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Abstract 

 In this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (MRCPSP) with 
mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be 
processed in the same mode. We present a depth-first branch and bound algorithm for the resource constrained project scheduling problem 
with mode identity. The proposed algorithm is extended with some bounding rules to reduce the size of branch and bound tree. Finally, 
some test problems are solved and their computational results are reported. 
Key Words: Project Scheduling, Branch and Bound, Mode-Identity, Multi-Mode, Resource Constrained.

1. Introduction 

Project scheduling with constrained resources is a central 
field within operations research and management sciences. A 
project consists of activities, subject to precedence relations 
and constrained resources, which have a predetermined 
objective. In the classical resource-constrained project 
scheduling problems the project duration (or make span) is to 
be minimized. The multi-mode problem (MRCPSP) is a 
generalized version of the standard problem (RCPSP), where 
each activity can be executed in one of several modes 
representing a relation between resource requirements of the 
activity and its duration. The schedule has to be precedence 
and resource feasible and no activity should be interrupted. A 
project can be represented by an activity-on-node (AoN) or 
an activity-on-arc (AOA) network. In the first representation 
nodes correspond to activities and arcs to precedence 
constraints whereas in the second one, nodes correspond to 
time events and arcs to activities. The resources can be 
renewable, non-renewable, doubly constrained, and/or 
partially renewable, where the renewable resources are 
limited period-by-period, the non-renewable resources are 
limited for the entire project, the doubly constrained ones are 
limited for both each period and the entire project, and the 
availability of the partially renewable resources is defined for 
a specific time interval (a subset of periods). However, under 
discrete resources, the doubly constrained resources do not 
need to be taken into account explicitly since they can be 
incorporated by properly enlarging the sets of the first two 
types of resources. The objective is to find an assignment of 
modes to activities as well as precedence- and resource- 

 
 
 
 

Feasible starting times of all activities such that the make 
span of the project is minimized. The problem is strongly 
NP-hard being a generalization of the RCPSP. The RCPSP is 
strongly NP-hard as a generalization of the well-known job 
shop problem (Błazewicz, 1983). Moreover, for more than 
one non-renewable resource the problem of finding a feasible 
solution of the MRCPSP is already NP-complete (Kolisch, 
1995). 

The MRCPSP has been widely studied in the recent 
years. Several exact, meta-heuristics and heuristic 
approaches as well as some extensions have been developed. 
Some exact approaches are proposed by Talbot (1982), 
Speranza and Vercellis (1993), and Zhu et al. (2006). Almost 
all the approaches, except the one proposed by Zhu et al. 
(2006), are based on the B&B method and the idea to 
enumerate partial schedules.  

An extension of the MRCPSP to its version with 
generalized precedence relations, denoted as the MRCPSP-
GPR, is studied in several publications. Exact approaches 
based on the B&B method are proposed in (De Reyck and 
Herroelen, 1998; Dornorf, 2002; Heilmann, 2003). Some 
heuristic algorithms are developed by De Reyck and 
Herroelen (1999) who used a hybrid of tabu search and a 
truncated version of their B&B, by Heilmann (2001) who 
proposed a multi-pass priority rule approach with back 
planning which is based on an integration approach and 
embedded in random sampling, and by Calhoun et al. (2002) 
who implemented the tabu search. Moreover, Van Hove and 
Deckro (1998) proposed a B&B approach for the MRCPSP 
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with minimal time lags only. Recently, Barrios et al. (2009) 
proposed for the MRCPSPGRP a so-called double genetic 
algorithm which outperforms other approaches in medium 
and large instances. 

