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Abstract 

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a 
minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP) 
expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to find a 
minimum-length tour containing exactly one node from each cluster. In this paper, a new heuristic method is presented for solving single-
vehicle single-depot GTSP with the ability of controlling the search strategy from conservative to greedy and vice versa. A variant 
algorithm is then developed to accommodate the multi-vehicle single-depot condition, which is modified afterwards to accommodate the 
multi-vehicle multi-depot GTSP. 

Keywords: Traveling Salesman Problem, Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problem. 

1. Introduction 

Through distribution activities, a commonly 
encountered situation happens when the distributing agent 
has to visit a number of customers located in different 
places, pick-up or deliver entities, and return back to its 
origin only after paying service to all customers. This 
problem, widely known as the Traveling Salesman 
Problem (TSP), applies to a variety of problems like 
distributing food or goods among shops or houses by a 
single vehicle starting and ending its trip from a single 
depot, collecting students of an area by a school bus, 
delivery of products to various warehouses from a 
factory, and many other applications [3]. 

The TSP can be mathematically described as follows: 
Let a network G = [N, A, C] be defined with N the set of 
nodes, A the set of branches, and C = [cij] the matrix of 
costs. That is, cij is the cost of moving from node i to node 
j. Of course, other metrics such as time and distance can 
also be considered. The TSP requires finding a 
Hamiltonian cycle in G with minimal total cost (a 
Hamiltonian cycle is a cycle passing through each node 
i ∈ N exactly once); that is, it requires the determination 
of a minimal cost cycle that passes through each node in 
the relevant graph exactly once. 
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If costs are symmetric, i.e. the cost of traveling 

between two locations does not depend on the direction of 
travel, the TSP is called symmetric or undirected; 
otherwise, asymmetric or directed. A feasible solution to a 
symmetric TSP has two arcs incident to each node, 
whereas for an asymmetric TSP there is one arc into and 
one arc out of every node. 

It is shown that the traveling salesman problem 
belongs to the NP-hard class of problems [11]. This 
remains true even when additional assumptions such as 
the triangle inequality or Euclidean distances are invoked 
[6, 16]. These results imply that a polynomially-bounded 
exact algorithm for the TSP is unlikely to exist. 

As a result, due to the difficulty of the TSP, many 
heuristic procedures have been developed as a number of 
early works [4, 9, 13], though most of them encounter 
problems with storage and running time for cases with 
more than about 100 nodes. 

One of the simplest heuristics for the TSP is the so-
called Nearest Neighbor Heuristic, which attempts to 
construct Hamiltonian cycles based on connections to 
near neighbors, as explained in Fig. 1. 

The nearest neighbor procedure for a standard TSP 
runs in time O(n2). No constant worst-case performance 
guarantee can be given. In fact, it can be shown that for 
arbitrarily large n there exists TSP instances on n nodes 
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such that the nearest neighbor solution is Θ(logn) times as 
long as an optimal Hamiltonian cycle. This also holds if 
the triangle inequality is satisfied [19]. 

If one displays nearest neighbor solutions, the reason 
for this poor performance can be realized. The procedure 
proceeds very well and produces connections with short 
edges in the beginning. Observing the graphical display of 
a typical solution, we will see that several nodes are 
‘forgotten’ during the algorithm’s execution and have to 
be inserted at high cost at the end. 

 

 
Fig. 1. Pseudo code for the Nearest Neighbor Heuristic. 

1.1. Generalizing the Traveling Salesman Problem 

The original TSP can be modified in very different 
ways, which may result in more specific or more general 
problems [2], as follows: 
1) Modification of the size of available fleet to: 

- one vehicle 
- Multiple vehicles (MTSP). 

2) Modification of the type of available fleet to: 
- homogenous (only one vehicle type) 
- heterogeneous (multiple vehicle types) 
- Special vehicle types (compartmentalized, etc.). 

3) Modification of the housing of vehicles to 
- single depot (domicile) 
- Multiple depots. 

4) Modification of the nature of demands to: 
- deterministic (known) demands 
- stochastic demand requirements 
- Partial satisfaction of demand allowed. 

5) Modification of the location of demands to: 
- at nodes (not necessarily all) 
- on arcs (not necessarily all) 
- Mixed. 

6) Modification of the underlying network to: 
- undirected (symmetric) 
- directed (asymmetric) 
- mixed 
- Euclidean. 

7) Modification of the vehicle capacity restrictions to: 
- imposed (all the same) 
- imposed (different vehicle capacities) 
- Not imposed (unlimited capacity). 

8) Modification of the maximum route times to: 
- imposed (same for all routes) 

- imposed (different for different routes) 
- not imposed. 

9) Modification of the operations to: 
- pick-ups only 
- deliveries only 
- mixed 
- Split deliveries (allowed or disallowed). 

10) Modification of the costs to: 
- variable or routing costs 
- fixed operating or vehicle acquisition costs 
- Common carrier costs (for un-serviced demands). 

