
Journal of Industrial Engineering 3(2009)49-58

49

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle
Generalized Traveling Salesman Problems (GTSP)

Ellips Masehian*

Industrial Engineering Department, Tarbiat Modares University, Tehran, 14155-4838, Iran.

Received 3 jun., 2009; Revised 2 Jul., 2009; Accepted 10 Jul., 2009

Abstract

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a
minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)
expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to find a
minimum-length tour containing exactly one node from each cluster. In this paper, a new heuristic method is presented for solving single-
vehicle single-depot GTSP with the ability of controlling the search strategy from conservative to greedy and vice versa. A variant
algorithm is then developed to accommodate the multi-vehicle single-depot condition, which is modified afterwards to accommodate the
multi-vehicle multi-depot GTSP.

Keywords: Traveling Salesman Problem, Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problem.

1. Introduction

Through distribution activities, a commonly
encountered situation happens when the distributing agent
has to visit a number of customers located in different
places, pick-up or deliver entities, and return back to its
origin only after paying service to all customers. This
problem, widely known as the Traveling Salesman
Problem (TSP), applies to a variety of problems like
distributing food or goods among shops or houses by a
single vehicle starting and ending its trip from a single
depot, collecting students of an area by a school bus,
delivery of products to various warehouses from a
factory, and many other applications [3].

The TSP can be mathematically described as follows:
Let a network G = [N, A, C] be defined with N the set of
nodes, A the set of branches, and C = [cij] the matrix of
costs. That is, cij is the cost of moving from node i to node
j. Of course, other metrics such as time and distance can
also be considered. The TSP requires finding a
Hamiltonian cycle in G with minimal total cost (a
Hamiltonian cycle is a cycle passing through each node
i ∈ N exactly once); that is, it requires the determination
of a minimal cost cycle that passes through each node in
the relevant graph exactly once.

*Corresponding author, Email: masehian@modares.ac.ir

If costs are symmetric, i.e. the cost of traveling

between two locations does not depend on the direction of
travel, the TSP is called symmetric or undirected;
otherwise, asymmetric or directed. A feasible solution to a
symmetric TSP has two arcs incident to each node,
whereas for an asymmetric TSP there is one arc into and
one arc out of every node.

It is shown that the traveling salesman problem
belongs to the NP-hard class of problems [11]. This
remains true even when additional assumptions such as
the triangle inequality or Euclidean distances are invoked
[6, 16]. These results imply that a polynomially-bounded
exact algorithm for the TSP is unlikely to exist.

As a result, due to the difficulty of the TSP, many
heuristic procedures have been developed as a number of
early works [4, 9, 13], though most of them encounter
problems with storage and running time for cases with
more than about 100 nodes.

One of the simplest heuristics for the TSP is the so-
called Nearest Neighbor Heuristic, which attempts to
construct Hamiltonian cycles based on connections to
near neighbors, as explained in Fig. 1.

The nearest neighbor procedure for a standard TSP
runs in time O(n2). No constant worst-case performance
guarantee can be given. In fact, it can be shown that for
arbitrarily large n there exists TSP instances on n nodes

Elips masehian / New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman ...

50

such that the nearest neighbor solution is Θ(logn) times as
long as an optimal Hamiltonian cycle. This also holds if
the triangle inequality is satisfied [19].

If one displays nearest neighbor solutions, the reason
for this poor performance can be realized. The procedure
proceeds very well and produces connections with short
edges in the beginning. Observing the graphical display of
a typical solution, we will see that several nodes are
‘forgotten’ during the algorithm’s execution and have to
be inserted at high cost at the end.

Fig. 1. Pseudo code for the Nearest Neighbor Heuristic.

1.1. Generalizing the Traveling Salesman Problem

The original TSP can be modified in very different
ways, which may result in more specific or more general
problems [2], as follows:
1) Modification of the size of available fleet to:

- one vehicle
- Multiple vehicles (MTSP).

2) Modification of the type of available fleet to:
- homogenous (only one vehicle type)
- heterogeneous (multiple vehicle types)
- Special vehicle types (compartmentalized, etc.).

3) Modification of the housing of vehicles to
- single depot (domicile)
- Multiple depots.

4) Modification of the nature of demands to:
- deterministic (known) demands
- stochastic demand requirements
- Partial satisfaction of demand allowed.

5) Modification of the location of demands to:
- at nodes (not necessarily all)
- on arcs (not necessarily all)
- Mixed.

6) Modification of the underlying network to:
- undirected (symmetric)
- directed (asymmetric)
- mixed
- Euclidean.

7) Modification of the vehicle capacity restrictions to:
- imposed (all the same)
- imposed (different vehicle capacities)
- Not imposed (unlimited capacity).

