 4. Otherwise, 
return to Step 2, and select a new exchange pair. 
 
Step 4. If the objective function value of the solution 
through exchange is improved, accept the exchange, and 
set Xc = X. Otherwise, determine the acceptance by the 
following substeps.  
1. Using the decrement Δf of the objective function 

value and temperature T, calculate exp (-Δf / T). 
2. Generate a uniform random number on the open 

interval (0, 1) and compare it with the value of exp (-
Δf / T). 

3. If the value of exp (-Δf / T) is greater than the random 
number, accept the exchange, and set Xc = X. 
Otherwise, the exchange is not accepted. 

When the exchange is accepted, go to Step 5. Otherwise, 
return to Step 2 to find the next exchange pair. 
 
Step 5. The equilibrium state test is performed by 
checking whether the change of the objective function 
value obtained through the exchanges in the prescribed 
number of times is small enough or not. The number for 
the equilibrium state test is called the epoch. Here, the test 
is performed in the following substeps. 
1. Repeat the procedures from Step 2 to Step 4, until the 

exchanges are performed by the number of epoch. 
When reached the epoch number, perform the 
following substeps (2)-(4). 

2. Calculate the average value ݂௘̅  of the objective 
function values during the current epoch and the 
average value ݂௘̅ᇱ  of the objective function values 
through the exchanges thus far. 

3. Check whether the relative error between the average 
value ݂௘̅ᇱ  in the whole and the average value ݂௘̅ during 
the epoch is smaller than the prescribed tolerance 
value ߝ or not, i.e., check whether ൫ห݂௘̅ − ݂௘̅ᇱห/݂௘̅ᇱ൯ <  ߝ
holds or not. 

4. When the relative error is smaller than the tolerance 
value, regard the equilibrium state is reached at this 
temperature, and go to Step 6 to decrease the 
temperature. Otherwise, clear the counter of the 
epoch, and return to Step 2 to repeat the job exchange 
process. 

 
Step 6. Starting with an initial temperature T0, decrease 
the temperature with the predetermined ratio α, i.e., Tnew = 
α × Told. 
 
Step 7. If the number of the pair exchanges reaches the 
predetermined number, stop the algorithm. 
 

Journal of Optimization in Industrial Engineering 14 (2014) 61-73

67



Repeating this process, when the algorithm is 
terminated, select the solution with the best objective 
function value among the obtained solutions. 

5. Numerical example 

According to our observations, there is no comparable 
mathematical model in the literature to compare with the 
proposed model. So, first a small test problem has been 
solved only to investigate behavior of proposed 
mathematical model. Tables 1, 2 and 3 summarize the 
data used for two numerical examples with 10 jobs. 

Here, the behavior of the proposed fuzzy model is 
appraised for different α (α ϵ [0, 1]) through two solving 
methods. In Table 4, the model has been solved by the 
Lingo 13.0 solver and its computational times compared 
with the GA. The experiments were run in an Intel(R) 
core(TM) i3 CPU, at 2.13GHz and with 4.00 GB of RAM 
memory.  

To solve the example problem, gave the common data 
of due dates, fixed part of the processing times and 
deteriorating cost. In our experiments, the population size 
is 30 and the new individuals are created with a crossover 
rate of 0.45. The termination criterion is the completion of 
30 generations of individuals. The problem is solved for p 
= 1 and the importance weight of objective functions are 
determined as α1=0.27, α2=0.23, α3=0.29 and α4=0.21. 

 
Table 1 
Some parameters for generation of problem instances (weights, arrival 
times and due dates). 

Jobs βi γi ri d෨ i 

1 2 1 125 
(220, 244, 

256) 

2 3 1 70 
(119, 132, 

143) 
3 1 1 20 (63, 78, 82) 
4 1 2 15 (47, 62, 74) 

5 1 3 105 
(170, 184, 

196) 

6 1 1 90 
(122, 133, 

144) 

7 3 3 50 
(157, 160, 

172) 
8 2 2 0 (27, 41, 53) 

9 2 1 95 
(123, 146, 

177) 

10 2 3 110 
(180, 194, 

206) 

 
 
 

 
Table 2 
The growth rate and fixed part of the processing time 

Jobs b෨ i a෤ ୧ଵ a෤୧ଶ a෤୧ଷ 

1 
(0.55, 0.60, 

0.62) 
(21, 22, 23) 

(11, 18, 
21) 