11) Modification of the objectives to: 
- minimize total routing costs 
- minimize sum of fixed and variable costs 
- minimize number of vehicles required 
- maximize utility function based on service or 

convenience 
- Maximize utility function based on customer priorities. 

In addition to these numerous generalizing methods, 
another type of generalization is still possible: 

Suppose that the set of all nodes, N, is decomposed 
into m independent subsets or clusters. Each subset Si, 
contains ni nodes, such that for ∀ i, j ∈ {1, …, m}, i ≠ j: 

Si ∩ Sj = ∅, 
 

The nodes are connected by a network of edges in a 
way that 

Sk ≠ Sl;       ∀ i ∈ Sk,  ∀ j ∈ Sl,  (i, j) ∈ E,   i ≠ j,  

Where E is the set of network edges. 
Assuming that C = [cij] is the cost matrix of traversing 

an edge, the goal is to find a minimal cost cycle (tour) 
which passes through all clusters and selects only one 
node to visit within each cluster. This is a Generalized 
Traveling Salesman Problem (GTSP), and can be 
converted to TSP by setting m = N. 

Let us provide another definition for the GTSP: Given 
a graph G = (V, E), of N ≥ 3 nodes together with distances 
(weights) for the elements of E (the nodes and the edges 
of G are the ground set of elements). The set of N nodes 
(the set V) is partitioned into m ≤ N nonempty subsets and 
the ‘traveling salesman’ has to visit each subset exactly 
once. That is, he visits exactly one node is each subset. 

Thus, for the GTSP, the optimal solution forms a 
distance minimizing circuit (if one exists) of exactly k 
nodes with one node from each subset. Similar to the 
TSP, it is proved that the GTSP is also an NP-hard 
problem, although in [5] an attempt was made to respond 
intuitively to a hypothetical question whether the GTSP is 
harder than the TSP. 
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Procedure Nearest Neighbor Heuristic 
 
10  Select an arbitrary node j 
20  Set l = j and W = {1, 2, ..., n} \ {j} 
30    While W ≠ ∅ do 
40       Let j ∈ W such that clj = min{cli | j ∈ W} 
50       Connect l to j and set W = W \ {j} and l = j. 
60  Connect l to the node selected in 10 to form a Hamiltonian cycle. 
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1.2. Related Work 

The Generalized Traveling Salesman Problem has 
found wide applications both in traditional and modern 
fields of science and technology. some well-known 
applications include: vehicle routing, warehouse order 
picking, manufacturing, computer operations, 
examination timetabling, cytological testing, integrated 
circuit testing, and computer program restructuring [12]. 

The first work on the GTSP dates back to 1969 and is 
due to Henry-Labordere [10]. Since then, many 
researchers have tried to explore the properties of the 
GTSP and propose efficient solutions for it. A number of 
works have tried to reformulate the GTSP into more 
concise forms, such as [17], which provides six compact 
Integer Programming formulations for the GTSP by using 
two approaches: the first by using auxiliary flow variables 
beyond the natural binary edge and node variables, and 
the second by distinguishing between global and local 
variables. In [14], a lower bound on the total cost of an 
optimum solution is computed by employing a 
Lagrangian relaxation, and an upper bound is heuristically 
set. These bounds are used to determine and remove those 
arcs and nodes that are guaranteed not to be in the optimal 
solution. The problem is then solved by a branch-and-
bound procedure. 

Another group of existing works have adopted the 
approach of approximating or simplifying the exact GTSP 
formulation. For instance, [7] provided an approximation 
algorithm in which by some problem-specific IP 
formulation, LP reduction and the max-flow min-cut 
theorem, a representative set is constructed. In [15], the 
GTSP is transformed into a standard asymmetric TSP 
over the same number of nodes. This transformation 
allows certain routing problems to be modeled using the 
TSP framework. 

The work [8] presents a reduction algorithm that 
deletes redundant vertices and edges, preserving the 
optimal solution. The algorithm's running time is O(n3) in 
the worst case, but it is significantly faster in practice. The 
algorithm has reduced the size of GTSP by 15 to 20% on 
average, resulting in decreased solution times by 10 to 
60%. In [1] the possibility of transforming asymmetric 
GTSP into symmetric TSP is studied and some 
experimental results are reported.  

A variation of the GTSP, called Probabilistic GTSP 
(PGTSP) is addressed in [21], in which each customer 
belongs to a cluster that consists of a set of customers. 
Whether or not any given customer will be present during 
actual operations is known a priori only probabilistically. 
The work proposes an exact solution algorithm based on 
the integer L-shaped method and three tour construction-
based heuristics for quickly solving the PGSTP. 

Among the heuristic approaches for solving the GTSP 
is [20], which combines a Genetic Algorithm with a local 
tour improvement heuristic, resulting in optimal and near-

optimal solutions. In [18], a composite heuristic for 
solving the GTSP is proposed which is comprised of three 
phases: the construction of an initial partial solution, the 
insertion of a node from each non-visited node-subset, 
and a solution improvement phase. 

