
An Exact Algorithm for the Mode Identity Project Scheduling Problem
Behrouz Afshar Nadjafia,*, Amir Rahimib, Hamid Karimib

a Assistant Professor, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
b MSc, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Received 2 July, 2011; Revised 19 December, 2011; Accepted 18 March, 2012

Abstract

 In this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (MRCPSP) with
mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be
processed in the same mode. We present a depth-first branch and bound algorithm for the resource constrained project scheduling problem
with mode identity. The proposed algorithm is extended with some bounding rules to reduce the size of branch and bound tree. Finally,
some test problems are solved and their computational results are reported.
Key Words: Project Scheduling, Branch and Bound, Mode-Identity, Multi-Mode, Resource Constrained.

1. Introduction

Project scheduling with constrained resources is a central
field within operations research and management sciences. A
project consists of activities, subject to precedence relations
and constrained resources, which have a predetermined
objective. In the classical resource-constrained project
scheduling problems the project duration (or make span) is to
be minimized. The multi-mode problem (MRCPSP) is a
generalized version of the standard problem (RCPSP), where
each activity can be executed in one of several modes
representing a relation between resource requirements of the
activity and its duration. The schedule has to be precedence
and resource feasible and no activity should be interrupted. A
project can be represented by an activity-on-node (AoN) or
an activity-on-arc (AOA) network. In the first representation
nodes correspond to activities and arcs to precedence
constraints whereas in the second one, nodes correspond to
time events and arcs to activities. The resources can be
renewable, non-renewable, doubly constrained, and/or
partially renewable, where the renewable resources are
limited period-by-period, the non-renewable resources are
limited for the entire project, the doubly constrained ones are
limited for both each period and the entire project, and the
availability of the partially renewable resources is defined for
a specific time interval (a subset of periods). However, under
discrete resources, the doubly constrained resources do not
need to be taken into account explicitly since they can be
incorporated by properly enlarging the sets of the first two
types of resources. The objective is to find an assignment of
modes to activities as well as precedence- and resource-

Feasible starting times of all activities such that the make
span of the project is minimized. The problem is strongly
NP-hard being a generalization of the RCPSP. The RCPSP is
strongly NP-hard as a generalization of the well-known job
shop problem (Błazewicz, 1983). Moreover, for more than
one non-renewable resource the problem of finding a feasible
solution of the MRCPSP is already NP-complete (Kolisch,
1995).

The MRCPSP has been widely studied in the recent
years. Several exact, meta-heuristics and heuristic
approaches as well as some extensions have been developed.
Some exact approaches are proposed by Talbot (1982),
Speranza and Vercellis (1993), and Zhu et al. (2006). Almost
all the approaches, except the one proposed by Zhu et al.
(2006), are based on the B&B method and the idea to
enumerate partial schedules.

An extension of the MRCPSP to its version with
generalized precedence relations, denoted as the MRCPSP-
GPR, is studied in several publications. Exact approaches
based on the B&B method are proposed in (De Reyck and
Herroelen, 1998; Dornorf, 2002; Heilmann, 2003). Some
heuristic algorithms are developed by De Reyck and
Herroelen (1999) who used a hybrid of tabu search and a
truncated version of their B&B, by Heilmann (2001) who
proposed a multi-pass priority rule approach with back
planning which is based on an integration approach and
embedded in random sampling, and by Calhoun et al. (2002)
who implemented the tabu search. Moreover, Van Hove and
Deckro (1998) proposed a B&B approach for the MRCPSP

* Corresponding author E-mail address: afsharnb@alum.sharif.edu

Journal of Optimization in Industrial Engineering 10 (2012) 55-63

55

with minimal time lags only. Recently, Barrios et al. (2009)
proposed for the MRCPSPGRP a so-called double genetic
algorithm which outperforms other approaches in medium
and large instances.

An extended version of the MRCPSP with the so-called
mode identity constraints is considered by Salewski et al.
(1997). The resulting problem is called the mode identity
resource-constrained project scheduling problem
(MIRCPSP), and is motivated by real-world situations where
several activities should be performed in the same way, i.e.
by allocating them the same resources. Practical examples of
such a problem occur in audit staff scheduling, timetabling,
course scheduling, etc. Formally, in this problem the set of
all project activities is partitioned into several disjoint
subsets, and all activities belonging to the same subset have
to be performed by the same resources. The time and cost of
executing activities from such a subset depend on the
resources assigned. Moreover, for each activity a deadline, a
ready time, and a set of mode-dependent finish to start time
lags with direct predecessors are defined. A mathematical
model of the problem is formulated, and the NP-hardness in
the strong sense is proved. A two-phase heuristic is used to
find a good feasible schedule. In phase one, for each subset
of activities a mode is selected randomly. In phase two, a
solution is built by scheduling randomly chosen activities
from the eligible set.

