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Abstract 

This paper develops a single-vendor single-retailer supply chain for multi-product. The proposed model is based on Vendor Managed 
Inventory (VMI) approach and vendor uses the retailer's data for better decision making. Number of orders and available capital are the 
constraints of the model. In this system, shortages are backordered; therefore, the vendor’s warehouse capacity is another limitation of the 
problem. After the model formulation, an Integer Nonlinear Programming problem will be provided; hence, a genetic algorithm has been 
used to solve the model. Consequently, order quantities, number of shipments received by a retailer and maximum backorder levels for 
products have been determined with regard to cost consideration. Finally, a numerical example is presented to describe the sufficiency of 
the proposed strategy with respect to parameter-tuned by response surface methodology (RSM). 
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1. Introduction 

In recent years, according to the investigations 
conducted by researchers, inventory costs have been more 
important in supply chain management (SCM). Supply 
chain management is a set of approaches used to 
efficiently integrate suppliers, manufacturers, warehouses, 
and stores so that merchandise is produced and distributed 
in the right quantities, to the right locations, and at the 
right time in order to minimize total costs while satisfying 
service-level requirements. The supply chain consists of 
suppliers, warehouses, manufacturing centers, distribution 
centers, and retail outlets, as well as raw materials, work-
in-process inventory, and finished products that flow 
between the facilities (Simchi-Levi&Kaminsky, 2004). 
Multi-echelon inventory management in supply chains 
has attracted some researchers; accordingly, these 
researches lead to Vendor Managed Inventory (VMI) 
models. The VMI model is a cooperative communication 
innovation where suppliers are permuted to manage the 
retailer’s inventory. Vendors can manage retailer's orders 
and total inventory data between retailers by utilizing of 
information technologies such as Electronic Data 
Interchange (EDI) on a real time basis (Yao et al., 2007). 
The VMI is a business model in which the vendor is a 
responder to control the retailer's inventory levels and 
then determines the retailer's order quantity and time 

(Disney&Towill, 2002). The possible advantages of the 
VMI models include a reduction of inventory costs for the 
supplier and the retailer and improvement of customer 
service levels (Achabal et al., 2000). Successful retailers 
and suppliers such as Kmart, Dillard Department Stores, 
JcPenney and Wal-Mart achieved these advantages 
(Dong&Xu, 2002). In other words, in these models, the 
supplier determines quantity of replenishment for a 
retailer in the specified time horizon, with regard to the 
minimum total inventory cost in the supply chain. 
According to the cost reduction, determination of the 
amount of orders is one of the important decisions that 
suppliers are involved in the supply chain. Two general 
models of economic order quantity (EOQ) and economic 
production quantity (EPQ) are frequently used. The order 
size, which minimizes the total inventory cost, is known 
as the EOQ. The EPQ model applies the logic of EOQ to 
parts that are made, as opposed to those purchased from 
an outside vendor. The EOQ is one of the most popular 
and successful optimization models in SCM, due to its 
simplicity of using, simplicity of concept, and robustness 
(Axsäter, 2010). 

All of the mentioned models have been developed 
based on some basic assumptions, with regard to their 
applications in the real situations. In this paper, research 
is concentrated on this scenario: there is a single vendor 
who supplies multi products for a single retailer and the 
model has been completed by multi-constraint. These 
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constraints have an important influence on the conformity 
of model with inventory systems in the real world. In this 
model, shortages are backordered. In addition, the 
vendor’s warehouse is limited by an upper bound for 
available inventory or maximum inventory. Constraints 
like number of orders, available capital, and average 
inventory have an important role in the inventory systems, 
so that they have been considered in the proposed model. 
The objective is determination of order quantities, number 
of shipments received by a retailer and maximum 
backorder levels for each product at a cycle time, with 
respect to minimization of total inventory cost in the 
desired supply chain. Under these conditions, the 
developed model is an integer nonlinear programming 
(INLP), therefore a proposed genetic algorithm (GA) via 
parameter-tuned with response surface methodology 
(RSM) is presented to find optimum values for the 
decision variables. Finally, results are illustrated via a 
numerical example.  