(11, 20, 
26) 

2 
(0.24, 0.26, 

0.27) 
(26, 28, 35) 

(25, 26, 
34) 

(20, 29, 
31) 

3 
(0.75, 0.75, 

0.78) 
(44, 46, 53) 

(47, 50, 
56) 

(44, 50, 
54) 

4 
(0.39, 0.42, 

0.44) 
(43, 48, 51) 

(43, 50, 
56) 

(45, 48, 
56) 

5 
(0.32, 0.33, 

0.34) 
(32, 36,37) 

(29, 34, 
42) 

(33, 35, 
43) 

6 
(0.17, 0.18, 

0.19) 
(14, 18, 22) 

(10, 18, 
23) 

(9, 18, 24) 

7 
(0.60, 0.65, 

0.66) 
(38, 46, 54) 

(37, 46, 
50) 

(42, 46, 
49) 

8 
(0.03, 0.04, 

0.04) 
(40, 44, 49) 

(40, 46, 
53) 

(42, 43, 
49) 

9 
(0.09, 0.10, 

0.10) 
(9, 12, 19) (7, 11, 19) (5, 11, 14) 

10 
(0.14, 0.15, 

0.16) 
(32, 37, 45) 

(25, 34, 
37) 

(30, 34, 
39) 

 
Table 3 
Machines deteriorating cost 

Jobs c෤i1 c෤i2 c෤i3 
1 (1.1, 1.2, 1.2) (1.7, 2.0, 2.1) (1.6, 1.7, 1.8) 
2 (5.2, 5.4, 5.6) (4.0, 4.3, 4.3) (3.1, 3.2, 3.5) 
3 (2.4, 2.4, 2.5) (2.0, 2.2, 2.3) (2.2, 2.4, 2.5) 
4 (0.7, 0.8, 0.8) (1.2, 1.3, 1.4) (0.9, 1.1, 1.1) 
5 (8.7, 9.5, 9.9) (7.1, 7.9, 8.2) (8.0, 8.7, 9.0) 
6 (5.9, 6.0, 6.2) (4.3, 4.4, 4.7) (6.5, 7.1, 7.4) 
7 (0.7, 0.8, 0.8) (0.7, 0.8, 0.8) (0.9, 1.0, 1.0) 
8 (5.6, 6.1, 6.3) (4.4, 4.8, 5.2) (4.5, 4.8, 5.2) 

9 (8.4, 8.7, 8.8) (8.6, 9.6, 10.0) 
(11.6, 12.2, 

12.7) 
10 (3.4, 3.7, 3.8) (2.9, 3.1, 3.2) (2.9, 3.1, 3.2) 

 
Table 4 summarizes the evaluation results obtained by 

heuristic method which is coded in C++ as a sub-
algorithm, according to a group of parameters defined in 
Table 1 to Table 3. In this dimension of the problem, the 
acquired results by the methods show same amount for 
the objective function. Therefore, to evaluate the GA 
solutions, the reported computation times are used as 
performance measure. Fig 6 illustrates the Gantt chart of 
this problem in α = 0.2. 

In the next step, different illustrative examples have 
been developed to discuss the effectiveness of the 
proposed method in dealing with different problem sizes. 
To compare the performance of proposed GA on 
problems with high size, fourteen instances have been 
generated (Table 5). Other parameters are generated 
randomly using uniform distributions specified in Table 6.

 
 
 

Mohammad Asghari et al./ Fuzzy Programming for Parallel...

68



Table 4 
Evaluation of results 

Improvement 
(%) 

CPU time (Sec.) Objective 
value 

α  
Lingo GA 

17.1 251 208 0.272 0 (1) 
17.0 247 205 0.222 0.2 (2) 
77.7 251 56 0.260 0.4 (3) 
60.2 249 99 0.251 0.5 (4) 
0.0 248 248 0.267 0.6 (5) 
17.6 245 202 0.217 0.8 (6) 
17.3 248 205 0.273 1.0 (7) 

 

 
Fig. 6. Gantt chart for α = 0.2 

 
 
Table 5 
Test problems’ dimensions. 
Problem number  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
The number of jobs N 10 15 20 25 30 40 50 70 100 150 200 300 400 500 
The number of machines M 4 5 10 10 15 20 25 30 40 50 70 100 150 200 
 