The standard multi-mode resource constrained project
scheduling problem involves the selection of an execution
mode for each activity (mode assignment) and the
determination of the activity start or finish times such that the
precedence and resource constraints are met and the project
duration is minimized. In the multi-mode case, all mode-
activity assignments are mutually independent; i.e. assigning
a mode to one activity i of a project consisting of a set of n
nonpreemptable activities does not necessarily force any
other activities to be processed in a specific mode. In
practice, however, there may be situations in which certain
activities belong together and must be executed in the same
mode (Drexl et al., (1998)).

In the multi-mode case, some solution procedures have
been developed (Coelho and Vanhoucke, 2011 and
Kyriakidis et al., 2012).

Salewski et al. (1997) partitioned the set of all
activities into disjoint subsets where all the activities
forming one subset have to be performed by the same
resources. The time and cost incurred by processing such
a subset depend on the resources assigned to it. Salewski
et al. (1997) refered to the resulting problem as the mode-
identity problem, in which objective is to minimize the
cost of processing. They prove that the mode identity
problem is strongly NP-hard. This model is suitable for
timetabling, course scheduling, audit staff scheduling and
other assignments-type scheduling problems.

The literature on solution methods for the mode
identity problem is scant. Salewski et al. (1997) developed
a parallel regret-based biased random sampling approach,
RAMSES, which consists of two stages. In the first stage,
priority values are used to assign modes to subsets of

activities. In the second stage, a schedule is built using a
priority-based parallel scheduling scheme. This paper
addresses the resource constrained project scheduling
problem with mode identity, in which we consider a
project consisting of activities to be scheduled subject to
finish-start precedence relations with zero time lags and
renewable resource constraints. The objective is to
minimize the project duration.

The paper is organized as follows: In the next section,
the problem description is presented and the terminology
used is clarified. In Section 3, a branch and bound
procedure is described. Following that, the computational
results are reported in Section 4. Finally, Section 5
concludes the paper.

2. Problem Description

The mode identity and resource constrained project
scheduling problem (MIRCPSP) involves the scheduling
of project activities in order to minimize the project
makespan. In this problem setting, the set of project
activities is partitioned into U disjoint subsets while all
activities forming one subset have to be processed in the
same mode. The project is represented by an AON
network where the set of nodes, N, represents activities
and the set of arcs, A, represents finish-start precedence
constraints with a time-lag of zero. The non-preemptable
activities are numbered from a dummy start activity 1 to
the dummy end activity n, and are topologically ordered.
According to the classification scheme of
Demeulemeester and Herroelen (2002), problem can be
classified as m,1/cpm,disc,id/reg,Cmax. We have the
notations given in Table 1 for the MIRCPSP.
Table 1
Parameters of the MIRCPSP

Definition Problem
parameter

Number of activities indexed by j n
Number of renewable resources indexed by k K
Time required to perform activity j in mode m djm
Specific nonempty subset u of activities Hu
Number of disjoint subsets of activities,
indexed by u U

Number of time periods, indexed by t T
Per-period usage of renewable resource k
required to execute activity j in mode m rjmk

Per-period availability of renewable resource k Rk
Number of modes of subset u, indexed by m Mu
Earliest finish time of activity j EFTj
Latest finish time of activity j LFTj
The job with the smallest index of subset Hu fu
The set of immediate predecessors of activity j Pj

Defining variables xjmt is as follows:






(1) Otherwise 0 ; periodin completed

and modein performed is activity If 1
t

mj
x jmt

Behrouz Afshar Nadjafi et al./ An Exact Algorithm for the Mode...

56

This allows formulating the mode identity and
resource constrained project scheduling problem
(MIRCPSP) under the minimum project make span
objective as follows: (derived from Salewski et al. 1997’s
formulation).