In this paper new heuristic algorithms called Moment-
based algorithms are developed for solving some 
variations of the Generalized Traveling Salesman 
Problem: Section 2 deals with the single-vehicle single-
depot GTSP, where a detailed solution is provided for a 
sample problem; Section 3 addresses the multi-vehicle 
single-depot GTSP; and Section 4 tackles the multi-
vehicle multi-depot GTSP. The final Section provides 
discussion and conclusion. 

2. Algorithm for Single-Vehicle Single-Depot GTSP 

Although usually rather bad, nearest neighbor solutions 
have the advantage that they only contain a few severe 
mistakes. Therefore, they can serve as good starting 
solutions for subsequently performed improvement 
methods, and it is reasonable to put some effort in 
designing heuristics that are based on the nearest neighbor 
principle. 

The Moment-based algorithms developed in this paper 
take advantage of the nearest neighbor heuristic’s speed 
and the rather low cost of connections at the outset of 
execution. On the other hand, they try to overcome the 
poor performance of the nearest neighbor method by 
avoiding the selection of a next visiting point merely 
based on the closest neighbor. Instead, they make a 
judgment between two closest neighbors, while regarding 
the consecutive neighbors of those two, and select a 
neighbor with a minimal total expected cost. An extension 
to k closest neighbors is discussed in the last Section. 

However, in order to apply this concept to a GTSP, 
where there exist clusters instead of points, we 
decompose the problem into two repeating phases: 

1) Identifying the next cluster to visit, 
2) Specifying the node within that cluster to be visited. 
Prior to dealing with the algorithm for solving the 

Single-Vehicle Single-Depot GTSP, some preprocessing 
steps should be taken, as described below. 

2.1. Preprocessing Steps 

a) Set W = {S1, S2, …, Sm}, as the set of all clusters. 

b) Obtain the Cost Matrix C: 

C = {(cij) | ∀ i , j ∈ N ;  i , j ∉ Sk} 

c) Obtain the Distance Matrix D. Any other metric (e.g. 
time) can also be used instead of distance. 

D = {(dij) | ∀ i , j ∈ N ; i, j ∉ Sk} 
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d) Calculate the average cost between each two clusters by: 

1 1
,

= =
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ji nn
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n n
, ∀ Si, Sj ∈ W, (1) 

and form the Average Cost Matrix as: 

{ }, ,= ∀ ∈
i jS S i jC c S S W         (2) 

e) Using the coordinates of each node in each cluster, 
compute the gravity center of each cluster (i.e. the mean 
of x- and y- coordinates of all nodes in the cluster) by: 
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f) Calculate the average distance between clusters by: 

2 2
, ,( ) ( ) ,= − + − ∀ ∈S S i j i j i ji j

d u u v v S S W      (4) 

and form the Average Distance Matrix as: 

{ }, ,= ∀ ∈
i jS S i jD d S S W           (5) 

g) Calculate the average ‘moment’ between clusters by 

, , ,= ×
i j i j i jS S S S S Sx c d      (6) 

and form the Average Moment Matrix as: 

{ },, ,= ∀ ∈
i ji j

S SS S i jX x S S W   (7) 

h) For each row of the Average Moment Matrix (7), sort 
the neighbors of each cluster in ascending order, 
assigning 1 to the closest neighbor, and continuing to 
rank m − 1. Import these rankings in an m × m matrix 
called Cluster Closeness Ranking (CCR) Matrix. 

The algorithm’s name ‘Moment-Based’ is derived 
from the fact that it selects the next visiting cluster and 
node based on the matrix (7), which is the product of 
cost × distance, analogous to the momentum of a force 
in physics, which is the product of  force × distance. 

It should be noted that in the absence of the nodes’ 
location or distance data, the Average Cost Matrix (2) 
can be used instead of the Average Moment Matrix (7). 

i) Determine the starting cluster So ∈ W and the starting 
node Po within So (serving as depot). If not specified, 
select them arbitrarily. Next, update W = W \ So. 

j) Specify a value or a function for the parameter FNP 
(discussed below). 

2.2. Selection Strategy 

In order to control and devise a strategy for the 
advancement of the algorithm, we introduce a control 
parameter, named First Neighbor Preference (FNP) rate. 

The FNP shows the desire for selecting the nearest 
cluster as the most appropriate one, thus ignoring the 
effect of more distant clusters on the current cluster. 
Higher rates of FNP make the selection greedier and less 
conservative, i.e. the algorithm adopts a ‘short-sighted’ 
attitude towards the selection process. Therefore, 
adjusting the FNP to a proper value enables the algorithm 
to work moderately, or even predictive. 