An extended version of the MRCPSP with the so-called 
mode identity constraints is considered by Salewski et al. 
(1997). The resulting problem is called the mode identity 
resource-constrained project scheduling problem 
(MIRCPSP), and is motivated by real-world situations where 
several activities should be performed in the same way, i.e. 
by allocating them the same resources. Practical examples of 
such a problem occur in audit staff scheduling, timetabling, 
course scheduling, etc. Formally, in this problem the set of 
all project activities is partitioned into several disjoint 
subsets, and all activities belonging to the same subset have 
to be performed by the same resources. The time and cost of 
executing activities from such a subset depend on the 
resources assigned. Moreover, for each activity a deadline, a 
ready time, and a set of mode-dependent finish to start time 
lags with direct predecessors are defined.  A mathematical 
model of the problem is formulated, and the NP-hardness in 
the strong sense is proved. A two-phase heuristic is used to 
find a good feasible schedule. In phase one, for each subset 
of activities a mode is selected randomly. In phase two, a 
solution is built by scheduling randomly chosen activities 
from the eligible set. 

The standard multi-mode resource constrained project 
scheduling problem involves the selection of an execution 
mode for each activity (mode assignment) and the 
determination of the activity start or finish times such that the 
precedence and resource constraints are met and the project 
duration is minimized. In the multi-mode case, all mode-
activity assignments are mutually independent; i.e. assigning 
a mode to one activity i of a project consisting of a set of n 
nonpreemptable activities does not necessarily force any 
other activities to be processed in a specific mode. In 
practice, however, there may be situations in which certain 
activities belong together and must be executed in the same 
mode (Drexl et al., (1998)).  

In the multi-mode case, some solution procedures have 
been developed (Coelho and Vanhoucke, 2011 and 
Kyriakidis et al., 2012). 

Salewski et al. (1997) partitioned the set of all 
activities into disjoint subsets where all the activities 
forming one subset have to be performed by the same 
resources. The time and cost incurred by processing such 
a subset depend on the resources assigned to it. Salewski 
et al. (1997) refered to the resulting problem as the mode-
identity problem, in which objective is to minimize the 
cost of processing. They prove that the mode identity 
problem is strongly NP-hard. This model is suitable for 
timetabling, course scheduling, audit staff scheduling and 
other assignments-type scheduling problems. 

The literature on solution methods for the mode 
identity problem is scant. Salewski et al. (1997) developed 
a parallel regret-based biased random sampling approach, 
RAMSES, which consists of two stages. In the first stage, 
priority values are used to assign modes to subsets of 

activities. In the second stage, a schedule is built using a 
priority-based parallel scheduling scheme. This paper 
addresses the resource constrained project scheduling 
problem with mode identity, in which we consider a 
project consisting of activities to be scheduled subject to 
finish-start precedence relations with zero time lags and 
renewable resource constraints. The objective is to 
minimize the project duration. 

The paper is organized as follows: In the next section, 
the problem description is presented and the terminology 
used is clarified. In Section 3, a branch and bound 
procedure is described. Following that, the computational 
results are reported in Section 4. Finally, Section 5 
concludes the paper. 

2. Problem Description 

The mode identity and resource constrained project 
scheduling problem (MIRCPSP) involves the scheduling 
of project activities in order to minimize the project 
makespan. In this problem setting, the set of project 
activities is partitioned into U disjoint subsets while all 
activities forming one subset have to be processed in the 
same mode. The project is represented by an AON 
network where the set of nodes, N, represents activities 
and the set of arcs, A, represents finish-start precedence 
constraints with a time-lag of zero. The non-preemptable 
activities are numbered from a dummy start activity 1 to 
the dummy end activity n, and are topologically ordered. 
According to the classification scheme of 
Demeulemeester and Herroelen (2002), problem can be 
classified as m,1/cpm,disc,id/reg,Cmax. We have the 
notations given in Table 1 for the MIRCPSP. 
Table 1 
Parameters of the MIRCPSP 

Definition Problem 
parameter 

Number of activities indexed by j n 
Number of renewable resources indexed by k K 
Time required to perform activity j in mode m djm 
Specific nonempty subset u of activities Hu 
Number of disjoint subsets of activities, 
indexed by u U 

Number of time periods, indexed by t T 
Per-period usage of renewable resource k 
required to execute activity j in mode m rjmk 

Per-period availability of renewable resource k Rk 
Number of modes of subset u, indexed by m Mu 
Earliest finish time of activity j EFTj 
Latest finish time of activity j LFTj 
The job with the smallest index of subset Hu fu 
The set of immediate predecessors of activity j Pj 

Defining variables xjmt is as follows: 






(1)           Otherwise   0 ;  periodin  completed     

and  modein  performed is activity  If    1
t

mj
x jmt  
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This allows formulating the mode identity and 
resource constrained project scheduling problem 
(MIRCPSP) under the minimum project make span 
objective as follows: (derived from Salewski et al. 1997’s 
formulation). 
 

