
Journal of Industrial Engineering 3 (2009) 59-64

59

A Memetic Algorithm for Hybrid Flowshops with Flexible Machine
Availability Constraints

Fariborz Jolaia, Mostafa Zandiehb,*, Bahman Naderic
aDepartment of industrial engineering, faculty of engineering, University of Tehran, Tehran, Iran

bDepartment of industrial management, management and accounting faculty, Shahid Beheshti University, Tehran, Iran
c Department of indusrial engineering, Amirkabir University of Technology, Tehran, Iran

Received 5 Oct., 2008; Revised 2 Dec., 2008; Accepted 9 Apr., 2009

Abstract

This paper considers the problem of scheduling hybrid flowshops with machine availability constraints (MAC) to minimize makespan. The
paper deals with a specific case of MAC caused by preventive maintenance (PM) operations. Contrary to previous papers considering fixed
or/and conservative policies, we explore a case in which PM activities might be postponed or expedited while necessary. Regarding this
flexibility in PM activities, we expect to obtain more efficient schedule. A simple technique is employed to schedule production jobs along
with the flexible MACs caused by PM. To solve the problem, we present a high performing metaheuristic based on memetic algorithm
incorporating some advanced features. To evaluate the proposed algorithm, the paper compares the proposed algorithm with several well-
known algorithms taken from the literature. Finally, we conclude that the proposed algorithm outperforms other algorithms.

Keywords: Scheduling; Hybrid flowshops; sequence dependent setup times; machine availibility constraints; memetic algorithm.

1. Introduction

One of the well studied scheduling problems is
flowshop (FS). In FS, a given set of n jobs need to be
processed in a set of m stages each of which has one
machine. The processing routes of all the jobs are the
same. In sight of the fact that researchers intend to bridge
the existing gap between theory and practice of the
scheduling, many assumptions to more actualize the
problem of flowshops are recently made. In practice, there
might be more than one single machine in each stage. By
having machines in parallel, we are capable of eliminating
or reducing the impact of bottleneck stages on the overall
shop floor capacities. Although the machines in each
stage are identical, each job is processed by only one
machine in each stage. With respect to the corresponding
explanation, we address hybrid flowshops (HFS) to deal
with a complex while realistic case of flowshops under
minimization of makespan. Moreover, In HFS it is
assumed that the jobs are independent. Each machine can
only process a job at a time while each job can be
processed by at most one machine at a time. The jobs are

Non-preemptive i.e. the process of a job on a machine

cannot be interrupted. There exist unlimited place for
work-in-process jobs between stages. Additionally,
majority of papers in the literature consider an unrealistic
assumption of the continuous machine availability.
However, a machine can be unavailable for many reasons,
such as unforeseen breakdowns (stochastic unavailability)
or due to a scheduled preventive maintenance (PM)
(deterministic unavailability). It is well known that PM
has a vital role in many industries [11], such as
semiconductor and plastic industry; therefore, it should be
carefully considered. According to practical experience, a
poor scheduling of maintenance may greatly reduce the
shop productivity. As a result, the presentation of
techniques to integrate production and PM activities is a
key issue in the field of scheduling. Almost all the paper
in the literature consider fixed or/and conservative
policies (i.e. the PM operation must be scheduled at
exactly predetermined intervals). We here with apply a
flexible criterion to consider PM operations along with
productions jobs to gain more effective schedule. Since
HFS belongs to a special class of combinatorial

* Corresponding author. Telfax.: +98-21-29902382; e-mail: m_zandieh@sbu.ac.ir

Fariborz Jolai et al ./ A Memetic Algorithm for Hybrid Flowshops with Flexible Machine Availability Constraints

60

optimization problems known to be a nondeterministic
polynomial-time hard one (NP-hard), there is no exact
method solving the problem in reasonable amount of
time. Hence, several heuristics and metaheuristics have
been presented to tackle the problems. Kurz and Askin [2]
studied hybrid flowshops with setup times separated and
proposed some heuristics to solve the problem. Later,
Kurz and Askin [3] considered the same problem and
adapted a well-known genetic algorithm, called random
key genetic algorithm (RKGA). They showed that RKGA
outperformed their heuristics proposed aforetime. Zandieh
et al. [13] presented an immune algorithm that worked
better than RKGA. Recently Naderi et al. [7] addressed
hybrid flexible flowshops and introduced a novel
metaheuristic based on the concept of variable
neighborhood search.