Table 6  
The values of the parameters used in the test problems 

Parameter Symbol Range 
Earliness weight γi ~ uni[1,3]* 

Tardiness penalty βi ~ uni[1,3] 
Processing fix time ෤ܽ௜௠ ~ uni[0,60] 
Processing variable time ෨ܾ௜ ~ uni[0,1] 
Arrived time ri ~ uni[0,100] 
Due date ሚ݀i ~ uni[100.200] 
Deteriorating cost ܿ̃௜௠ ~ uni[0,15] 
* Uniform distribution [lower bound, upper bound] 

 
In Table 7, the evaluation results have been 

summarized through different α values (α ϵ {0.2, 0.5 and 
1}), according to a group of parameters defined in Table 
6. The parameter values of SA are set as 0.5, 0.9, 10’000, 
5 and 0.2 that denote the initial temperature (T0), the 
changing ratio (α), the number of search (S), the number 
of epoch and the tolerance value (ߝ), respectively. Here, 
an initial temperature is set to be 277 for the last instance 

when solving the problems which minimize the objective 
function using SA. 

It should be emphasized here that these parameter 
values are found through a lot of experiences and these 
values are used in all of the trials of GA and SA. All of 
the trials of GA and SA are performed 10 times for each 
of the problems. The average times required for 
computation are respectively shown in Table 7. 

15 

20 

J8 

71.63 

87.56 

13.4 

121.23 

127.69 

131.17 

199.22 

183.93 

158.83 277.76 

0 50 100 150 200 250 300

M1

M2

M3

Time 

M
ac

hi
ne

 

J7 J9 J1 

J3 J6 J10 

J4 J2 J5 

Journal of Optimization in Industrial Engineering 14 (2014) 61-73

69



 

 
 

Table 7 
The performance of the solution methods on the problem instances 

Instance α 
No. of best value  Best objective value  CPU time (Sec.) 
GA SA  GA SA  GA SA Lingo 

1 
0.2 10 3  0.158 0.158  271 344 1,906  
0.5 10 9  0.247 0.247  298 358 1,947  
1 10 7  0.190  0.190   281 334 1,837  

2 
0.2 10 3  0.143 0.143  313 369 806  
0.5 10 4  0.148  0.148   314 399 797  
1 10 4  0.170  0.170   299 365 806  

3 
0.2 8 4  0.313  0.313   316 370 5,529  
0.5 7 1  0.312  0.312   338 429 5,657  
1 7 1  0.207  0.207   344 423 5,604  

4 
0.2 7 5  0.526 0.526  418 514 28,358  
0.5 6 6  0.777 0.777  414 530 28,159 
1 8 5  0.793 0.793  430 516 26,655 

5 
0.2 9 7  0.375 0.375  428 535 - 
0.5 10 4  0.392 0.392  426 541 - 
1 9 5  0.328 0.328  446 540 - 

6 
0.2 9 6  0.543 0.543  460 575 - 
0.5 9 5  0.518 0.518  438 561 - 
1 9 4  0.456 0.456  460 593 - 

7 
0.2 8 3  0.166 0.166  542 683 - 
0.5 8 3  0.275 0.275  514 648 - 
1 7 3  0.207 0.207  536 697 - 

8 
0.2 5 1  0.547 0.547  833 1075 - 
0.5 9 2  0.533 0.533  807 1049 - 
1 8 0  0.477 0.481  832 1073 - 

9 
0.2 4 1  0.588 0.588  1485 1856 - 
0.5 5 0  0.596 0.604  1437 1839 - 
1 5 2  0.518 0.518  1506 2003 - 

10 
0.2 7 0  0.268 0.275  2677 3507 - 
0.5 7 2  0.224 0.224  2626 3493 - 
1 6 0  0.194 0.217  2475 3069 - 

11 
0.2 8 0  0.316 0.330  6464 8403 - 
0.5 7 0  0.291 0.362  7119 10109 - 
1 3 1  0.342 0.342  6447 8510 - 

12 
0.2 2 0  0.433 0.452  10452 14215 - 
0.5 0 1  0.311 0.303  11304 15147 - 
1 2 0  0.310 0.363  12183 16691 - 

13 
0.2 5 0  0.759 0.796  18909 26284 - 
0.5 3 0  0.748 0.756  22594 31180 - 
1 2 0  0.650 0.734  18165 25613 - 

14 
0.2 3 0  0.552 0.627  28460 39844 - 
0.5 1 0  0.536 0.618  25936 36570 - 
1 4 0  0.607 0.708  26152 37397 - 

 
According to was done sensitive analysis fronts of 

different number of α for presented heuristic method, it 
can be seen that the computation times for GA are 
dramatically lower than for Lingo as its computation time 
rapidly increases with the growing number of binary 
variables. 