1min  Z              
n
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The objective in equation 2 minimizes the project 
duration. It is assumed that the dummy start node and 
dummy end node can only be processed in a single mode 
with duration equal to zero. The constraints in equation 3 
assure that each activity is assigned exactly one mode and 
exactly one finish time. The constraint set in equation 4 
maintains the mode identity constraints, in which all 
activities forming one subset have to be performed in the 
same mode. Equation 5 denotes the precedence relations-
constraints. Equation 6 ensures that the per-period 
availability of the renewable resources is not violated. 
Finally, equation 7 imposes binary values on the decision 
variables. 

Here, we demonstrate the MIRCPSP with the project 
network (Fig.1). There are 5 activities (and two dummy 
activities).  

 

      Fig. 1. An example of the network 

An example of the mode identity structure for this 
network is presented in Table 2. The set of activities is 
partitioned into four disjoint subsets. The second subset, 
for example, consists of activities 2, 3 and 5, for which 
two possible modes are specified. All three activities, 
however, must be executed in the same mode. If mode 2 
is selected, the three activities 2, 3 and 5 are executed in 
the second mode. 
Table 2 
Partitioning the set of all activities 

Disjoint subset number Activities in the 
subset Modes Selected 

mode 
1 1 1 1 
2 2,3,5 1,2 2 
3 4,6 1,2,3,4 4 
4 7 1 1 

3. The Branch and Bound Algorithm (Precedence 
Tree) 

The precedence tree based approach was originated by 
Patterson et al. (1989) to solve the RCPSP and was further 
refined by Sprecher (1994) and Sprecher and Drexl 
(1998) to solve the multi-mode case. Hartman and Drexl 
(1998) showed that the precedence tree approach by 
Sprecher and Drexl (1998) outperforms the other 
available branch and bound algorithms with respect to 
computation times.  

The precedence tree approach is based on the 
enumeration of all feasible sequences that correspond 
with different early-start schedules and the selection of the 
best amongst the feasible sequences. 

In this section, we propose a modified structure of the 
precedence tree algorithm for the MIRCPSP. The 
procedure is based on the observation that any early-start 
schedule can be obtained by listing all activities in a 
sequence such that no successor of an activity is 
sequenced before its predecessor. Every such sequence 
corresponds with one early-start schedule by scheduling 
the different activities as soon as possible in the order of 
the sequence, but without violating the precedence, 
resource and mode identity constraints. 
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3.1. Branching Strategy 

The procedure begins with starting the dummy start 
activity 1 with mode 1 at time 0. At each level g of the 
branch and bound tree, we determine the set SJg of the 
already scheduled activities and the set EJg of the eligible 
activities, that is, those activities whose predecessors are 
already scheduled. Then we select an eligible activity jg. If 
activity jg has at least one same subset activity scheduled 
at previous levels, its execution mode is fixed before, so 
activity jg has only one allowable mode 

gjAM . 

Otherwise, we select a mode },...,1{
gg jj AMm   of this 

activity. Now we compute the earliest precedence feasible 
start time 

gjEST  and the earliest resource feasible start 

time 
gjs , so that 

gg jj ESTs  . Then we branch to the 

next level. If the dummy end activity n is eligible, we 
have found a complete schedule, and the finish time of 
activity n, FTn , is the project duration. In this case, 
backtracking to the previous level occurs. Here we select 
the next untested mode. If there is no untested mode left, 
we select the next untested eligible activity. Note that if 
the selected activity jg, has at least one same subset 
activity scheduled at previous levels, it has no untested 
mode. If we have tested all eligible activities in all 
allowable modes, we track another step back.  