We can gain a great flexibility by setting the FNP to a 
changing variable, rather than a fixed value. For instance, 
if we let FNP to increase in parallel with iterations 
progression, the selection trend will be more conservative 
at the beginning of the process, shifting gradually to a 
greedy approach, providing some rapid convergence in 
last iterations. 

Moreover, we can control the amount of the increment 
or decrement of the FNP by assigning a function instead 
of a constant value, as: 

FNP(k) = f(k) ,  f(k) ∈ [0, 1]   ∀  k ∈ [1, N]      (8) 

where FNP(k) indicates the value of FNP at k-th iteration, 
and N is the total number of nodes. Different functions 
may be used to determine the selection strategy 
dynamically, provided that they keep FNP(k)∈ [0, 1], as 
the linear and sigmoid-type functions displayed in Fig. 3:  
 

 

    

4 2

4 2
( )

1

−

−
=

+

k
N

k
N

f k e

e
 

Fig. 3.  Some incremental functions for dynamic tuning of the FNP. N is 
the total number of nodes, and k is the counter of iterations number. 

It is also possible to assign different values or 
functions to each cluster. For a neither conservative nor 
greedy approach, set FNP = 0.5. 
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2.3. Main Steps 

A) For the starting cluster, So, find the first degree 
neighbor (i.e. the closest cluster) and the second degree 
neighbor (i.e. the second closest cluster): 

{ }1 , ,( ) ,= ∀ ∈≤
o j o io j S S S S iN S S x x S W  

{ }12 , ,( ) \ ( ),= ∀ ∈≤
o k o io k S S S S i oN S S x x S W N S  

B) For the clusters N1(So) and N2(So), find each one’s 
closest unvisited cluster such that: 

{ }1 11 1 ( ), ( ), 2( ( )) \ ( ),= ∀ ∈≤
o l o io l N S S N S S i oN N S S x x S W N S

{ }2 21 2 ( ), ( ), 1( ( )) \ ( ),= ∀ ∈≤
o m o io m N S S N S S i oN N S S x x S W N S

 
C) For determining the next cluster to be visited (Snew), 

check: 

1 1 1 1

2 2 1 2

, ( ) ( ), ( ( ))

, ( ) ( ), ( ( ))

(1 )

(1 )

⋅ + − ⋅ ≤

⋅ + − ⋅
o o o o

o o o o

S N S N S N N S

S N S N S N N S

FNP x FNP x

FNP x FNP x
 (9) 

If the above condition holds, then Snew = N1(So)); 
otherwise, Snew = N2(So)). This means that Snew is a 
neighboring cluster of the current cluster So that has a 
less moment from So. For a better understanding of the 
above equations refer to Fig. 4. 
 

 
Fig. 4.  A representation of relative positions of clusters, with their 
gravity centers (shown with black solid dots), and containing nodes 
(white circles). The hatched node signifies the starting node, and the 
arrows show paths used for determining the next node to visit in Step D. 

D) In order to select the next visiting node Pnew in Snew, for 
each node in Snew compute: 

{ }, ,= +
o i i jPi j P P P PC Max x x ,        (10) 

where { }1 2, ,  ( ), ( ) .∈ ∈∀ ∈ ∀ ∈ new newo o i new j N S N S WP S P S P  

For instance in Fig. 4, if the hatched node is Po ∈ So and 
Snew = N2(So), then the solid and dashed arrows outgoing 
from each node Pi ∈ N2(So) are used to compute (10).  

The next node to be visited is the one with minimal cost: 

( ) ,argmin .= ∀ ∈new i i newCPP P S  (11) 

In other words, Pnew is a node which its maximum integral 
moment about the last visited node and either of its two 
closest clusters is the least among all other nodes in Snew. 

E) Set So = Snew, Po = Pnew.  
    Update W = W \ So. 
   While W ≠ ∅ go to step A, else stop. 

Like many other heuristics, the moment-based 
algorithm is also sensitive to the starting point. It is 
recommended to start with a cluster which has the 
minimum total closeness ranking, i.e. its columnar sum in 
the CCR matrix is the least among all clusters. The 
maximum iterations required to complete the tour is 
m − 1, where m is the total number of clusters. 

In order to illustrate the algorithm’s performance, its 
application to a sample problem is provided bewlow. 

2.4. A Numerical Example 

A set of 12 nodes is partitioned into 6 clusters, as 
depicted in Fig. 5. The coordinates of nodes are not 
available, but the traveling Cost Matrix C is given bellow. 
Find a minimal cost tour such that all clusters are covered 
once and only one node within each cluster is visited. 
 