1min Z
n

n

LFT

n t
t EFT

tx


  (2)

s.t:

1

1 (1)
fu u

u

fu

LFTM

f mt
m t EFT

x u U
 

    (3)

f ju

u

f ju

LFT LFT

f mt jmt
t EFT t EFT

x x
 

  (4)

)1||,1},{\,1( uuuu HMmfHjUu
'

1 1

 ()
ju ui

i j

LFTM MLFT

imt jm jmt
m t EFT m t EFT

tx t d x
   

     (5)

),,1,,'1(' juu PiHjUuHiUu 

min{ 1, }

1 1 max{ , }

jm ju

u j

t d LFTMU

jmk jmq k
u m j H q t EFT

r x R
 

   

   (6)

)1,1 TtKk  {0,1} jmtx  (7)

),1,,1(jjuu LFTtEFTMmHjUu 

The objective in equation 2 minimizes the project
duration. It is assumed that the dummy start node and
dummy end node can only be processed in a single mode
with duration equal to zero. The constraints in equation 3
assure that each activity is assigned exactly one mode and
exactly one finish time. The constraint set in equation 4
maintains the mode identity constraints, in which all
activities forming one subset have to be performed in the
same mode. Equation 5 denotes the precedence relations-
constraints. Equation 6 ensures that the per-period
availability of the renewable resources is not violated.
Finally, equation 7 imposes binary values on the decision
variables.

Here, we demonstrate the MIRCPSP with the project
network (Fig.1). There are 5 activities (and two dummy
activities).

 Fig. 1. An example of the network

An example of the mode identity structure for this
network is presented in Table 2. The set of activities is
partitioned into four disjoint subsets. The second subset,
for example, consists of activities 2, 3 and 5, for which
two possible modes are specified. All three activities,
however, must be executed in the same mode. If mode 2
is selected, the three activities 2, 3 and 5 are executed in
the second mode.
Table 2
Partitioning the set of all activities

Disjoint subset number Activities in the
subset Modes Selected

mode
1 1 1 1
2 2,3,5 1,2 2
3 4,6 1,2,3,4 4
4 7 1 1

3. The Branch and Bound Algorithm (Precedence
Tree)

The precedence tree based approach was originated by
Patterson et al. (1989) to solve the RCPSP and was further
refined by Sprecher (1994) and Sprecher and Drexl
(1998) to solve the multi-mode case. Hartman and Drexl
(1998) showed that the precedence tree approach by
Sprecher and Drexl (1998) outperforms the other
available branch and bound algorithms with respect to
computation times.

The precedence tree approach is based on the
enumeration of all feasible sequences that correspond
with different early-start schedules and the selection of the
best amongst the feasible sequences.

In this section, we propose a modified structure of the
precedence tree algorithm for the MIRCPSP. The
procedure is based on the observation that any early-start
schedule can be obtained by listing all activities in a
sequence such that no successor of an activity is
sequenced before its predecessor. Every such sequence
corresponds with one early-start schedule by scheduling
the different activities as soon as possible in the order of
the sequence, but without violating the precedence,
resource and mode identity constraints.

 1

2

3

4

5

6

7

Journal of Optimization in Industrial Engineering 10 (2012) 55-63

57

3.1. Branching Strategy

The procedure begins with starting the dummy start
activity 1 with mode 1 at time 0. At each level g of the
branch and bound tree, we determine the set SJg of the
already scheduled activities and the set EJg of the eligible
activities, that is, those activities whose predecessors are
already scheduled. Then we select an eligible activity jg. If
activity jg has at least one same subset activity scheduled
at previous levels, its execution mode is fixed before, so
activity jg has only one allowable mode

gjAM .

Otherwise, we select a mode },...,1{
gg jj AMm  of this

activity. Now we compute the earliest precedence feasible
start time

gjEST and the earliest resource feasible start

time
gjs , so that

gg jj ESTs  . Then we branch to the

next level. If the dummy end activity n is eligible, we
have found a complete schedule, and the finish time of
activity n, FTn , is the project duration. In this case,
backtracking to the previous level occurs. Here we select
the next untested mode. If there is no untested mode left,
we select the next untested eligible activity. Note that if
the selected activity jg, has at least one same subset
activity scheduled at previous levels, it has no untested
mode. If we have tested all eligible activities in all
allowable modes, we track another step back.

Having discussed all the necessary concepts of the
algorithm, we present it with the pseudo-code given in
Table 3.

Table 3
Branching Algorithm
 Step 1: Initialization
 Initialization step sets the level of the precedence tree to 1, g = 1.
 Schedule the first (dummy) activity with the start time of zero, j1=1,

1

1
jm , 0

1
js

 Initialize the set of the already scheduled activities, 1SJ , then go to step 2.
Step 2: Compute the set of eligible activities
 Increase the level of the precedence tree and update the set of already scheduled activities, g =g +1;

}{ 11   ggg jSJSJ

 Compute the set of eligible activities (i.e., activities not currently scheduled whose predecessors are
 already scheduled),  gjgg SJPSJnjEJ  |\},...,1{

 If the last (dummy) activity is eligible gEJn , then store the current solution and go to Step 5.

 Otherwise go to Step 3.
Step 3: Select the next activity to be scheduled
 If there is no untested activity left in gEJ , then go to Step 5.