Number of best value in this table denotes the number 
of the best solution obtained among 10 trials. For the 
fourteen different problems the proposed GA reaches the 

best solution for almost all of the trials. On the contrary, 
although SA gives much more stable solutions compared 
to GA, the number of best solution is quite small and it is 
extremely low especially for Problem 2. Therefore, 
through our numerical experiences, it may be concluded 
that the proposed GA gives much more efficient search 
and stability than SA. 
 

Mohammad Asghari et al./ Fuzzy Programming for Parallel...

70



6. Conclusion 

In this paper, a fuzzy scheduling problem of parallel 
machines has been studied in minimizing total weighted 
tardiness/earliness, jobs flowtime and machine 
deteriorating cost. First, a fuzzy mathematical formulation 
was developed and then after defuzzified, the proposed 
multi-objective optimization model was transferred to a 
single-objective form using a method that minimized the 
distance to the ideal vector. The final model was solved 
and the results were compared by two heuristics methods, 
genetic algorithm and simulating annulling, for different 
illustrative examples to analyze and validate the approach. 
Computational results show efficiency and effectiveness 
of the developed heuristic solution methods when time 
complexity is addressed. 

This study developed several issues that could be 
further investigated in future research. For example, the 
accuracy and efficiency of the proposed method could be 
improved. A number of verification and validation 
methods may be helpful in testing the accuracy and 
consistency of the process. 

7. Appendix A: (Noor approach) 

Consider general forms of interval programming: 
Model A-1:  

Min											ܼ =෍ൣ ௝ܿ௅ , ௝ܿ௎൧ݔ௝

௡

௝ୀଵ

 

s.t: 

																		෍ൣܽ௜௝௅ , ܽ௜௝௎ ൧ݔ௝

௡

௝ୀଵ

≥ [ܾ௜௅ , ܾ௜௎]										݅ = 1, … ,݉ 

௝ݔ																		 ≥ 0																																												݆ = 1,… , ݊ 
 
With applying convex conversion as following: 
 

௝ܿ
௅ ≤ ௝ܿ ≤ ௝ܿ

௎ ⇒ ௝ܿ = ௝ߣ ௝ܿ
௎ + ൫1 − ௝൯ߣ ௝ܿ

௅

= ௝ܿ
௅ + ௝൫ߣ ௝ܿ

௎ − ௝ܿ
௅൯ 

										0 ≤ ௝ߣ ≤ 1										݆ = 1,… , ݊ 
ܽ௜௝௅ ≤ ܽ௜௝ ≤ ܽ௜௝௎ ⇒ ܽ௜௝ = ௜௝ܽ௜௝௎ߚ + ൫1 − ௜௝൯ܽ௜௝௅ߚ

= ܽ௜௝௅ + ௜௝൫ܽ௜௝௎ߚ − ܽ௜௝௅ ൯ 
										0 ≤ ௜௝ߚ ≤ 1								݆ = 1, … , ݊					݅ = 1,… ,݉ 
ܾ௜௅ ≤ ܾ௜ ≤ ܾ௜௎ ⇒ ܾ௜ = ௜ܾ௜௎ߚ + (1 − ௜)ܾ௜௅ߚ

= ܾ௜௅ + ௜(ܾ௜௎ߚ − ܾ௜௅) 
										0 ≤ ௜ߚ ≤ 1										݅ = 1,… ,݉ 
 

Moreover, with substitute preceding number in model A-1 
we result: 
 

Min											ܼ =෍ൣ ௝ܿ௅ + ௝൫ߣ ௝ܿ
௎ − ௝ܿ

௅൯൧ݔ௝

௡

௝ୀଵ

 

s.t: 

			෍ൣܽ௜௝௅ + ௜௝൫ܽ௜௝௎ߚ − ܽ௜௝௅ ൯൧ݔ௝

௡

௝ୀଵ

≥ ܾ௜௅ + ௜(ܾ௜௎ߚ − ܾ௜௅)						 