C 
S1 S2 S3 S4 S5 S6

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

S1 P1  7 6 11 10 9 6 11 5 14 12 8 

S2
P2 7

 
11 15 6 22 12 14 30 25 19

P3 6 10 10 12 18 24 31 25 17 26

S3

P4 11 11 10
 

20 17 32 41 29 21
P5 10 15 10 10 18 51 26 41 25
P6 9 6 12 19 27 54 65 25 23

S4
P7 6 22 18 20 10 19 

 
10 26 32 47

P8 11 12 24 17 18 27 12 24 58 61
S5 P9 5 14 31 32 51 54 10 12  11 32 21

S6

P10 14 30 25 41 26 65 26 24 11 
 P11 12 25 17 29 41 25 32 58 32 

P12 8 19 26 21 25 23 47 61 21 

 

 
Fig. 5.  A schematic of the 12 nodes and 6 clusters in the example. Note 
that the nodes’ locations are not exact. 
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Preprocessing Steps 

a) Set W = {S1, S2, S3, S4, S5, S6} 

b – g) Form the Average Cost Matrix C . Note that since 
the data for clusters’ distances are unavailable, we can 
take C  as the Average Moment Matrix X. 

 
C  S1 S2 S3 S4 S5 S6 

S1  6.5 10 8.5 5 11.33

S2 6.5  10.66 19 22.5 23.66

S3 10 10.66  18.5 45.66 32.88

S4 8.5 19 18.5  11 41.33

S5 5 22.5 45.66 11  21.33

S6 11.33 23.66 32.88 41.33 21.33  

 

h) Form the Cluster Closeness Ranking (CCR) matrix: 

CCR S1 S2 S3 S4 S5 S6 

S1  2 3 4 1 5 
S2 1  2 3 4 5 
S3 1 2  3 5 4 
S4 1 4 3  2 5 
S5 1 4 5 2  3 
S6 1 3 4 5 2  

 
i) Set So = S1, Po = P1, W = {S2, S3, S4, S5, S6}. 

j) Set FNP = 0.5. Since cluster 1 has the least columnar 
sum and so is closer to all other clusters, it is 
appropriately set as the depot (starting point). 
 

Iteration 1 

A) N1(S1) = S5 
 N2(S1) = S2. 
B) N1(S5) = S4 
 N1(S2) = S3. 
C) (0.5)5 + (1 − 0.5)11 = 8 
 (0.5)6.5 + (1 − 0.5)10.66 = 8.58 
 Next visiting cluster: Snew = S5. 
D) Node P9 selected. 
E) So = S5, Po = P9, W = {S2, S3, S4, S6}. 
 

Iteration 2 

A) N1(S5) = S4 
 N2(S5) = S6. 
B) N1(S4) = S3 
 N1(S6) = S2. 
C) (0.5)11 + (1 − 0.5)18.5 = 14.75 
 (0.5)21.33 + (1 − 0.5)23.66 = 22.5 
 Next visiting cluster: Snew = S4. 

D) On node P7: 
Max {(10+22), (10+18), (10+20), (10+10), (10+19)} = 32 
 On node P8: 
Max {(12+12), (12+24), (12+17), (12+18), (12+27)} = 39 
 Node P7 selected. 
E) So = S4 , Po = P7, W = {S2, S3, S6}. 
 

Iteration 3 

A) N1(S4) = S3 
 N2(S4) = S2. 
B) N1(S3) = S2 
 N1(S2) = S3. 
C) (0.5)18.5 + (1 − 0.5)10.66 = 14.58 
 (0.5)19 + (1 − 0.5)10.66 = 14.83 
 Next visiting cluster: Snew = S3. 
D) On node P4: 
Max{(20+11), (20+10), (20+41), (20+29), (20+21)} = 61 
 On node P5: 
Max{(10+15), (10+10), (10+26), (10+41), (10+25)} = 51 
 On node P6: 
Max{(19+6), (19+12), (19+65), (19+25), (19+23)} = 84 
 Node P5 selected. 
E) So = S3 , Po = P5, W = {S2, S6}. 
 

Iteration 4 

A) N1(S3) = S2 
 N2(S3) = S6. 
B) N1(S2) = S6 
 N1(S6) = S2.  
C) (0.5)10.66 + (1 − 0.5)23.66 = 17.16 
 (0.5)32.88 + (1 − 0.5)23.66 = 28.27 
 Next visiting cluster: Snew = S2. 
D) On node P2: Max {(15+30), (15+25), (15+19)} = 45 
 On node P3: Max {(10+25), (10+17), (10+26)} = 36 
 Node P3 selected. 
E) So = S2 , Po = P3, W = {S6}. 
 

Iteration 5 

A) N1(S2) = S6. 
 Next visiting cluster: Snew = S6. 
D) On node P10: Max{(25+14)} = 39 (distance to node P1) 
 On node P11: Max{(17+12)} = 29 (distance to node P1) 
 On node P12: Max{(26+8)} = 34 (distance to node P1) 
 Node P11 selected. 
E) So = S6 , Po = P11, W = ∅. 