 Otherwise select an untested activity, gg EJj  , then go to step 4.

Step 4: Select a mode and compute the activity start time
 If there is no activity same subset gj in gSJ then

 If there is no untested mode left in },...,1{
gjM , then go to Step 3.

 Otherwise select an untested mode },...,1{
gg jj Mm  .

 Set the mode
gj

m allowable for other activities in the same subset gj :

  },...,1{,,\},...,1{; UuHjjjnjmAM uggjj g


 Compute the earliest precedence feasible start time, }|max{ jij PiFTEST
g

 .

 Compute the earliest resource feasible start time
gg jj ESTs  , then go to Step 2.

 Otherwise (i.e. there is the activity same subset gj in gSJ)

 If activity gj already scheduled at this level g, then go to Step 3.

 Otherwise set allowable mode jAM for gj : jj AMm
g
 .

 Compute the earliest precedence feasible start time, }|max{ jij PiFTEST
g

 .

 Compute the earliest resource feasible start time
gg jj ESTs  , then go to Step 2.

Step 5: Backtracking
 Decrease the level of the precedence tree, g = g -1.
 If the precedence level is equal to 1, then STOP.
 Otherwise go to Step 4.

Behrouz Afshar Nadjafi et al./ An Exact Algorithm for the Mode...

58

3.2. Bounding Rules

If it can be established that further branching from a
node cannot lead to an optimal solution, then the node can
be pruned away. While most of the rules are known from
the literature, we present a new rule (Rule 5) and adapt
some well-known ones for the MIRCPSP.

3.2.1. Bounding Rule 1 (Data Reduction)

This bounding rule has originally been proposed by
Sprecher et al. (1997). An execution mode mj is called
non-executable if we have kkjm Rr

j
 for any Kk .

Hence, non-executable modes may be excluded from the
project data without losing optimality.

3.2.2. Bounding Rule 2

Due to the structure of the precedence tree, the
algorithm may enumerate one schedule several times. To
avoid duplicate consideration of a schedule, Hartman and
Drexl (1998) proposed a bounding rule to exclude
duplicate enumeration for the multi-mode RCPSP, which
we adapt it for the MIRCPSP. Consider two activities i
and j scheduled on the previous and on the current level of
the branch and bound tree, respectively. If we have

ji ss  and ji  , then the current partial schedule does
not need to be completed.

3.2.3. Bounding Rule 3

This bounding rule was proposed by Patterson et al.
(1989) to avoid duplicate consideration of a schedule in
the RCPSP. Here, we adapt it for the MIRCPSP. Consider
two activities i and j scheduled on the previous and on the
current level of the branch and bound tree, respectively. If
we have ij ss  , then the current partial schedule does
not need to be completed.

3.2.4. Bounding Rule 4

This bounding rule is based on critical path length.
Patterson et al. (1989) employed the primal version of this
rule in their algorithm to solve the RCPSP. We propose an
alternative version for the MIRCPSP.

Consider an upper bound of the makespan of the
project which is, for example, given by the sum of the
maximal duration of the activities. If the algorithm finds
the first or an improved schedule with a makespan T, the
upper bound will be replaced by T. we add the remaining
critical path length of the currently scheduled activity to
its start time and if this value exceeds or equals the

currently best solution, we can dominate the current
node in the precedence tree. Note that computing the
remaining critical path length is different. In computing
the remaining critical path length of the currently
scheduled activity j, if activity j has at least one same
subset activity at the current partial schedule, its fixed
mode duration needs to be considered. Otherwise, its
minimal duration needs to be considered.

3.2.5. Bounding Rule 5

We drive another critical path-based bounding rule for
the MIRCPSP. If an eligible activity cannot be feasibly
scheduled in any mode in the current partial schedule
without exceeding the currently best solution, then no
other eligible activity needs to be examined on this level.

We add the remaining critical path length of an
eligible activity to its start time in all modes and if these
values, lower bounds of the project duration, exceed or
equal the currently best solution, then no other eligible
activity needs to be examined at the current level. The
remaining critical path length is computed as the
preceding bounding rule. Moreover, to strengthen this
bounding rule, consider activity i scheduled on the
previous level of the branch and bound tree, and eligible
activity j on the current level of the branch and bound
tree, respectively. If we have ji ss  and ji  , then in
computing the lower bound, the start time of activity j
should be considered at the start time of activity i plus
one, inspired by bounding rule 2. Another idea is also
borrowed from bounding rule 3 in which if we have

ji ss  , then in computing the lower bound, the start time
of activity j should be considered at the start time of
activity i.