In a nutshell, the contribution of this paper is to
introduce a flexible criterion to integrate production and
PM operations, and to propose a high performing
metaheuristic, namely memetic algorithm, to solve hybrid
flowshops with flexible machine availability constraints
to minimize makespan. The reason to memetic’s ever-
increasing popularity among researchers is its powerful
diversification capability as well as its intensification
capability [12]. Besides the high diversification
capability, the proposed memetic algorithm employs a
very simple and fast form of simulated annealing to
possess a good intensification operator as well. Its
potential on solving the problem studied here is
investigated against the adaptations of the some well-
known algorithms in the literature through a set of
instances.

The rest of the paper is organized as follows: Section 2
introduce the flexible machine availability constraints.
Section 3 presents the proposed memetic algorithm. In
Section 4, the computational experiment is explained.
Section 5 gives some conclusions.

2. Flexible machine availability constraint

In practice, the consideration of continuous machine
availability might not be true. For example, the machines
might be busy processing jobs left in the previous horizon
or breakdown. Many researchers consider PM activities as
a most systematic reason for the MACs. Many papers
have studied to schedule the production jobs along with
the PM operations. The integrating criteria so far
introduced are usually regarded as fixed or/and
conservative policies [6, 11]. In the fixed policies, PM
activities are performed at exactly pre-specified time
intervals while in the conservative policies, whenever
production and PM activities have overlap, the production
operation is postponed and PM activities are conducted
first. In this paper, we introduce a more flexible criterion
to integrate production scheduling and PM activities. In

other word, we assume that the starting time points of PM
operations could be flexible to some extent (δ). In this
case, likely more efficient schedules could be obtained. In
a nutshell, our procedure of integration is as follows: Let
us suppose that the time interval between two consecutive
PM operations is TPM. Whenever a new job is to be
processed in each machine, the completion time is
computed. If this time exceeds the TPM + δ, then the
process of the next job is postponed and the PM is carried
out first. It is necessary to state that since we consider the
non-preemptive case, the process of a job cannot be
interrupted before it completes. To better clarify the
above procedure, we apply it to an example. Let us
consider a shop with TPM = 15 time units. The duration of
PM operations (DPM) are 3 time units. The maximum
accepted delay (δ) is 5 time units. The shop has 4 jobs to
process on a single machine. Table 1 shows the
processing times of the jobs.

Table 1
The processing times for a problem with n = 5
Job i Processing time
1 5
2 10
3 6
4 7

Again let us suppose the jobs are scheduled as such: {4, 3,
1, 2}. After processing jobs 4 and 3, the completion time
becomes 7 + 6 = 13. To process job 1, the completion
becomes 18 which is greater than TPM = 15; However, the
shop can accept a delay with the maximum of 5 time
units. So, job 1 can be processed. Now, it is impossible to
carry out job 2 because it has a processing time of 10 time
units resulting in a completion times of 28 units, which is
greater than TPM + δ = 20. Therefore, the process of job 2
is postponed and PM operation is carried out first. The
first PM operation and job 1 complete at 21 and 31,
respectively. Figure 1 shows the Gantt chart of the
solution.

3. The proposed memetic algorithm

Memetic algorithm (MA) is a recent metaheuristic to
solve combinatorial optimization. MA can be regarded as
a combination of a population-based global search and
local improvements. Some recent researches [9, 12]
conclude that the performances of evolutionary
metaheuristics like genetic algorithm (GA) can be
significantly improved by hybridizing with a powerful

Journal of Industrial Engineering 3 (2009) 59-64

61

 Machine availability job 4 job 3 job 1 job 2

 0 7 13 18 21 31
 production horizon

 unavailability time due to PM operation

Fig. 1. Gantt chart of the solution for the given example

and fast local search-based engine. The original intention
is to obtain an intelligent integration of global search and
local search, and to make a well-balanced compromise
between diversification and intensification mechanisms.
According to [12], MAs can be enhanced through the
combination of the evolutionary algorithms with local
search-based strategies such as simulated annealing.

In brief, MA explores the search space through a
population of encoded solutions, called chromosomes.
According to chromosome’s quality, each of them is
assigned a value called fitness. The population evolves by
a set of operators so long as some stopping criterion is
met. A typical iteration of MA, generation, can be stated
as follows: The best chromosomes of the current
population are directly copied to the next generation (elite
strategy). A selection mechanism picks chromosomes of
the current population so as to give higher chance of
being selected to the chromosome with the better fitness
value. The selected chromosomes are combined and
produce new offspring through crossover. After the
mating process, each offspring might mutate by another
mechanism called local search engine. The new offspring
constitute a new population and the procedure restarts.
Figure 2 shows the general pseudo code of the proposed
memetic algorithm.