 
 
The solution to the problem is therefore the tour: 

P1 → P9 → P7 → P5 → P3 → P11 → P1  

with a total cost of 64. By choosing other starting nodes 
or other patterns for the First Neighbor Preference (FNP), 
alternative solutions may be obtained. 
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3. Algorithm for Multi-Vehicle Single-Depot GTSP 

The Generalized Traveling Salesman Problem 
discussed so far has only one traveler; that is, the 
proposed algorithm yields an itinerary for a single 
vehicle. A more general case is when there are k vehicles 
(1 < k < number of clusters) available at the depot, each 
one ready to cover a sub-tour of the whole route, such that 
all clusters should be visited, again through a single node 
within. It should be noted that the number of vehicles 
actually planned could be less that k, in which case some 
of vehicles may remain unutilized. 

The details of an iterative algorithm for solving a 
multi-vehicle single-depot GTSP are presented below. At 
each iteration of the algorithm, in addition to determining 
the next cluster and the node within to be visited, the 
visiting vehicle is decided as well. 

3.1. Preprocessing Steps 

a) Calculate the Cost Matrix (C), Distance Matrix (D), 
Average Cost Matrix (C ), Average Distance Matrix (
D ), and Average Moment Matrix (X) as described in 
the Section 2.1. 

b) Determine the starting cluster and the starting node 
within (serving as depot), So and Po, respectively. If 
not specified, select them arbitrarily. 

c) Taking So
k as the last cluster visited by vehicle k, and 

Po
k as the last visited node within cluster So

k, initially 
set So

k = So, ∀ vk ∈ V, in which V is the set of vehicles. 
d) Set W = {S1, S2, …, Sm} \ So as the set of clusters 

available for every vehicle. Note that a cluster can 
only be visited by a singe vehicle. 

3.2. Main Steps 

A) Among the unvisited clusters Sj, to determine the next 
cluster to be visited and the visiting vehicle, for each 
vehicle vk calculate a minimal cost for such a trip by: 

,,
+=k

j k j oo j S SS Sc x x ,       ∀ Sj ∈ W             (12) 

{ } , .= ∀k
k jj

c Min c j   (13) 

in which ,k
o jS S

x  is the distance between the gravity 

centers of clusters So
k and Sj, obtained from the matrix 

C . This means that for every vehicle vk located on its 
last visited point, the least cost of moving to a new 
unvisited point and returning to the depot afterwards is 
computed. This step guarantees a closed tour for each 
vehicle. 

The next vehicle to move is: 

vnew = {vk | ck ≤ ci, ∀ k, i ∈ V},  (14) 

and the next cluster to visit is: 

Snew = {Sj | cj
vnew ≤ ci

vnew, ∀ j, i ∈ W}. (15) 

Update W = W \ Snew. 

Note that since we assume the vehicles are identical 
and are located in the only depot at the beginning, the 
ck

j and ck for all vehicles are equal at the first iteration, 
and so the first vehicle to move is selected arbitrarily. 

B) In order to determine the next node to be visited by the 
vehicle vnew, for each node Pi in Snew compute: 

{ },,new

new

i jo i
v

v
P P PP Pi j

C Max x x= +           (16) 

where  
{ }1 2, , ( ), ( ) .newv k

new newo o i new j N S N S WP S P S P∈ ∈∀ ∈ ∀ ∈  

The next node is the one with minimal cost: 

,argmin .newv
new Pi newiCP P S 

 
 

= ∀ ∈  (17) 

In other words, Pnew is a node which its maximum 
integral moment about the last visited node and either 
of its two closest clusters is the least among all other 
nodes in Snew. 

C) Set Po
k = Pnew 

  So
k = Snew 

 while W ≠ ∅ go to step A, else stop. 
 

For further clarification of the algorithm’s 
performance, a sample problem is solved below. 

3.3. A Numerical Example 

Solve a 2-vehicle GTSP for the sample problem 
introduced in the Section 2.4, assuming that the vehicles 
start their tours from node P2 in the cluster S2 (see Fig. 5). 

 
Preprocessing Steps 

a) The matrices X =C  and CCR are calculated as before. 
b) So = S2,  Po = P2. 
c) Po

1 = Po
2 = P2, So

1 = So
2 = S2. 

d) W = {S1, S3, S4, S5, S6} 
 

Iteration 1 

A) c1 = c2 = Min{(xS2,S1+xS1,S2),(xS2,S3+xS3,S2),(xS2,S4+xS4,S2),
  (xS2,S5+xS5,S2), (xS2,S6+xS6,S2)} = Min{(6.5+6.5), 
  (10.66+10.66), (19+19), (22.5+22.5), (23.66+23.66)} 
  = 13. 
 vnew = v1 (arbitrarily),  Snew = S1,  W = {S3, S4, S5, S6}. 
B) Pnew = P1 (since it is the only node in S1). 
C) Po

1 = P1,  Po
2 = P2, So

1 = S1,  So
2 = S2. 
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Iteration 2 