This paper is structured as follows: in next Section, a 
review of the literatures and contributions is presented. 
Section 3 provides the notations and assumptions utilized 
for the problem description. The mathematical model is 
developed in Section 4 and a genetic algorithm has been 
presented in Section 5. Subsequently RSM parameter-
tuned is described in Section 6 and numerical example is 
presented in Section 7. Finally, conclusions and 
recommendations for future research are mentioned in 
Section 8. 

2. Literature Review 

Determination of when and how much to order is the 
aim of an inventory control system. The most well-known 
inventory control model is the classical EOQ formula. 
The first EOQ formula was presented by Harris (1913), 
but Wilson (1934) is also recognized in connection with 
this model (Axsäter, 2010, Tersine, 1993). Then, the 
model was extended to EPQ in which production rate was 
considered in the model. The EOQ and EPQ inventory 
systems have been used in many practical applications, 
because these inventory models are simple and easy to 
implement in organizations, but the EOQ and EPQ 
inventory models have several assumptions that are very 
restrictive (Cárdenas&Leopoldo, 2009). Since the EOQ 
and the EPQ are obtained with some assumptions and 
conditions that their applications are limited in real issues, 
some researchers such as Goyal (Goyal, 1985), Chung 
(1998) have tried to develop formulated inventory models 
for more real issues. 

The retailer's inventory system can be described by an 
EOQ policy based on deterministic demand and 
deterministic lead-times (Dong&Xu, 2002). Different 
companies work together to improve the coordination of 
the total material flow; an example is the implementation 
of so-called VMI systems (Axsäter, 2010). Next, Hill 
(1997) researched to minimize the total cost per year of 

the buyer–vendor system. 
The basic hypothesis is that the vendor only knows the 

buyer’s demand and his order frequency. Some 
researchers have begun to investigate the usefulness of 
implementing VMI in the inventory systems for supply 
chain and have showed cost reduction under the assumed 
conditions. By raising the VMI policy, companies utilize 
impact of the VMI policy as a tool to reduce costs in the 
inventory system for the supply chain (Disney&Towill, 
2003). For instance, the usefulness of the VMI 
implications is achieved with coordination between 
retailers and suppliers, such as Kmart, Dillard Department 
Stores, JcPenney, and Wal-Mart (Simchi-Levi & 
Kaminsky, 2004).  

The single-vendor single-buyer supply chain was 
investigated for a product just in case of the EPQ 
environment by Hill (1997). Next, Disney et al. (2003) 
investigated the effect of a VMI policy on transport cost 
savings in a supply chain. Sarmah et al. (2006) provided a 
literature review about trading with buyer and vendor 
coordination models in case of EOQ assumptions. Huang 
et al. (2010) extend Goyal model, as a cost reduction for 
the single product for single-vendor and single-buyer 
supply chain situation under conditions of order-
processing cost. Sajadieh et al. (2009) extended a 
coordinated vendor–buyer model for stochastic lead-times 
in which shortage is allowed. Duan et al. (2010) presented 
inventory model for a single-vendor single-buyer supply 
chain for fixed lifetime product in which quantity 
discount policy is applied. 

Meantime, the research used an evolutionary approach 
like GA in the supply chain problems. Pasandideh and 
Niaki (2008) extended the EPQ model under the condition 
that discrete delivery for orders was considered in the 
formation with multiple pallets; because an INLP model 
was developed, a GA was presented to solve it. 
Nachiappan and Jawahar (2007) considered optimum 
sales quantity for each buyer, under the VMI mode and 
provided a GA based heuristic model. Michaelraj and 
Shahabudeen (2009) considered two objectives including 
maximizing the distributors' sell and minimizing the 
distributors' balance payment in the VMI distribution 
system and used a GA to solve them. Pasandideh et al. 
(2011) formulated an INLP model and proposed a GA to 
determine optimal order quantities and backorder levels 
for reducing cost in a VMI system with storage space and 
number of order constraints. In addition, Rezaei and 
Davoodi (2011) combined the lot-sizing problem with 
supplier selection and present two multi-objective models 
with regard to shortages, and then proposed a GA to solve 
it. Therefore, according to these studies, the researchers 
obtained an INLP model and proposed GA to solve it. 