Having discussed all the necessary concepts of the 
algorithm, we present it with the pseudo-code given in 
Table 3. 
 

Table 3 
Branching Algorithm 
 Step 1: Initialization 
   Initialization step sets the level of the precedence tree to 1, g = 1. 
   Schedule the first (dummy) activity with the start time of zero, j1=1,

 
1

1
jm , 0

1
js   

   Initialize the set of the already scheduled activities, 1SJ , then go to step 2. 
Step 2: Compute the set of eligible activities 
   Increase the level of the precedence tree and update the set of already scheduled activities, g =g +1;

 
}{ 11   ggg jSJSJ   

   Compute the set of eligible activities (i.e., activities not currently scheduled whose predecessors are 
   already scheduled),  gjgg SJPSJnjEJ  |\},...,1{   

   If the last (dummy) activity is eligible gEJn , then store the current solution and go to Step 5. 

   Otherwise go to Step 3. 
Step 3: Select the next activity to be scheduled 
   If there is no untested activity left in gEJ , then go to Step 5. 

   Otherwise select an untested activity, gg EJj  , then go to step 4. 

Step 4: Select a mode and compute the activity start time 
   If there is no activity same subset gj  in gSJ  then 

       If there is no untested mode left in },...,1{
gjM , then go to Step 3. 

       Otherwise select an untested mode },...,1{
gg jj Mm  . 

          Set the mode 
gj

m  allowable for other activities in the same subset gj :  

            },...,1{,,\},...,1{; UuHjjjnjmAM uggjj g
  

          Compute the earliest precedence feasible start time, }|max{ jij PiFTEST
g

 . 

          Compute the earliest resource feasible start time 
gg jj ESTs  , then go to Step 2. 

   Otherwise (i.e. there is the activity same subset gj  in gSJ ) 

       If activity gj  already scheduled at this level g, then go to Step 3. 

       Otherwise set allowable mode jAM  for gj : jj AMm
g
 . 

          Compute the earliest precedence feasible start time, }|max{ jij PiFTEST
g

 . 

          Compute the earliest resource feasible start time 
gg jj ESTs  , then go to Step 2. 

Step 5: Backtracking 
   Decrease the level of the precedence tree, g = g -1. 
   If the precedence level is equal to 1, then STOP. 
   Otherwise go to Step 4. 
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3.2. Bounding Rules 

If it can be established that further branching from a 
node cannot lead to an optimal solution, then the node can 
be pruned away. While most of the rules are known from 
the literature, we present a new rule (Rule 5) and adapt 
some well-known ones for the MIRCPSP. 

3.2.1. Bounding Rule 1 (Data Reduction) 

This bounding rule has originally been proposed by 
Sprecher et al. (1997).  An execution mode mj is called 
non-executable if we have kkjm Rr

j
   for any Kk . 

Hence, non-executable modes may be excluded from the 
project data without losing optimality. 

3.2.2. Bounding Rule 2 

Due to the structure of the precedence tree, the 
algorithm may enumerate one schedule several times. To 
avoid duplicate consideration of a schedule, Hartman and 
Drexl (1998) proposed a bounding rule to exclude 
duplicate enumeration for the multi-mode RCPSP, which 
we adapt it for the MIRCPSP. Consider two activities i 
and j scheduled on the previous and on the current level of 
the branch and bound tree, respectively. If we have 

ji ss    and ji  , then the current partial schedule does 
not need to be completed. 

3.2.3. Bounding Rule 3 

This bounding rule was proposed by Patterson et al. 
(1989) to avoid duplicate consideration of a schedule in 
the RCPSP. Here, we adapt it for the MIRCPSP. Consider 
two activities i and j scheduled on the previous and on the 
current level of the branch and bound tree, respectively. If 
we have ij ss  , then the current partial schedule does 
not need to be completed. 