3.2.6. Bounding Rule 6

This bounding rule was proposed by Hartman and
Drexl (1998). The finish time and the start time of a
scheduled activity j are denoted with fj and sj ,
respectively. We consider two activities i and j with ji 
that ji sf  . Now, an order swap is defined as the
interchange of these two activities by assigning new start
and finish times ij ss :' and ji ff :' , respectively.
Thus, the precedence and resource constraints may not be
violated, and the modes and starts times of the other
activities may not be changed. A schedule in which no
order swap can be performed is called order monotonous.
Clearly, it is sufficient to enumerate only order
monotonous schedules. Assume that no currently
unscheduled activity will be started before the finish time
of a scheduled activity j when the current partial schedule
is completed. If an order swap on activity j together with
any of those activities that finish at its start time can be
performed, then the current partial schedule does not need
to be completed.

Journal of Optimization in Industrial Engineering 10 (2012) 55-63

59

3.2.7. Bounding Rule 7

This bounding rule was developed by
Demeulemeester and Herroelen (1992) for the RCPSP and
generalized by Sprecher et al. (1997) to the multi-mode
case. Here we use it for the MIRCPSP.

Consider an eligible activity j no mode of which is
simultaneously performable with any currently
unscheduled activity in any mode. If the earliest feasible
start time of each other eligible activity in any mode is
equal to the maximal finish time of the currently
scheduled activities, then j is the only eligible activity that
needs to be selected for being scheduled on the current
level of the branch and bound tree.

Note that, if activity j has at least one same subset
activity at the current partial schedule, its only execution
mode is fixed before. Also, if activity j has no same subset
activity at the current partial schedule, then activity j and

its same subset activities should be executed in the
identical mode. This notion is valid for any unscheduled
activity too.

4. Computational Results

In this section we present the results of the
computational studies concerning the proposed algorithm
in the previous section.

4.1. Experimental design

In order to validate the proposed branch and bound
method for the MIRCPSP, a problem set consisting of 90
problem instances was generated by the project generator
ProGen/πx developed by Drexl et al. (2000), using the
parameters given in Table 4.

Table 4
The parameters setting for the problem set

Control Parameter Value
Number of activities (non-dummy) 20, 25, 30
Number of execution modes 3
Job subset strength (JSS) 0.5, 0.6, 0.7
Activity durations [1,10]
Number of initial activities 3
Number of terminal activities 3
Maximal number of predecessors 3
Maximal number of successors 3
Coefficient of network complexity (CNC) 1.5
Resource factor (RF) 1
Resource strength (RS) 0.5
Number of resource types 2
Activity resource (per period) demand [1,10]

The indication [x,y] means that the value is randomly
generated in the interval [x,y]. Resource availability is
assumed to be constant over time. For each combination
of parameters (the number of activities and job subset
strength), 10 problem instances were generated. The
resource factor RF reflects the average portion of the
resource required per activity. The resource strength RS
reflects the scarceness of the resource. The job subset
strength JSS introduced by Drexl et al. (2000) is an index
which determines the number of disjoint subsets of
activities, U, depends on the number of project activities,
n, according to:
U = n (1 - JSS) with JSS [0, 1] (8)

If JSS = 0, then n activity subsets with one activity per
subset are created. If JSS = 1, then U = 3 activity subsets

are created with u1 = {1} (dummy start activity), u2 =
{2,…,n-1}, u3 = {n} (dummy finish activity).

4.2. Effects of the bounding rules

We have coded the branch and bound procedure in
Borland C++ version 5.02. The problem set has been
solved under Windows XP professional on a personal
computer with an Intel Core2Dou, 2.5GHz processor and
3GB of memory.

Table 5 shows the average and the standard deviation
of the CPU-time, in seconds, for a different number of
activities and JSS using all the bounding rules. (The limit
on the computational time value was set to 1000 seconds).

Table 5
 The average and the standard deviation of the CPU-time, in seconds, using all the bounding rules

JSS 0.5 0.6 0.7
Activities Average Standard deviation Average Standard deviation Average Standard deviation

20 0.37 0.42 0.26 0.20 0.09 0.08

25 4.54 9.06 2.31 2.58 0.80 0.74

30 87.01 45.66 19.02 16.41 4.99 7.17

Behrouz Afshar Nadjafi et al./ An Exact Algorithm for the Mode...

60

As Table 5 indicates, all 90 problems can be solved to
optimality within the allowed time limit. It is apparent
that the average computation time as well as the standard
deviation of the computation time increase as the number
of activities increases. Table 5 also reveals that an
increase in the job subset strength JSS leads to a decrease
in the problem complexity, measured by the average as
well as the standard deviation of the CPU-time.