Procedure memetic algorithm

Initialization
while the stopping criterion is not met do

fitness evaluation
elite operator
crossover operator
local search engine

endwhile

Fig. 2. The general pseudo code of the proposed memetic algorithm

In the following subsection, we describe the main
features of the proposed memetic algorithm: chromosome
representation, initialization, fitness evaluation, selection
mechanism, elite strategy, crossover and local search
engine.

3.1 Chromosomes representation, initialization, fitness
evaluation and selection mechanism

In hybrid flowshops, permutation representation is the
frequently used scheme to encode a solution [7].
Permutation representation lists all the jobs in a relative
order by which they are scheduled in stage 1, and then by
a machine assignment rule, the jobs are allocated to the
machines. The job sequence in subsequent stages is
determined by the earliest completion times of the jobs in
the previous stage. The machine assignment rule (MAR)
is to allocate the jobs to the machines in each stage. In
flowshops since every stage has only one machine, we do
not need any MAR, whereas in HFS, we have to employ
an effective MAR. In the case of HFS, each job is
assigned to the machine completing the job in the earliest
time in the given stage.

It is known that the initialization procedure has a great
impact on the quality of a metaheuristic. Therefore, we
utilize the best so far known heuristic, NEH [10], in the
literature as an initial solution. Since in MAs higher
fitness values are more preferable and our objective is the
minimization of Cmax, we use 1/ Cmax as the fitness value
of a solution. For the selection of parents, we make use of
binary tournament selection [1]. In binary tournament
selection, two chromosomes of the current population are
randomly selected, and the better one is chosen as a
parent.

3.2 Elite strategy and crossover

To ensure that when the algorithm proceeds the best so
far chromosomes are not eliminated, chromosomes with
higher fitness values are directly copied to the next
generation. The selected chromosomes are combined to
generate new offspring through an operator called
crossover. The purpose is to produce better schedule after
crossing the parents. Since we use permutation
representation, the crossover operators must work so as to

Fariborz Jolai et al ./ A Memetic Algorithm for Hybrid Flowshops with Flexible Machine Availability Constraints

62

avoid generating infeasible solutions. Our crossover is
“Similar Job Order Crossover” or SJOX. This crossover
has been proven to be very high performing in flow shops
[10] against several other crossover operators. Therefore,
we have been thinking of applying it to HFS.

3.3 Local search engine

The key feature of memetic algorithms is the local
search engine. This is so because we can make a balance
between the diversification capability of population-based
algorithms and intensification capability of the local
search-based algorithms. The local search starts from a
given solution and performs a quick search around that
solution. If any improvement is made, the current solution
is replaced with the better one. We utilize simulated
annealing (SA) as our local search engine because SA is
known to be a fast and simple local search. The local
search engine works as such: After crossing, the SA is
applied to a fraction of the chromosomes that their Cmax
are at most r% over the best chromosome, not all the
chromosomes because applying the SA to all the
chromosomes would result in a very slow algorithm. In
the following subsection, we shortly describe the
simulated annealing we apply.

3.4 Simulated annealing

The basic procedure in simulated annealing (SA) is to
produce a new job sequence k by a random operator from
the neighbourhood of present sequence u. This new
sequence is accepted or rejected by another random
technique. A parameter t, called the temperature, controls
the acceptance rule. The variation between objective
values of two candidate solution is computed ∆C =
TCT(k) – TCT(u). If ∆C ≤ 0, sequence k is accepted.
Otherwise, sequence k is accepted with probability equal
to exp(–∆C / ti). The algorithm proceeds by trying a fixed
number of neighbourhood moves at temperature ti, while
temperature is gradually decreased. The procedure repeats
until a stopping criterion is met. In our algorithm, SA
proceeds until in five consecutive temperatures, no
improvement is made.

Simulated annealing starts from an initial solution, and
a series of moves are made. The algorithm checks 20
neighbours at temperature ti. Move operator produces a
new solution from current candidate solution by slightly
changing it. Since it is concluded that in SAs, SHIFT
operator is superior to other operators like SWAP and

INVESION [5], we generate new solution using SHIFT
operator in which a randomly selected job in sequence is
randomly relocated. Here, we make use of exponential
cooling schedule, ti =α .ti-1 (where α (0, 1) is
temperature decrease rate).