3.2.4. Bounding Rule 4 

This bounding rule is based on critical path length. 
Patterson et al. (1989) employed the primal version of this 
rule in their algorithm to solve the RCPSP. We propose an 
alternative version for the MIRCPSP. 

Consider an upper bound of the makespan of the 
project which is, for example, given by the sum of the 
maximal duration of the activities. If the algorithm finds 
the first or an improved schedule with a makespan T, the 
upper bound will be replaced by T. we add the remaining 
critical path length of the currently scheduled activity to 
its start time and if this value exceeds or equals the  

 
 
 

currently best solution, we can dominate the current 
node in the precedence tree. Note that computing the 
remaining critical path length is different. In computing 
the remaining critical path length of the currently 
scheduled activity j, if activity j has at least one same 
subset activity at the current partial schedule, its fixed 
mode duration needs to be considered. Otherwise, its 
minimal duration needs to be considered. 

3.2.5. Bounding Rule 5 

We drive another critical path-based bounding rule for 
the MIRCPSP. If an eligible activity cannot be feasibly 
scheduled in any mode in the current partial schedule 
without exceeding the currently best solution, then no 
other eligible activity needs to be examined on this level. 

We add the remaining critical path length of an 
eligible activity to its start time in all modes and if these 
values, lower bounds of the project duration, exceed or 
equal the currently best solution, then no other eligible 
activity needs to be examined at the current level. The 
remaining critical path length is computed as the 
preceding bounding rule. Moreover, to strengthen this 
bounding rule, consider activity i scheduled on the 
previous level of the branch and bound tree, and eligible 
activity j on the current level of the branch and bound 
tree, respectively. If we have ji ss   and ji  , then in 
computing the lower bound, the start time of activity j 
should be considered at the start time of activity i plus 
one, inspired by bounding rule 2. Another idea is also 
borrowed from bounding rule 3 in which if we have 

ji ss  , then in computing the lower bound, the start time 
of activity j should be considered at the start time of 
activity i. 

3.2.6. Bounding Rule 6 

This bounding rule was proposed by Hartman and 
Drexl (1998). The finish time and the start time of a 
scheduled activity j are denoted with fj and sj , 
respectively. We consider two activities i and j with ji   
that ji sf  . Now, an order swap is defined as the 
interchange of these two activities by assigning new start 
and finish times ij ss :'  and ji ff :' , respectively. 
Thus, the precedence and resource constraints may not be 
violated, and the modes and starts times of the other 
activities may not be changed. A schedule in which no 
order swap can be performed is called order monotonous. 
Clearly, it is sufficient to enumerate only order 
monotonous schedules. Assume that no currently 
unscheduled activity will be started before the finish time 
of a scheduled activity j when the current partial schedule 
is completed. If an order swap on activity j together with 
any of those activities that finish at its start time can be 
performed, then the current partial schedule does not need 
to be completed. 
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3.2.7. Bounding Rule 7  

This bounding rule was developed by 
Demeulemeester and Herroelen (1992) for the RCPSP and 
generalized by Sprecher et al. (1997) to the multi-mode 
case. Here we use it for the MIRCPSP. 

Consider an eligible activity j no mode of which is 
simultaneously performable with any currently 
unscheduled activity in any mode. If the earliest feasible 
start time of each other eligible activity in any mode is 
equal to the maximal finish time of the currently 
scheduled activities, then j is the only eligible activity that 
needs to be selected for being scheduled on the current 
level of the branch and bound tree. 

Note that, if activity j has at least one same subset 
activity at the current partial schedule, its only execution 
mode is fixed before. Also, if activity j has no same subset 
activity at the current partial schedule, then activity j and 

its same subset activities should be executed in the 
identical mode. This notion is valid for any unscheduled 
activity too. 

4. Computational Results 

In this section we present the results of the 
computational studies concerning the proposed algorithm 
in the previous section. 