In order to estimate the effects of bounding rules on
the performance of the procedure for the MIRCPSP, we
add a counter to the algorithm to enumerate the fathomed
nodes with each bounding rule. Table 6 displays the
average percentage of the fathomed nodes with each
bounding rule for a different number of activities, subsets
and JSS when all the bounding rules are included in the
algorithm. It’s clear that the new bounding rule 5 is the
most efficient one with the percentage of 42.38% and the

bounding rules 6 and 7 are the least efficient ones with the
percentages of 0.73% and 0.12%, respectively.

Because of the lower efficiency of bounding rule 7,
we run again the proposed algorithm without this
bounding rule. Table 7 represents the average and the
standard deviation of the CPU-time, in seconds, for a
different number of activities and JSS without using
bounding rule 7. Table 7 reveals that the elimination of
bounding rule 7 leads to a decrease in the problem
complexity, measured by the average as well as the
standard deviation of the CPU-time.

The percentages of the fathomed nodes with the
bounding rules in Table 8 demonstrate that with the
elimination of bounding rule 7, contribution of the new
bounding rule 5 is increased more than the others.

Table 6
The average percentage of the fathomed nodes when all the bounding rules are included in the algorithm

Activities JSS # Subsets Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7
20 0.5 11 9.36% 26.27% 20.65% 42.64% 1.00% 0.08%
20 0.6 9 11.69% 38.86% 16.34% 32.10% 0.71% 0.30%
20 0.7 7 10.71% 30.99% 7.14% 49.21% 1.81% 0.14%
25 0.5 14 7.74% 33.68% 14.58% 43.68% 0.27% 0.04%
25 0.6 11 9.27% 33.25% 13.09% 43.10% 1.15% 0.14%
25 0.7 9 9.08% 39.31% 4.88% 45.83% 0.56% 0.34%
30 0.5 16 8.38% 26.67% 21.76% 42.76% 0.43% 0.00%
30 0.6 13 10.46% 29.04% 13.73% 46.34% 0.42% 0.01%
30 0.7 10 9.55% 46.10% 8.32% 35.78% 0.22% 0.02%

Total Average 9.58% 33.80% 13.39% 42.38% 0.73% 0.12%

Table 7
The average and the standard deviation of the CPU-time, in seconds, without using bounding rule 7

JSS 0.5 0.6 0.7

Activities Average Standard
deviation Average Standard

deviation Average Standard
deviation

20 0.35 0.40 0.25 0.20 0.08 0.07
25 4.43 8.84 2.24 2.51 0.75 0.70
30 84.48 43.55 18.54 16.01 4.84 7.00

Table 8
The average percentage of the fathomed nodes without using bounding rule 7

Activities JSS # Subsets Rule 2 Rule 3 Rule 4 Rule 5 Rule 6
20 0.5 11 9.36% 26.29% 20.67% 42.68% 1.00%
20 0.6 9 11.72% 38.98% 16.39% 32.20% 0.71%
20 0.7 7 10.72% 31.04% 7.15% 49.28% 1.81%
25 0.5 14 7.74% 33.69% 14.59% 43.70% 0.27%
25 0.6 11 9.28% 33.30% 13.10% 43.16% 1.15%
25 0.7 9 9.11% 39.45% 4.90% 45.99% 0.56%
30 0.5 16 8.38% 26.67% 21.76% 42.76% 0.43%
30 0.6 13 10.46% 29.04% 13.73% 46.34% 0.42%
30 0.7 10 9.55% 46.11% 8.32% 35.79% 0.22%

Total Average 9.59% 33.84% 13.40% 42.43% 0.73%

A Paired t-test is used to test the mean difference

between 90 paired observations in the algorithm outputs
with and without bounding rule 7. The analysis of
variance results in Table 9 show that at 95% confidence
level, the null hypothesis is rejected. It means that there is
a significant difference between the mean solutions of the
results. So, the elimination of bounding rule 7 is justified.

Table 9
The analysis of variance results with and without bounding rule 7
 N Mean StDev SE Mean
All Rules 90 13.26 31.17 3.29
Without 7 90 12.89 30.15 3.18
Difference 90 0.380 1.072 0.113

95% lower bound for mean difference: 0.192
T-Test of mean difference = 0 (vs > 0):
T-Value = 3.36 P-Value = 0.001