4. Experimental evaluation

In this section, we investigate the performance of the
proposed algorithm. To conduct the experiment, we
implement the algorithm in MATLAB 7.0 running on an
PC with 2.0 GHz Intel Core 2 Duo and 2 GB of RAM
memory. Relative percentage deviation (RPD) is used as
our performance measure [6]. RPD is calculated as
follows:

RPD = 100 • (Algsol – Minsol) / Minsol (1)

where Algsol is the Cmax obtained for a given algorithm
and instance, Minsol is the best solutions obtained for each
instance by any of all algorithms. In the following two
subsections, we first tune the parameters of the proposed
memetic algorithm, and then we compare its performance
against the some well-known algorithms in the literature.

4.1. Parameter tuning

In this section, we intend to set the parameters of our
proposed MA by means of the full factorial experiment
which is one of the DOE approaches [4]. A set of 60
random instances are generated in different size of (n · m).
Stopping criterion is n·m·0.2 seconds computational time
which allows for more time as the number of jobs or
machines increases. The proposed MA has two
parameters, population size (popsize) and r in local search
engine, that need to be tuned. We investigate the
following levels for popsize: 20, 40, 60, 80. The results
demonstrate that popsize of 60 outperforms the other
levels. Figure 3 shows the means plot and least significant
difference (LSD) intervals for each level of popsize.

We also consider the following levels for r: 0%, 2%,
5%, 10%. Figure 4 show the results obtained by each
level of the parameter r. As could be seen, the best level is
r = 5%. It is interesting to see that r = 0% (i.e. MA with
no local search engine) results in the worst performance.

Journal of Industrial Engineering 3 (2009) 59-64

63

Fig. 3. The means plot and LSD intervals for different levels of popsize

Fig. 4. The means plot and LSD intervals for different levels of r
parameter in the local search engine

4.2.Experimental results

In this section, we evaluate our proposed memetic
algorithm against other existing algorithms including
SPTCH, FTMIH, Johnson heuristics proposed by [2],
NEH of [10], RKGA of [3], immune algorithm (IA_Z) of
[13] and variable neighbourhood search (VNS_N) of [8].
All the above-mentioned algorithms are adapted so as to
consider the existence of flexible PM operations. The
stopping criterion is n·m·0.2 second computational time.
We use RPD measure (Eq. 1) to compare the algorithms.

To compare the performances of the algorithms, a set
of instances is generated. We need to notice that data
required for a problem consist of the number of jobs (n),
range of processing times (p), number of stages (m), the
number of machines in each stage (mi), time interval
between two consecutive PM operations (TPM), duration

of PM operations (DPM) and also flexibility of PM
operations (δ). We have n = {20, 50, 80, 120} and m =
{2, 4, 8} similar to Naderi et al. (2008). To define the
number of machines at each stage, we have to sets. In the
first one, we have a random uniform distribution number
of machines of between one and three machines per stage,
and in the second one, we have a fixed number of two
machines per stage. The processing times are generated
from a uniform distribution over the range (1, 99). TPM for
each machine are distributed as a uniform distribution in
the range (200, 300). DPM of each machine are distributed
uniformly over three ranges (1, 50). δs are randomly
generated from a uniform distribution between (20, 80).
The different levels of factors result in 24 different
scenarios. There are 10 different instances for each
scenario. Therefore, we have 240 instances.

Table 2 summarizes the results of the experiments. In
this table, we report the average RPD for each
combination of n and m (20 data per average). The best
performing algorithm is MA with RPD of 1.03%. The
second best is VNS_N with RPD of 1.71% while among
the heuristics, NEH performs better. FTMIH is the worst
performing algorithm with RPD of 30.27%. For further
analysis of the results, we conduct an analysis of variance
(ANOVA) test where the type of the algorithm is the
factor and RPD is the response variable. Due to the
considerable difference between the heuristics and
metaheuristics, we exclude the heuristics from ANOVA
experiment. There are statistically significant differences
between the different types of metaheuristics with a p-
value very close to zero. Figure 5 shows the means plot
and LSD intervals. As could be seen in Figure 5, MA
statistically outperforms all the algorithms.