4.1. Experimental design 

In order to validate the proposed branch and bound 
method for the MIRCPSP, a problem set consisting of 90 
problem instances was generated by the project generator 
ProGen/πx developed by Drexl et al. (2000), using the 
parameters given in Table 4. 

 
Table 4  
The parameters setting for the problem set 

Control Parameter Value 
Number of activities (non-dummy) 20, 25, 30 
Number of execution modes 3 
Job subset strength (JSS) 0.5, 0.6, 0.7 
Activity durations [1,10] 
Number of initial activities 3 
Number of terminal activities 3 
Maximal number of predecessors 3 
Maximal number of successors 3 
Coefficient of network complexity (CNC) 1.5 
Resource factor (RF) 1 
Resource strength (RS) 0.5 
Number of resource types 2 
Activity resource (per period) demand [1,10] 

 

The indication [x,y] means that the value is randomly 
generated in the interval [x,y]. Resource availability is 
assumed to be constant over time. For each combination 
of parameters (the number of activities and job subset 
strength), 10 problem instances were generated. The 
resource factor RF reflects the average portion of the 
resource required per activity. The resource strength RS 
reflects the scarceness of the resource. The job subset 
strength JSS introduced by Drexl et al. (2000) is an index 
which determines the number of disjoint subsets of 
activities, U, depends on the number of project activities, 
n, according to: 
U = n (1 - JSS)           with   JSS  [0, 1]                     (8) 

If JSS = 0, then n activity subsets with one activity per 
subset are created. If JSS = 1, then U = 3 activity subsets 

are created with u1 = {1} (dummy start activity), u2 = 
{2,…,n-1}, u3 = {n} (dummy finish activity).  

4.2. Effects of the bounding rules 

We have coded the branch and bound procedure in 
Borland C++ version 5.02. The problem set has been 
solved under Windows XP professional on a personal 
computer with an Intel Core2Dou, 2.5GHz processor and 
3GB of memory.  

Table 5 shows the average and the standard deviation 
of the CPU-time, in seconds, for a different number of 
activities and JSS using all the bounding rules. (The limit 
on the computational time value was set to 1000 seconds).

Table 5 
 The average and the standard deviation of the CPU-time, in seconds, using all the bounding rules 

JSS 0.5 0.6 0.7 
# Activities Average Standard deviation Average Standard deviation Average Standard deviation 

20 0.37 0.42 0.26 0.20 0.09 0.08 

25 4.54 9.06 2.31 2.58 0.80 0.74 

30 87.01 45.66 19.02 16.41 4.99 7.17 
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As Table 5 indicates, all 90 problems can be solved to 
optimality within the allowed time limit. It is apparent 
that the average computation time as well as the standard 
deviation of the computation time increase as the number 
of activities increases. Table 5 also reveals that an 
increase in the job subset strength JSS leads to a decrease 
in the problem complexity, measured by the average as 
well as the standard deviation of the CPU-time. 

In order to estimate the effects of bounding rules on 
the performance of the procedure for the MIRCPSP, we 
add a counter to the algorithm to enumerate the fathomed 
nodes with each bounding rule. Table 6 displays the 
average percentage of the fathomed nodes with each 
bounding rule for a different number of activities, subsets 
and JSS when all the bounding rules are included in the 
algorithm. It’s clear that the new bounding rule 5 is the 
most efficient one with the percentage of 42.38% and the 

bounding rules 6 and 7 are the least efficient ones with the 
percentages of 0.73% and 0.12%, respectively. 

Because of the lower efficiency of bounding rule 7, 
we run again the proposed algorithm without this 
bounding rule. Table 7 represents the average and the 
standard deviation of the CPU-time, in seconds, for a 
different number of activities and JSS without using 
bounding rule 7. Table 7 reveals that the elimination of 
bounding rule 7 leads to a decrease in the problem 
complexity, measured by the average as well as the 
standard deviation of the CPU-time. 

The percentages of the fathomed nodes with the 
bounding rules in Table 8 demonstrate that with the 
elimination of bounding rule 7, contribution of the new 
bounding rule 5 is increased more than the others. 