3. Notation and Assumptions 

The following set of notations will be used in this 
research:  
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Ai vendor's order cost for the ith product 
a' vendor's order cost of the ith product (per unit) for 
 retailer 
Di demand rate for the ith product 
p annual holding cost as a fraction of unit cost for retailer 
p' annual holding cost as a fraction of unit cost for vendor 
ui purchase cost for ith product 
π̂   Fixed backorder cost per unit in each period 
π Fixed backorder cost per unit 

Vi space required to store one unit of ith product 
W maximum utilization of vendor's warehouse space 
X total number of vendor's order 
O maximum available capital for vendor 
Z upper limit for vendor's average inventory level 
n number of shipments received by a retailer 
qi quantity of ith product dispatched to retailer 
bi maximum backorder level of ith product for vendor 
Qi order quantity of ith product for vendor 
T vendor cycle time 
Ti cycle time for the ith product 
TR common cycle time for products 
TCR  total retailer's cost in case of VMI system 
TCV  total vendor's cost in case of VMI system 
TCvmi   total cost incurred by VMI system 

 
Consider a single-vendor single-retailer supply chain 

consist of m products according to pervious mentioned 
assumptions for the proposed model. It is assumed that, 
inventory level is available inventory with respect to three 
constraints: available capital, vendor’s warehouse 
capacity and average inventory, i.e. (Qi - bi). An important 
point must be considered if the model is the EPQ, or 
encounters with shortages as backordered, the maximum 
inventory must use for applying warehouse capacity and 
available capital constraints (Axsäter, 2010, Tersine, 
1993). Under VMI system policy, the vendor manages the 
holding and ordering costs and forwards cost to the 
retailer. When the retailer's inventory level goes down to 
reorder point R, a batch quantity of size q is ordered. 
Moreover, exceeding demand will be repaid and any 
surplus shipment is not allowed. Furthermore, it is 
assumed that retailer sells all of products received from 
the vendor. Thus annual demand for the vendor and 
retailer is the same and is deterministic. 
Under the VMI strategy, a retailer's order cost is smaller 
than the retailer's order cost in case of no-VMI strategy 
(Yao et al., 2007). As it is assumed, the vendor dispatches 
products at the same time, i.e. Ti = Tj = TR. It is logical in 
VMI policy because the vendor selects the best alternative 
for relationships between the time and volume of 
replenishment (Darwish&Odah, 2010). Therefore, the 
vendor a lot of size Qi to a retailer transferred that takes n 
shipments each of size qi. Following equations represent 
the relationship between the delivered products to the 
retailer: 
 

௜ݍ

௜ܦ
ൌ

௝ݍ

௝ܦ
                                        (1) 

 
So, 
 
ଵݍ

ଵܦ
ൌ

௜ݍ

௜ܦ
                                        (2) 

 
And 
 
ܳ௜ ൌ  ௜                                                                          (3)ݍ݊
 
Finally, the specifications of the supply chain in which 
vendor and retailer cooperate are defined as follows: 
Finally, the specifications of the supply chain in which 
vendor and retailer work together are defined as follows: 
 
1. Vendor decides for the timings and the quantities of 

production considering inventory cost that is the total 
cost of the VMI system. 

2. Shortages are allowed and backordered. 
3. Lead-time is zero and inventory system follows 

immediately replenishment. 
4. All of costs are fixed. 
5.  The rate of production for all products is infinite 

(EOQ model). 
6. Vendor’s warehouse capacity is fixed and pre-

determined. 
7. Available inventory has an upper bound. 
8. Number of vendor's order is limited. 
9. Available capital is finite. 

4. Defining the Mathematical Model 

In this section, the mathematical model is defined with 
respect to the aforementioned assumptions for the VMI 
system where intents to minimize the total inventory cost 
in a supply chain per unit time T. The model involves 
costs such as holding, ordering and shortage cost as well 
as the purchase cost. According to the assumptions, total 
retailer's cost is calculated as follows: 

 

ோܥܶ ൌ ෍
௜ݍ௜ݑ݌

2

௠

௜ୀଵ
 (4) 

 
Although the order cost involved TCR, but it belongs 

to the vendor's cost in the VMI system. Based on Eqs. (5) 
and (3) the following equations will be provided: 

 
ܳ௜ ൌ ሺܦ௜ݍଵ݊/ܦଵሻ (5) 
 
௜ݍ ൌ ሺܦ௜ݍଵ/ܦଵሻ

  
(6) 

As a result, the total vendor's cost has been calculated 
here: 
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(7) 

Therefore, the total cost for the whole system is: 
 

TCVMI = TCR + TCV                                                         (8) 
 
Total cost incurred by the VMI system, with regard to 

Eqs. (5) and (6) can be determined as follows. 
 