A) c1 = Min{(xS1,S3+xS3,S2), (xS1,S4+xS4,S2), (xS1,S5+xS5,S2), 
  (xS1,S6+xS6,S2)} = Min{(10+10.66), (8.5+19), 
  (5+22.5), (11.33+23.66)} = 20.66 
 c2 = Min{(xS2,S3+xS3,S2), (xS2,S4+ xS4,S2), (xS2,S5+xS5,S2), 
  (xS2,S6+xS6,S2)} = Min{(10.66+10.66), (19+19), 
  (22.5+22.5), (23.66+23.66)} = 21.33 
 vnew = v1,  Snew = S3,  W = {S4, S5, S6}. 
B) On node P4 and for ∀ Pj ∈ {S4, S6}: 
 C1

P4 =Max{(xP1,P4+xP4,P7), (xP1,P4+xP4,P8), (xP1,P4+xP4,P10),
  (xP1,P4+xP4,P11), (xP1,P4+xP4,P12) = Max{(11+20), 
  (11+17), (11+41), (11+29), (11+21)} = 52 
 On node P5 and for ∀ Pj ∈ {S4, S6}: 
 C1

P5 =Max{(xP1,P5+xP5,P7), (xP1,P5+xP5,P8), (xP1,P5+xP5,P10),
  (xP1,P5+xP5,P11), (xP1,P5+xP5,P12) = Max{(10+10), 
  (10+18), (10+26), (10+41), (10+25)} = 51 
 On node P6 and for ∀ Pj ∈ {S4, S6}: 
 C1

P6 =Max{(xP1,P6+xP6,P7), (xP1,P6+xP6,P8), (xP1,P6+xP6,P10),
  (xP1,P6+xP6,P11), (xP1,P6+xP6,P12) = Max{(9+19), 
  (9+27), (9+65), (9+25), (9+23)} = 74 
 Pnew = P5. 
C) Po

1 = P5,  Po
2 = P2, So

1 = S3,  So
2 = S2. 

 
Iteration 3 

A) c1 = Min{(xS3,S4+xS4,S2), (xS3,S5+xS5,S2), (xS3,S6+xS6,S2)} 
  = Min{(18.5+19), (45.66+22.5), (32.88+23.66)} 
  = 37.5 
 c2 = Min{(xS2,S4+ xS4,S2), (xS2,S5+xS5,S2), (xS2,S6+xS6,S2)} 
  = Min{(19+19), (22.5+22.5), (23.66+23.66)} 
  = 38 
 vnew = v1,  Snew = S4,  W = {S5, S6}. 
B) On node P7 and for ∀ Pj ∈ {S5, S6}: 
 C1

P7 = Max{(xP5,P7+xP7,P9), (xP5,P7+xP7,P10), 
    (xP5,P7+xP7,P11), (xP5,P7+xP7,P12)} 
  = Max{(10+10), (10+26), (10+32), (10+47)} = 57 
 On node P8 and for ∀ Pj ∈ {S5, S6}: 
 C1

P8 = Max{(xP5,P8+xP8,P9),(xP5,P8+xP8,P10), 
   (xP5,P8+xP8,P11), (xP5,P8+xP8,P12)} 
  = Max{(18+12), (18+24), (18+58), (18+61)} = 79 
 Pnew = P7. 
C) Po

1 = P7,  Po
2 = P2, So

1 = S4,  So
2 = S2. 

 
Iteration 4 

A) c1 = Min{(xS4, S5 + xS5, S2), (xS4, S6 + xS6, S2)} 
  = Min{(11+22.5), (41.33+23.66)} = 33.5 
 c2 = Min{(xS2, S5 + xS5, S2), (xS2, S6 + xS6, S2)} 
  = Min{(22.5+22.5), (23.66+23.66)} = 45 
 vnew = v1,  Snew = S5,  W = {S6}. 
B) Pnew = P9 (since it is the only node in S5). 
C) Po

1 = P9,  Po
2 = P2, So

1 = S5,  So
2 = S2. 

 

Iteration 5 

A) c1 = Min{(xS5,S6+xS6,S2)} = Min{(21.33+23.66)} = 45 
 c2 = Min{(xS2,S6+xS6,S2)} =Min{(23.66+23.66)}= 47.33 
 vnew = v1,  Snew = S6,  W = ∅. 
B) On node P10 and Pj = P2: 
 C1

P10 =Max{(xP9,P10+xP10,P2)} = Max{(11+30)} = 41 
 On node P11 and Pj = P2: 
 C1

P11 =Max{(xP9,P11+xP11,P2)} = Max{(32+25)} = 57 
 On node P12 and Pj = P2: 
 C1

P12 =Max{(xP9,P12+xP12,P2)} = Max{(21+19)} = 40 
 Pnew = P12. 
C) Po

1 = P12,  Po
2 = P2, So

1 = S6,  So
2 = S2. 