 

 
Table 6  
The average percentage of the fathomed nodes when all the bounding rules are included in the algorithm 

# Activities JSS # Subsets Rule 2  Rule 3  Rule 4  Rule 5  Rule 6  Rule 7  
20 0.5 11 9.36% 26.27% 20.65% 42.64% 1.00% 0.08% 
20 0.6 9 11.69% 38.86% 16.34% 32.10% 0.71% 0.30% 
20 0.7 7 10.71% 30.99% 7.14% 49.21% 1.81% 0.14% 
25 0.5 14 7.74% 33.68% 14.58% 43.68% 0.27% 0.04% 
25 0.6 11 9.27% 33.25% 13.09% 43.10% 1.15% 0.14% 
25 0.7 9 9.08% 39.31% 4.88% 45.83% 0.56% 0.34% 
30 0.5 16 8.38% 26.67% 21.76% 42.76% 0.43% 0.00% 
30 0.6 13 10.46% 29.04% 13.73% 46.34% 0.42% 0.01% 
30 0.7 10 9.55% 46.10% 8.32% 35.78% 0.22% 0.02% 

Total Average 9.58% 33.80% 13.39% 42.38% 0.73% 0.12% 
 

Table 7 
The average and the standard deviation of the CPU-time, in seconds, without using bounding rule 7 

JSS 0.5 0.6 0.7 

# Activities Average Standard  
deviation Average Standard  

deviation Average Standard  
deviation 

20 0.35 0.40 0.25 0.20 0.08 0.07 
25 4.43 8.84 2.24 2.51 0.75 0.70 
30 84.48 43.55 18.54 16.01 4.84 7.00 

 
Table 8 
The average percentage of  the  fathomed nodes without using bounding rule 7 

# Activities JSS # Subsets Rule 2  Rule 3  Rule 4  Rule 5  Rule 6  
20 0.5 11 9.36% 26.29% 20.67% 42.68% 1.00% 
20 0.6 9 11.72% 38.98% 16.39% 32.20% 0.71% 
20 0.7 7 10.72% 31.04% 7.15% 49.28% 1.81% 
25 0.5 14 7.74% 33.69% 14.59% 43.70% 0.27% 
25 0.6 11 9.28% 33.30% 13.10% 43.16% 1.15% 
25 0.7 9 9.11% 39.45% 4.90% 45.99% 0.56% 
30 0.5 16 8.38% 26.67% 21.76% 42.76% 0.43% 
30 0.6 13 10.46% 29.04% 13.73% 46.34% 0.42% 
30 0.7 10 9.55% 46.11% 8.32% 35.79% 0.22% 

Total Average 9.59% 33.84% 13.40% 42.43% 0.73% 
 
A Paired t-test is used to test the mean difference 

between 90 paired observations in the algorithm outputs 
with and without bounding rule 7. The analysis of 
variance results in Table 9 show that at 95% confidence 
level, the null hypothesis is rejected. It means that there is 
a significant difference between the mean solutions of the 
results. So, the elimination of bounding rule 7 is justified. 

 
 

 
Table 9 
The analysis of variance results with and without bounding rule 7 
                          N       Mean     StDev    SE Mean 
All Rules          90      13.26      31.17       3.29 
Without 7         90      12.89      30.15       3.18 
Difference        90      0.380      1.072       0.113 
 