TCVMI (b, q1, n) = 
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According to the previous statements, the aim of this 

research is to calculate synchronous order quantities, 
number of shipments received by a retailer and maximum 
backorder levels for each product in a cycle time with 
respect to the vendor's warehouse capacity; W as follows: 
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In addition, the amount of available capital is O, 
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and Z is upper bound of vendor's available inventory, 
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Finally, number of vendor's order is bounded to X, 
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Hence, the mathematical model can be set out as 

follows: 
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bi, q1, n > 0 : integer 
i = 1, 2, 3, ... , m.                                                      (14) 
 
Where bi ൑ Qi means that backorder levels cannot 

bigger than order quantity. In next section, a proposed GA 
will be presented to solve the obtained model in Eq. (14). 

5. Solution Algorithm 

The provided model by Eq. (14) is an INLP problem; 
solving the INLP problems are hard with exact methods 
because the INLP is an NP-complete problem (Kuk, 
2004). Exact methods are complex and not very affective 
for solving the INLP models. In the past decades, 
applying genetic algorithms (GAs) was developed to 
solve the INLP problems that have been a developing 
attempt. Researchers have obtained many convenient 
alternatives of GAs for different nonlinear problems. GAs 
is one of the important tools to find feasible solutions in 
these kinds of problems (Mitsuo Gen, 2000). GAs are 
strong tools for solving the INLP models (Yokota et al., 
1996). Therefore, in this section, a proposed GA has been 
presented to solve the mathematical model. 

5.1. Genetic Algorithm 

GAs pertains to the larger class of evolutionary 
algorithms (EA) which generate solutions for 
optimization problems using techniques derived by 
natural evolution. In a GA, every unknown parameter of 
the problem called a gene and the chromosome is set of 
genes; in brief, the initial population is generated 
randomly which included candidate solutions (are called 

Javad Sadeghi et al./ A Parameter-tuned Genetic Algorithm...

60



 

individuals or chromosomes) according to the GA 
operators as crossover and mutation operators to an 
optimization problem. Traditionally, the evolution usually 
starts from a population of randomly generated 
individuals that occurs in the generations. In each 
generation, the fitness of every individual is evaluated in 
the population; multiple individuals are selected 
stochastically from the current population with respect to 
their fitness. Then new population (new chromosomes), 
called offspring can be created by modifying previous 
individuals and will be used in the next iteration of the 
algorithm. As a general rule, the algorithm terminates 
when either a maximum number of generations has been 
produced, or a satisfactory fitness level has been reached 
for the population (Pasandideh&Niaki, 2008). 

GAs were first presented by John Holland in 1960 
(Holland, 1992), but the custom form of the GA was 
explained by his student Goldberg in 1989 (Michaelraj & 
Shahabudeen, 2009). The GA is a heuristic search that 
mimics the process of natural evolution as regards 
Darwin's theory of evolution (Talbi, 2009). However, 
apart from the effective of definition, the chromosome on 
the qualification solution, the GA is known as a problem-
independent approach (Pasandideh et al., 2011). 

5.1.1. GA Algorithm in Initial and General Conditions 

The required primary pieces of information for starting 
GA is: 

1. Population size (Npop): A group of interbreeding 
individuals 

2. Crossover rate (Pc): Crossover probability  
3. Mutation rate (Pm): Mutation probability 
The general stages in genetic algorithm are as follows: 

1. Initialization. 
1.1 Set the parameters (Npop, Pc, Pm, stopping criteria, 

selection strategy, crossover operation, mutation 
operation, and number of generation) 

1.2 Generate an initial population randomly 
2. Compute and save the fitness for each individual in the 

current population 
3. Define selection probabilities for each individual based 

on fitness criteria 
4. Generate the next population by selecting individuals 

from current population randomly to produce offspring 
via GA operators such as crossover and mutation 
operators 

5. Repeat step 2 until stopping criteria is satisfied. 
According to what follows, the proposed GA is 

described in details. 