5. Conclusion and future research

This paper dealt with hybrid flowshops with flexible
machine availability constraints under minimization of
makespan. Besides the establishment of a simple and
flexible criterion to integrate the production and PM
operations, we proposed a high performing metaheuristic
to tackle the problem. This algorithm is memetic
algorithm that employs a fast and simple simulated
annealing in its local search engine. To evaluate the
proposed algorithm, we compared it with some existing

Fariborz Jolai et al ./ A Memetic Algorithm for Hybrid Flowshops with Flexible Machine Availability Constraints

64

Table 2
The average RPD for the algorithms grouped by n and m
n m Algorithm
 SPTCH FTMIH Johnson NEH RKGA IA_Z MA VNS_N
20 2 32.94 35.78 22.97 4.89 3.03 2.02 0.41 1.18
 4 23.08 30.86 15.16 6.28 1.10 1.82 0.61 1.28
 8 18.04 23.06 12.28 6.89 0.88 1.38 0.67 0.80
50 2 27.53 32.48 23.35 3.89 5.47 2.49 0.22 0.72
 4 19.75 32.13 20.43 5.47 2.52 1.57 1.29 2.05
 8 18.55 22.35 12.78 5.86 0.47 2.24 1.35 2.29
80 2 29.61 35.44 25.29 3.01 5.08 4.48 0.70 1.59
 4 21.25 29.68 19.38 6.28 3.71 4.27 0.78 1.62
 8 21.38 25.48 17.34 9.00 4.85 3.75 0.87 1.73
120 2 29.43 33.42 27.83 3.10 7.51 4.24 1.92 2.27
 4 27.35 33.97 24.75 7.50 8.89 5.99 1.82 2.63
 8 21.75 28.55 19.26 11.14 8.37 5.09 1.69 2.33

Average 24.22 30.27 20.07 6.11 4.32 3.28 1.03 1.71

Fig. 5. Means plot and LSD intervals (at the 95% confidence level) for the
type of algorithm factor

algorithms in the literature. The computational results
showed the outperformance of the proposed memetic
algorithm.

As future research, it is could be interesting to extend
the memetic algorithm to other scheduling problems or to
the studied problem in this paper with other objectives,
such as total tardiness and number of tardy jobs. It is
worthy working on some other realistic assumptions like
transportation times or extending the work done here to
other scheduling problems.

Reference

[1] D. E. Goldberg, Genetic algorithms in search, optimization and
machine learning, 1st edition, Addison-Wesley, Reading, 1989.

[2] M. E. Kurz, R. G. Askin, Comparing scheduling rules for flexible
flow lines. International Journal of Production Economics, 85, 371–
388, 2003.

[3] M. E. Kurz, R. G. Askin, Scheduling flexible flow lines with
sequence-dependent setup times. European Journal of Operational
Research, 159(1), 66–82, 2004.

[4] D. C. Montgomery, Design and Analysis of Experiments. 5th edition,
John Wiley & Sons, New York, 2000.

[5] B. Naderi, M. Khalili, M. T. Taghavifard, V. Roshanaei, A variable
neighborhood search for hybrid flexible flowshops with setup times
minimizing total completion time. Journal of Applied Sciences,
8(16), 2843–5654, 2008.

[6] B. Naderi, M. Zandieh, S. M. T. Fatemi Ghomi, Scheduling
sequence-dependent setup time job shops with preventive
maintenance. International Journal of Advanced Manufacturing
Technology, Article in press, 2008.

[7] B. Naderi, M. Zandieh, V. Roshanaei, Scheduling hybrid flowshops
with sequence dependent setup times to minimize makespan and
maximum tardiness International Journal of Advanced Manufacturing
Technology, Article in press, 2008.

[8] B. Naderi, M. Zandieh, S. M. T. Fatemi Ghomi, A study on
integrating sequence dependent setup time flexible flow lines and
preventive maintenance, Journal of Intellegent manufaturing, Article
in press, 2008.

[9] B. Qian, L. Wang, D. X. Huang, X. Wang, Scheduling multi-
objective job shops using a memetic algorithm based on differential
evolution. International Journal of Advanced Manufacturing
Technology, 35, 1014–1027, 2008.

[10] R. Ruiz, C. Maroto, J. Alcaraz, Two new robust genetic algorithms
for the flowshop scheduling problem. Omega, 34, 461–476, 2006.

[11] R. Ruiz, C. J. Garica-Diaz, C. Maroto, Considering scheduling and
preventive maintenance in the flow shop sequencing problem.
Computers and Operations Research, 34, 3314–3330, 2007.

[12] R. Tavakkoli-Moghaddam, N. Safaei, F. Sassani, A memetic
algorithm for the flexible flow line scheduling problem with
processor blocking. Computers and Operations Research, 36(2), 402–
414, 2009.

[13] M. Zandieh, S. M. T. Fatemi Ghomi, S. M. Moattar Husseini, An
immune algorithm approach to hybrid flow shops scheduling with
sequence-dependent setup times. Applied Mathematics and
Computation, 180, 111–127, 2006.