95% lower bound for mean difference: 0.192 
T-Test of mean difference = 0 (vs > 0):  
T-Value = 3.36  P-Value = 0.001 
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We also test effects of the elimination of bounding 
rule 6 (Order Swap Rule) on the performance of the 
procedure for the MIRCPSP. Bounding rule 6 is the 
second least efficient according to Table 6. We run again 
the proposed algorithm without bounding rules 6 and 7. In 
Table 10, the impact of the elimination of bounding rule 6 
on the complexity of the problem instances is examined. 
Clearly, the effect of the elimination of bounding rule 6 is 
not monotonously increasing or decreasing. That means 
there is a clear difference between the complexity of the 
problems with small, medium and large JSS values and 
the number of activities. With a small JSS value 
(JSS=0.5) the elimination of bounding rule 6 leads to an 
increase in the problem complexity measured by the 
average as well as the standard deviation of the CPU-
time, in comparison with Table 7 where only bounding 
rule 7 is removed. With the medium and large JSS values 
(JSS=0.6 and 0.7) this conclusion is true only for the 
problems with small and medium number of activities (# 

of activities = 20 and 25). For the problems with large 
number of activities (# of activities = 30) with medium 
and large JSS values (JSS=0.6 and 0.7), the elimination of 
bounding rule 6 leads to a decrease in the problem 
complexity (indicated in italics and boldface in Table 10). 

The percentages of the fathomed nodes with the 
bounding rules in Table 11 demonstrate that with the 
elimination of bounding rule 6, contribution of the new 
bounding rule 5 is increased more than the others. Of 
course, contribution of the bounding rule 3 is decreased. 

A Paired t-test is used to test the mean difference 
between 90 paired observations in the algorithm outputs 
with and without bounding rule 6. The analysis of 
variance results in Table 12 show that at 95% confidence 
level, the null hypothesis is accepted. It means that there 
is no significant difference between the mean solutions of 
the results. So, bounding rule 6 should be kept in the 
algorithm.  

 
 

 
Table 10 
The average and the standard deviation of the CPU-time, in seconds, without using bounding rules 6 and 7 

JSS 0.5 0.6 0.7 

# Activities Average Standard deviation Average Standard 
deviation Average Standard 

deviation 
20 0.37 0.55 0.29 0.30 0.10 0.08 
25 4.48 10.04 2.60 3.00 0.82 1.33 
30 100.45 65.44 18.48 15.80 3.63 4.06 

 

Table 11 
The average percentage of fathomed nodes without using bounding rules 6 and 7 

 
# Activities JSS # Subsets Rule 2  Rule 3  Rule 4  Rule 5  

20 0.5 11 9.15% 22.31% 22.05% 46.49% 
20 0.6 9 12.96% 32.14% 18.85% 36.06% 
20 0.7 7 10.70% 24.72% 6.41% 58.17% 
25 0.5 14 7.93% 32.11% 15.00% 44.96% 
25 0.6 11 9.06% 27.72% 12.86% 50.36% 
25 0.7 9 8.71% 27.27% 5.85% 58.16% 
30 0.5 16 8.52% 20.94% 22.74% 47.80% 
30 0.6 13 10.60% 25.22% 14.00% 50.18% 
30 0.7 10 10.41% 36.61% 10.05% 42.93% 

Total Average 9.78% 27.67% 14.20% 48.35% 
 

Table 12 
The analysis of variance results with and without bounding rule 6 
                         N       Mean      StDev    SE Mean 
Without 7         90      12.89      30.15       3.18 
Without 6,7      90      14.58      37.85       3.99 
Difference        90      -1.70       14.58       1.54 
95% upper bound for mean difference: 0.86 
T-Test of mean difference = 0 (vs < 0):  
T-Value = -1.10  P-Value = 0.136 

5. Summary and Conclusions 

This paper presents an exact branch and bound 
procedure for the mode identity and resource constrained 
project scheduling problem, in which a set of activities is 
partitioned into disjoint subsets while all activities  

 
forming one subset have to be processed in the same 
mode. The objective is to schedule the activities in order 
to minimize the project duration. Depth first branching is 
based on the precedence tree approach. Seven rules 
including six bounding rules adapted from the literature 
and a new rule are used for node fathoming. Finally, the 
new branch and bound procedure is used for solving some 
test problems and the computational results demonstrate 
that the proposed branch and bound is in fact capable of 
solving problems in an acceptable time. The statistical 
analysis also revealed that the new proposed bounding 
rule is more efficient in comparison with other rules 
available in the literature. 
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