5.2. Chromosome Representation 

Designing a suitable chromosome is the most 
important stage in applying the GA in the solution process 
of the problem. The chromosome in which represents the 
number of shipments received by a retailer (n), the 

quantity of the first product dispatched to the retailer (q1), 
and the maximum backorder level of the products for the 
vendor (bi), is provided by a 1* (m+2) matrix. The first 
element of the matrix is n and from the second element of 
matrix to the penult is bi and last element presents q1. Fig. 
1 represents the general form of a chromosome. 

 
[n      b1     . . .      bm                q1] 
Fig. 1. The chromosome presentation 

5.3. Evaluation and Initial Population 

In this step, an initial population (or collection of 
chromosomes) is generated randomly. After the new 
chromosomes generation, there are some chromosomes 
do not satisfy model constraints in Eq. (14); so, the 
generation of the chromosomes is controlled via Death 
Penalty method to generate feasible chromosomes. The 
penalty method changes a constrained optimization 
problem to an unconstrained optimization problem via 
associating a penalty or cost with all constraint violations. 
This penalty is included in the objective function 
evaluation. Thus, chromosomes will be generated without 
any penalty for mating pool. 

5.4. Genetic Operators 

Genetic operators such as crossover and mutation 
operators generate the next population. 

5.4.1. Crossover 

The main reproduction operator used is the crossover. 
Two strings are used as parents and new individuals are 
formed by swapping a sub-sequence between the two 
strings. Crossover creates offspring via mating pairs with 
respect to selection of a pair of chromosomes from the 
random generation with crossover rate Pc. Many 
crossover techniques exist for organisms such as One-
point, Two-points, Multiple-points and uniform. In this 
research, a Two-point crossover operator is selected that 
works as follows: 

i. Two crossover points are chosen randomly 
ii. The contents between these points are exchanged 

between two mated parents 
Fig. 2 shows a graphical representation of the crossover 
operation for the proposed chromosome with four 
products. 

 
 

 Parents                                                                offspring 

[10  243     363     569   139     650]    [10     229     536     913     139     650] 
 

[20  229     536     913   311     981]   [20     243     363     569     311     981] 

Fig. 2. An example of the Two-point crossover operation 
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Table 2 
The example information 

Product(i) Di Ai a' ui Vi

1 420 4 3 13 3 
2 360 3 2 30 2 

3 540 4 1 23 3 

4 390 5 4 6 1 

5 480 3 2 13 4 

6 510 3 2 20 3 

7 530 4 3 16 2 

8 380 2 1 10 1 

9 430 5 4 6 3 

10 580 3 2 26 4 
O=130000, W=18000, Z=250, X=8, π=0, ߨො ൌ 3, p=0.3, p'=0.4.  
 
Table 3 
Central composite design matrix 

    Input variables   Response 
Run PTYPE X1 X2 X3 X4 X5   Y 

1 1 1 -1 -1 -1 -1  33104.8 

2 1 -1 1 -1 -1 -1  33038.7 

3 1 -1 -1 1 -1 -1  34190.8 

4 1 1 1 1 -1 -1  33075.5 

5 1 -1 -1 -1 1 -1  35028.1 

6 1 1 1 -1 1 -1  32968.5 

7 1 1 -1 1 1 -1  33182.1 

8 1 -1 1 1 1 -1  33376.9 

9 1 -1 -1 -1 -1 1  86935.6 

10 1 1 1 -1 -1 1  84667.4 

11 1 1 -1 1 -1 1  93434.7 

12 1 -1 1 1 -1 1  84918.3 

13 1 1 -1 -1 1 1  86385.9 
14 1 -1 1 -1 1 1  85218.4 

15 1 -1 -1 1 1 1  86992.8 

16 1 1 1 1 1 1  84635.7 

17 0 0 0 0 0 0  62914.0 

18 0 0 0 0 0 0  61670.7 

19 0 0 0 0 0 0  62914.0 
20 0 0 0 0 0 0  62914.0 
21 -1 1 0 0 0 0  61017.7 
22 -1 -1 0 0 0 0  62017.7 
23 -1 0 1 0 0 0  60752.6 
24 -1 0 -1 0 0 0  62913.3 
25 -1 0 0 1 0 0  63510.6 
26 -1 0 0 -1 0 0  61889.0 
27 -1 0 0 0 1 0  60725.4 
28 -1 0 0 0 -1 0  61000.6 
29 -1 0 0 0 0 1  84912.2 
30 -1 0 0 0 0 -1  32977.4 
31 0 0 0 0 0 0  62914.0 
32 0 0 0 0 0 0   62914.0 
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Table 5 
Estimated Regression Coefficients for Y 
Term Coef SE Coef T P