 
 
The solution to the problem is therefore the tours: 

Vehicle 1: P2 → P1 → P5 → P7 → P9 → P12 → P2  
Vehicle 2: Unused 
Total cost = 7 + 10 + 10 + 10 + 21 + 19 = 77. 

4. Algorithm for Multi-Vehicle Multi-Depot GTSP 

Suppose that the initial location of the vehicles is not 
bound to a specific depot, and there are multiple depots. 
So the problem is to determine the initial location of each 
vehicle, such that it starts and ends a trip from a specific 
point. 

Because the Average Moment Matrix (7) will vary for 
each vehicle k, it is wise to locate each vehicle close to 
the gravity center of each cluster of nodes, calculated on 
the basis of the vehicle’s own Cost Matrix. Note that 
never can two vehicles visit a single cluster, and so the 
available clusters at the beginning are the non-depot 
clusters. 

Assuming that Mk is the set of clusters visited by 
vehicle k (including the cluster containing its depot), and 
Nk is the set of visited nodes, the Average Moment of 
these points would be 

,

, ,= ∀ ∈
∑ ∑ k

i j
i jk

S kk k

x
X i j N

M
.  (18) 

in which kM  is the number of clusters visited by 
vehicle k. 

The Preprocessing and Main steps of the multi-depot 
variant of the algorithm are the same as described in the 
Section 3, except for the Step A, which should be 
replaced with the following: 

A) To determine the next cluster to be visited, and the 
visiting vehicle, calculate: 
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k jj
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The next vehicle to move is: 

vnew = {vk | ck ≤ ci, ∀ k, i ∈ V},  (21) 

and the next cluster to visit is: 

Snew = {Sj | cj
vnew ≤ ci

vnew, ∀ j, i ∈ W}. (22) 

 
Applying the above modification causes a group of 

clusters close to the initial location of a certain vehicle to 
be allocated to that vehicle, thus minimizing the total 
traveling distance of each vehicle. 

5. Discussion and Conclusion 

The standard traveling salesman problem is the source 
of many NP-hard problems. An interesting extension to 
this problem is the GTSP, where the single nodes are 
replaced with a cluster of them. The heuristic algorithms 
proposed in this paper suggest efficient and fast solutions 
to single-vehicle and multi-vehicle GTSP problems by 
completing the route through a number of iterations and 
selecting the next cluster, and afterwards the appropriate 
node within, by a predictive method, thus avoiding a 
shortsighted approach. The multi-vehicle GTSP algorithm 
tackles both single-depot and multi-depot GTSPs. 

An effective parameter for controlling the searching 
process is the First Neighbor Preference (FNP), which 
enables the algorithm to fluctuate between 
conservativeness and greediness, by varying between 0 
and 1. An interesting additional control over the searching 
strategy is gained through the possibility of tuning the 
FNP dynamically, such that for instance, it can be set to 
lower values (nearly 0) to have the algorithm act 
conservatively, and then be gradually increased (toward 
1) to expedite and focus the search. 

The time complexity of the preprocessing phase is in 
O(n2), n being the number of nodes, due to forming and 
sorting of the Cost, Distance, and Moment n × n matrices. 
The main steps of the single-vehicle algorithm take O(n) 
time since the total number of iterations is n − 1, and at 
each iteration the number of calculations performed to 
determine the next cluster and node to visit is in linear 
time. Therefore, the Total time complexity of the single-
vehicle problem will be in O(n2), which is consistent with 
that of the nearest-neighbor algorithm. The total number 
of iterations in the multi-vehicle algorithm is n − 1, and 
the main steps take O(kn) time as k tours must be 

calculated at each iteration, and so the time complexity of 
the multi-vehicle algorithm will be also O(n2). 

A variation to the algorithm is obtained by taking a 
representative node as the gravity center of a cluster, thus 
obviating the need for calculating the clusters’ centers, as 
done in (3). 

In order to increase the ‘exactness’ of the algorithm 
and slacken its heuristic nature, we can extend and 
complicate the calculation of the next visiting cluster 
beyond the two levels implemented in steps A, B and C of 
the single-vehicle algorithm (Section 2.3), or the step A in 
the multi-vehicle algorithm (Section 3.2). That is, instead 
of just determining the nearest 2 clusters of the current 
position (based on which the next cluster to be visited is 
calculated in (9)), we can determine the nearest k clusters 
as follows: 

, ( )
=1

= argmin ⋅
  =   
  

∑ o j o

k

new i j S N S
j

S S i FNP x ,    (23) 
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j
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FNP
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=∑ , 

in which , ( )o j oS N Sx is the moment (i.e. cost × distance) of 

the j-th nearest cluster to the current cluster So. This 
means that Snew, the next cluster to visit from the current 
cluster, is the one having the minimal total moment up to 
k levels from the current cluster. 

The implementation of the algorithm is very easy and 
straightforward, as featured in the solved problems. 
Experimental results showed fast performance of the 
algorithm, and optimal or suboptimal solutions to the 
many solved problems. 
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