				݅ = 1,… ,݉ 
௝ݔ	 ≥ 0																													݆ = 1, … , ݊ 
	0 ≤ ௜௝ߚ ≤ 1																									݅ = 1,… ,݉ 
				݆ = 1,… , ݊ 
		0 ≤ ௜ߚ ≤ 1																						݅ = 1,… ,݉ 
		0 ≤ ௝ߣ ≤ 1																											݆ = 1, … , ݊ 
 
And or: 
Model A-2: 
 

Min											ܼ =෍ ௝ܿ
௅ݔ௝ +

௡

௝ୀଵ

෍ߣ௝ݔ௝൫ ௝ܿ
௎ − ௝ܿ

௅൯
௡

௝ୀଵ

 

s.t: 

																		෍ܽ௜௝௅ ௝ݔ

௡

௝ୀଵ

+෍ߚ௜௝ݔ௝൫ܽ௜௝௎ − ܽ௜௝௅ ൯
௡

௝ୀଵ

− ௜(ܾ௜௎ߚ − ܾ௜௅)

≥ ܾ௜௅ 										݅ = 1,… ,݉ 
௝ݔ																		 ≥ 0																															݆ = 1,… , ݊ 
																		0 ≤ ௜௝ߚ ≤ 1																			݅ = 1, … ,݉ 
																					݆ = 1,… , ݊ 
																		0 ≤ ௜ߚ ≤ 1																															݅ = 1,… ,݉ 
																		0 ≤ ௝ߣ ≤ 1																																				݆ = 1,… , ݊ 
 
Model A-2 is known as a programming problem with 
deterministic numbers. 

8. References 

[1] Anglani A, Grieco A, Guerriero E, Musmanno R (2005) 
Robust scheduling of parallel machines with sequence-
dependent set-up costs. European Journal of Operational 
Research 161:704-720. 

[2] Balin S (2011) Parallel machine scheduling with fuzzy 
processing times using a robust genetic algorithm and 
simulation.  Information Sciences 181:3551-3569. 

[3] Bilge Ü, Kıraç F, Kurtulan M, Pekgün P (2004) A tabu 
search algorithm for parallel machine total tardiness 
problem. Computers & Operations Research 31:397-414. 

[4] Browne S, Yechiali U (1990) Scheduling Deteriorating 
Jobs on a Single Processor. Operations Research 38:495-
498. 

Journal of Optimization in Industrial Engineering 14 (2014) 61-73

71



[5] Cai X, Zhou S (1999) Stochastic scheduling on parallel 
machines subject to random breakdowns to minimize 
expected costs for earliness and tardy jobs. Operations 
Research 47:422-437. 

[6] Cao D, Chen M, Wan G (2005) Parallel machine selection 
and job scheduling to minimize machine cost and job 
tardiness. Computers & Operations Research 32:1995-
2012. 

[7] Davis L (1987) Genetic Algorithms and Simulated 
Annealing. Morgan Kaufmann (ed), Los Altos, CA. 

[8] Falkenauer E (1999) The worth of uniform crossover. In: 
Proceedings of the 1999 Congress on Evolutionary 
Computation CEC99, USA. 

[9] Gawiejnowicz S, Kurc W, Pankowska L (2006) Analysis 
of a time-dependent scheduling problem by signatures of 
deterioration rate sequences. Discrete Applied 
Mathematics 154:2150-2166. 

[10] Guner E, Erol S, Tani K (1998) One machine scheduling 
to minimize the maximum earliness with minimum 
number of tardy jobs. International Journal of Production 
Economics, 55:213-219. 

[11] Han S, Ishii H, Fujii S (1994) One machine scheduling 
problem with fuzzy due date. European Journal of 
Operational Research 79:1-12. 

[12] Holland JH, (1975) Adaptation in Natural and Artificial 
Systems. Arbor A (ed) The University of Michigan Press, 
MI. 

[13] Hong TP, Chuang TN, (1999) A new triangular fuzzy 
Johnson algorithm. Computers & Industrial Engineering 
36:179-200. 

[14] Hwang CL, Yoon K (1981) Multiple attribute decision 
making: Methods and applications. Springer-Verlag, 
Berlin and New York. 

[15] Ishibuchi H, Murata T (2000) Flow shop scheduling with 
fuzzy due date and fuzzy processing time. In: Slowinski R, 
Hapke M (ed) Scheduling under Fuzziness.  

[16] Ishii H, Tada M, (1995) Single machine scheduling 
problem with fuzzy precedence relation. European Journal 
of Operational Research 87:284-288.  