Journal of Optimization in Industrial Engineering 10 (2012) 55-63

61

We also test effects of the elimination of bounding
rule 6 (Order Swap Rule) on the performance of the
procedure for the MIRCPSP. Bounding rule 6 is the
second least efficient according to Table 6. We run again
the proposed algorithm without bounding rules 6 and 7. In
Table 10, the impact of the elimination of bounding rule 6
on the complexity of the problem instances is examined.
Clearly, the effect of the elimination of bounding rule 6 is
not monotonously increasing or decreasing. That means
there is a clear difference between the complexity of the
problems with small, medium and large JSS values and
the number of activities. With a small JSS value
(JSS=0.5) the elimination of bounding rule 6 leads to an
increase in the problem complexity measured by the
average as well as the standard deviation of the CPU-
time, in comparison with Table 7 where only bounding
rule 7 is removed. With the medium and large JSS values
(JSS=0.6 and 0.7) this conclusion is true only for the
problems with small and medium number of activities (#

of activities = 20 and 25). For the problems with large
number of activities (# of activities = 30) with medium
and large JSS values (JSS=0.6 and 0.7), the elimination of
bounding rule 6 leads to a decrease in the problem
complexity (indicated in italics and boldface in Table 10).

The percentages of the fathomed nodes with the
bounding rules in Table 11 demonstrate that with the
elimination of bounding rule 6, contribution of the new
bounding rule 5 is increased more than the others. Of
course, contribution of the bounding rule 3 is decreased.

A Paired t-test is used to test the mean difference
between 90 paired observations in the algorithm outputs
with and without bounding rule 6. The analysis of
variance results in Table 12 show that at 95% confidence
level, the null hypothesis is accepted. It means that there
is no significant difference between the mean solutions of
the results. So, bounding rule 6 should be kept in the
algorithm.

Table 10
The average and the standard deviation of the CPU-time, in seconds, without using bounding rules 6 and 7

JSS 0.5 0.6 0.7

Activities Average Standard deviation Average Standard
deviation Average Standard

deviation
20 0.37 0.55 0.29 0.30 0.10 0.08
25 4.48 10.04 2.60 3.00 0.82 1.33
30 100.45 65.44 18.48 15.80 3.63 4.06

Table 11
The average percentage of fathomed nodes without using bounding rules 6 and 7

Activities JSS # Subsets Rule 2 Rule 3 Rule 4 Rule 5

20 0.5 11 9.15% 22.31% 22.05% 46.49%
20 0.6 9 12.96% 32.14% 18.85% 36.06%
20 0.7 7 10.70% 24.72% 6.41% 58.17%
25 0.5 14 7.93% 32.11% 15.00% 44.96%
25 0.6 11 9.06% 27.72% 12.86% 50.36%
25 0.7 9 8.71% 27.27% 5.85% 58.16%
30 0.5 16 8.52% 20.94% 22.74% 47.80%
30 0.6 13 10.60% 25.22% 14.00% 50.18%
30 0.7 10 10.41% 36.61% 10.05% 42.93%

Total Average 9.78% 27.67% 14.20% 48.35%

Table 12
The analysis of variance results with and without bounding rule 6
 N Mean StDev SE Mean
Without 7 90 12.89 30.15 3.18
Without 6,7 90 14.58 37.85 3.99
Difference 90 -1.70 14.58 1.54
95% upper bound for mean difference: 0.86
T-Test of mean difference = 0 (vs < 0):
T-Value = -1.10 P-Value = 0.136

5. Summary and Conclusions

This paper presents an exact branch and bound
procedure for the mode identity and resource constrained
project scheduling problem, in which a set of activities is
partitioned into disjoint subsets while all activities

forming one subset have to be processed in the same
mode. The objective is to schedule the activities in order
to minimize the project duration. Depth first branching is
based on the precedence tree approach. Seven rules
including six bounding rules adapted from the literature
and a new rule are used for node fathoming. Finally, the
new branch and bound procedure is used for solving some
test problems and the computational results demonstrate
that the proposed branch and bound is in fact capable of
solving problems in an acceptable time. The statistical
analysis also revealed that the new proposed bounding
rule is more efficient in comparison with other rules
available in the literature.

Behrouz Afshar Nadjafi et al./ An Exact Algorithm for the Mode...

62

6. References

[1] Błazewicz, J., Lenstra, J. K. and Rinnooy Kan, A. H. G.,
(1983). Scheduling subject to resource constraints,
Discrete Applied Mathematics 5, 11–24.

[2] Kolisch, R., (1995). Project Scheduling under Resource
Constraints Efficient Heuristics for Several Problem
Classes, Physica, Heidelberg.

[3] Talbot, F. B., (1982). Resource-constrained project
scheduling with time-resource trade-offs: the non-
preemptive case. Management Science 28 (10), 1197–
1210.

[4] Speranza, M. G. and Vercellis, C., (1993). Hierarchical
models for multi-project planning and scheduling.
European Journal of Operational Research 64 (2), 312–
325.