Constant 62064.1 241.3 257.206 0.000

X1 42.0 199.0 0.211 0.837

X2 -1084.2 199.0 -5.448 0.000

X3 448.9 199.0 2.256 0.045

X4 -325.2 199.0 -1.634 0.131

X5 26508.8 199.0 133.201 0.000

X1X1 -64.4 538.2 -0.120 0.907

X2X2 250.9 538.2 0.466 0.650

X3X3 1117.7 538.2 2.077 0.062

X4X4 -719.1 538.2 -1.336 0.209

X5X5 -2637.3 538.2 -4.900 0.000

X1X2 -260.3 211.1 -1.233 0.243

X1X3 496.5 211.1 2.352 0.038

X1X4 -540.2 211.1 -2.559 0.027

X1X5 522.6 211.1 2.476 0.031

X2X3 -389.5 211.1 -1.845 0.092

X2X4 411.0 211.1 1.947 0.077

X2X5 -703.9 211.1 -3.335 0.007

X3X4 -580.4 211.1 -2.750 0.019

X3X5 443.1 211.1 2.099 0.060

X4X5 -491.8 211.1 -2.330 0.040

S = 844.343; R-Sq = 99.94%; R-Sq (pred) = 98.31%; R-Sq (adj) = 99.83%. 

 
Table 6 
Optimum value of the input variables 

Variable Value 

Npop 110 

Generation 800 

Pc 0.725 

Pm 0.2 

 
In the next section, a numerical example will be 

presented to describe the sufficiency of the proposed 
strategy with respect to parameter-tuned by response 
surface methodology (RSM). 

7. A Numerical Example 

The GA is coded by a Matlab computer program 
(Version 7.11.0.584, R2010b) and numerical example is 
solved by a PC CPU Duo T6600 2.20 GHz and 4GB 
RAM under the windows 7 operating system. The single-
vendor single-retailer problem with ten products has been 
investigated according to given data in Table 2. In this 
example optimum value of the GA parameters that is 
presented in Table 6 is applied. The best fitness values of 
this problem with regard to the proposed algorithm and 
parameter-tuned is as follows: 

 

Table 7 
Best fitness values 
Product(i) 1 2 3 4 5 6 7 8 9 10

bi 370 392 542 227 473 505 455 315 333 577

n=25;         q1=21;            Q1=525 

TCVMI  = 84341.5 ;         
 

Additionally, the convergence path graph for finding 
the best fitness values is presented in Fig. 6. 

 
                                     Fig. 6. The convergence path 
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8. Conclusions and Recommendation for Future 

Research 

In this paper, we have developed an inventory model 
under conditions multi-product and multi-constraint for 
the vendor managed inventory (VMI) system in a two-
echelon supply chain. Moreover, it was assumed that 
shortages are backordered, so the vendor’s warehouse 

capacity was limited by an upper bound for available 
inventory or maximum inventory. Since in inventory 
models, constraints like number of orders, available 
capital, and average inventory have an important role, 
these constraints were added to the model, too. The 
obtained model was an Integer Nonlinear Programming 
(INLP) problem; thus, the genetic algorithm (GA) was 
proposed to solve it. Furthermore, GA parameters were 
tuned by Response Surface Methodology (RSM) method. 
RSM method ensures to obtain the best fitness values of 
this problem and dedicated reasonable amounts for GA 
parameters. Finally, a numerical example was presented to 
describe the sufficiency of the proposed strategy. 

For future work extensions, the followings are 
recommended for other researchers: 

1. The lead-time effects can be considered. 
2. Alternative meta-heuristic search algorithms such as 

Tabu search (TS) or simulated annealing (SA) can 
be used. 

3. Other situations like variable costs and discounts 
can be considered. 

4. Non-deterministic parameters such as fuzzy or 
stochastic demand can be considered. 

5. Other cases of VMI system like the single-vendor 
multi-retailer, multi-vendor single-retailer and 
multi-vendor multi-retailer systems can be modeled. 
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