[17] Itoh T, Ishii H (1999) Fuzzy due-date scheduling problem 
with fuzzy processing time. International Transactions in 
Operational Research 6:639-647. 

[18] Kirkpatrick S, Gelatt CD, Vecchi MP, (1983) 
Optimization by simulated annealing. Science 220:671-
680. 

[19] Konno T, Ishii H (2000) An open shop scheduling 
problem with fuzzy allowable time and fuzzy resource 
constraint. Fuzzy Sets and Systems 109:141-147. 

[20] Kuroda M, Wang Z (1996) Fuzzy job shop scheduling. 
International Journal of Production Economics 44:45-51. 

[21] Leu YY, Matheson LA, Rees LP (1994) Assembly line 
balancing using genetic algorithms with heuristic 
generated initial populations and multiple criteria. 
Decision Sciences 15:581–606. 

[22] Litoiu M, Tadei R (2001) Real-time task scheduling with 
fuzzy deadlines and processing times. Fuzzy Sets and 
Systems 117:35-45. 

[23] Mazdeh MM, Zaerpour F, Zareei A, Hajinezhad A (2010) 
Parallel machines scheduling to minimize job tardiness 
and machine deteriorating cost with deteriorating jobs. 
Applied Mathematical Modeling 34:1498-1510. 

[24] Mazzini R, Armentano VA, (2001) A heuristic for single 
machine scheduling with early and tardy costs. European 
Journal of Operational Research 128:129-146. 

[25] McKay K, Pinedo M, Webster S (2002) Practice-focused 
research issues for scheduling systems. Production and 
Operations Management 11:249-258. 

[26] Oguz C, Ercan MF, (2005) A genetic algorithm for hybrid 
flow-shop scheduling with multiprocessor tasks. J 
Scheduling 8:323-351. 

[27] Page J, Poli P, Langdon WB, (1999) Smooth uniform 
crossover with smooth point mutation in genetic 
programming: a preliminary study. In: Genetic 
Programming, Proceedings of EuroGP’99, Sweden.  

[28] Peng J, Liu B (2004) Parallel machine scheduling models 
with fuzzy processing times. Information Sciences 166:49-
66. 

[29] Pfund M, Fowler JW, Gadkari A, Chen Y (2008) 
Scheduling jobs on parallel machines with setup times and 
ready times. Computers & Industrial Engineering 54:764-
782. 

[30] Piersma N, Romeijn HE, (1996) Parallel machine 
scheduling: A probabilistic analysis. Naval Research 
Logistics (NRL) 43:897-916. 

[31] Prade H (1979) Using fuzzy set theory in a scheduling 
problem: A case study. Fuzzy Sets and Systems 2:153-
165. 

[32] Radhakrishnan S, Ventura JA (2000) Simulated annealing 
for parallel machine scheduling with earliness-tardiness 
penalties and sequence-dependent set-up times. 
International Journal of Production Research 38:2233-
2252. 

[33] Raut S, Gupta JND, Swami S (2008) Single machine 
scheduling with time deteriorating job values. Journal of 
the Operational Research Society 59:105-118. 

[34] Sridharan V, Zhou Z (1996) A decision theory based 
scheduling procedure for single machine weighted 
earliness and tardiness problems. European Journal of 
Operational Research 94:292-301. 

[35] Syswerda G (1989) Uniform crossover in genetic 
algorithms In: Schaffer DJ (ed) Proceedings of the 3rd 
International Conference on Genetic Algorithms, USA, pp. 
2-9.  

[36] Wan G, Yen BPC (2002) Tabu search for single machine 
scheduling with distinct due windows and weighted 
earliness/tardiness penalties. European Journal of 
Operational Research 142:271-281. 

[37] Wan G, Yen BPC (2009) Single machine scheduling to 
minimize total weighted earliness subject to minimal 

Mohammad Asghari et al./ Fuzzy Programming for Parallel...

72



number of tardy jobs. European Journal of Operational 
Research 195:89-97. 

[38] Wu CC, Lee WC, (2008) Single machine group-
scheduling problems with deteriorating setup times and 
job-processing times. International Journal of Production 
Economics 115:128-133. 

[39] Yi Y, Wang DW, (2003) Soft computing for scheduling 
with batch setup times and earliness-tardiness penalties on 
parallel machines. Journal of Intelligent Manufacturing 
14:311-322. 

 

Journal of Optimization in Industrial Engineering 14 (2014) 61-73

73