[5] Zhu, G. , Bard, J. F. and Yu, G., (2006). A branch-and-cut
procedure for the multi-mode resource-constrained project
scheduling problem. INFORMS Journal on Computing 18
(3), 377–390.

[6] De Reyck, B. and Herroelen, W. S., (1998). A branch-and-
bound procedure for the resource-constrained project
scheduling problem with generalized precedence relations.
European Journal of Operational Research 111 (1), 152–
174.

[7] Dornorf, U., (2002). Project Scheduling with Time
Windows: From Theory to Applications. Physica,
Heidelberg

[8] Heilmann, R., (2003). A branch-and-bound procedure for
the multi-mode resource constrained project scheduling
problem with minimum and maximum time lags.
European Journal of Operational Research 144 (2), 348–
365.

[9] De Reyck, B. and Herroelen, W. S., (1999). The multi-
mode resource-constrained project scheduling problem
with generalized precedence relations. European Journal
of Operational Research 119 (2), 538–556.

[10] Heilmann, R., (2001). Resource-constrained project
scheduling: a heuristic for the multi-mode case. OR
Spectrum 23 (3), 335–357.

[11] Calhoun, K. M., Deckro, R. F., Moore, J. T., Chrissis, J.
W. and Van Hove, J. C., (2002). Planning and re-planning
in project and production scheduling. Omega 30 (3), 155–
170.

[12] Van Hove, J. C. and Deckro, R. F., (1998). Multi-modal
project scheduling with generalized precedence
constraints. In: Babarasog˘lu, G., Karabati, S., Ozdamar,
L. , Ulusoy, G. (Eds.), Proceedings of the Sixth
International Workshop on Project Management and
Scheduling, Istanbul, pp. 137–140

[13] Barrios, A., Ballestin, F. and Valls, V., (2009). A double
genetic algorithm for the MRCPSP/ max. Computers and
Operations Research, doi: 10.1016/j.cor.2009.09.019.

[14] Salewski, F., Schirmer, A. and Drexl, A., (1997). Project
scheduling under resource and mode identity constraints.
European Journal of Operational Research, 102, 88–110.

[15] Drexl, A., Juretzka, J., Salewski, F. and Schirmer, A.,
(1998). New Modeling Concepts and Their Impact on
Resource-Constrained Project Scheduling. In: Weglarz J,
Editor. Project Scheduling- Recent Models, Algorithms
and Applications, Boston: Kluwer Academic Publishers,
413–32.

[16] Coelho, J. and Vanhoucke, M., (2011). multi-mode
resource-constrained project scheduling using RCPSP and

SAT solvers, European Journal of Operational Research,
213, 73-82.

[17] Kyriakidis, T. S., Kopanos, G. M. and Georgiadis, M. C.,
(2012). MILP formulations for single- and multi-mode
resource-constrained project scheduling problems
Computers & Chemical Engineering, Volume 36, 369-
385.

[18] Demeulemeester, E. L, (2002). Herroelen W. Project
scheduling: a research handbook. Boston: Kluwer
Academic Publishers.

[19] Patterson, J. H., Slowinski, R., Talbot, F. B. and Weglarz,
J., (1989). An algorithm for a general class of precedence
and resource constrained scheduling problems. In:
Slowinski R, Weglarz J, Editors. Advances in Project
Scheduling, Amsterdam: Elsevier Science Publishers, 3–
28.

[20] Sprecher, A., (1994). Resource-Constrained Project
Scheduling: Exact Methods for the Multi-Mode Case.
Berlin: Springer.

[21] Sprecher, A. and Drexl, A., (1998). Solving multi-mode
resource-constrained project scheduling by a simple,
general and powerful sequencing algorithm. European
Journal of Operational Research, 107, 431–50.

[22] Hartmann, S. and Drexl, A., (1998). Project scheduling
with multiple modes: a comparison of exact algorithms.
Networks, 32, 283–97.

[23] Sprecher, A., Hartmann, A. and Drexl, A., (1997). An
exact algorithm for project scheduling with multiple
modes. OR Spectrum, 19, 195–203.

[24] Demeulemeester, E. L. and Herroelen, W., (1992). A
branch-and-bound procedure for the multiple resource-
constrained project scheduling problem. Management
Science, 38, 1803–18.

[25] Drexl, A., Nissen, R., Patterson, J. H. and Salewski, F.,
(2000). ProGen/πx - An instance generator for resource
constrained project scheduling problems with partially
renewable resources and further extensions. European
Journal of Operational Research, 125, 59–72.

Journal of Optimization in Industrial Engineering 10 (2012) 55-63

63