8) Modification of the maximum route times to:
- imposed (same for all routes)

- imposed (different for different routes)
- not imposed.

9) Modification of the operations to:
- pick-ups only
- deliveries only
- mixed
- Split deliveries (allowed or disallowed).

10) Modification of the costs to:
- variable or routing costs
- fixed operating or vehicle acquisition costs
- Common carrier costs (for un-serviced demands).

11) Modification of the objectives to:
- minimize total routing costs
- minimize sum of fixed and variable costs
- minimize number of vehicles required
- maximize utility function based on service or

convenience
- Maximize utility function based on customer priorities.

In addition to these numerous generalizing methods,
another type of generalization is still possible:

Suppose that the set of all nodes, N, is decomposed
into m independent subsets or clusters. Each subset Si,
contains ni nodes, such that for ∀ i, j ∈ {1, …, m}, i ≠ j:

Si ∩ Sj = ∅,

The nodes are connected by a network of edges in a
way that

Sk ≠ Sl; ∀ i ∈ Sk, ∀ j ∈ Sl, (i, j) ∈ E, i ≠ j,

Where E is the set of network edges.
Assuming that C = [cij] is the cost matrix of traversing

an edge, the goal is to find a minimal cost cycle (tour)
which passes through all clusters and selects only one
node to visit within each cluster. This is a Generalized
Traveling Salesman Problem (GTSP), and can be
converted to TSP by setting m = N.

Let us provide another definition for the GTSP: Given
a graph G = (V, E), of N ≥ 3 nodes together with distances
(weights) for the elements of E (the nodes and the edges
of G are the ground set of elements). The set of N nodes
(the set V) is partitioned into m ≤ N nonempty subsets and
the ‘traveling salesman’ has to visit each subset exactly
once. That is, he visits exactly one node is each subset.

Thus, for the GTSP, the optimal solution forms a
distance minimizing circuit (if one exists) of exactly k
nodes with one node from each subset. Similar to the
TSP, it is proved that the GTSP is also an NP-hard
problem, although in [5] an attempt was made to respond
intuitively to a hypothetical question whether the GTSP is
harder than the TSP.

11
NnS

m

i
i

m

i
i == ∑

==
U

Procedure Nearest Neighbor Heuristic

10 Select an arbitrary node j
20 Set l = j and W = {1, 2, ..., n} \ {j}
30 While W ≠ ∅ do
40 Let j ∈ W such that clj = min{cli | j ∈ W}
50 Connect l to j and set W = W \ {j} and l = j.
60 Connect l to the node selected in 10 to form a Hamiltonian cycle.

Journal of Industrial Engineering 3(2009)49-58

51

1.2. Related Work

The Generalized Traveling Salesman Problem has
found wide applications both in traditional and modern
fields of science and technology. some well-known
applications include: vehicle routing, warehouse order
picking, manufacturing, computer operations,
examination timetabling, cytological testing, integrated
circuit testing, and computer program restructuring [12].

The first work on the GTSP dates back to 1969 and is
due to Henry-Labordere [10]. Since then, many
researchers have tried to explore the properties of the
GTSP and propose efficient solutions for it. A number of
works have tried to reformulate the GTSP into more
concise forms, such as [17], which provides six compact
Integer Programming formulations for the GTSP by using
two approaches: the first by using auxiliary flow variables
beyond the natural binary edge and node variables, and
the second by distinguishing between global and local
variables. In [14], a lower bound on the total cost of an
optimum solution is computed by employing a
Lagrangian relaxation, and an upper bound is heuristically
set. These bounds are used to determine and remove those
arcs and nodes that are guaranteed not to be in the optimal
solution. The problem is then solved by a branch-and-
bound procedure.

Another group of existing works have adopted the
approach of approximating or simplifying the exact GTSP
formulation. For instance, [7] provided an approximation
algorithm in which by some problem-specific IP
formulation, LP reduction and the max-flow min-cut
theorem, a representative set is constructed. In [15], the
GTSP is transformed into a standard asymmetric TSP
over the same number of nodes. This transformation
allows certain routing problems to be modeled using the
TSP framework.

The work [8] presents a reduction algorithm that
deletes redundant vertices and edges, preserving the
optimal solution. The algorithm's running time is O(n3) in
the worst case, but it is significantly faster in practice. The
algorithm has reduced the size of GTSP by 15 to 20% on
average, resulting in decreased solution times by 10 to
60%. In [1] the possibility of transforming asymmetric
GTSP into symmetric TSP is studied and some
experimental results are reported.

A variation of the GTSP, called Probabilistic GTSP
(PGTSP) is addressed in [21], in which each customer
belongs to a cluster that consists of a set of customers.
Whether or not any given customer will be present during
actual operations is known a priori only probabilistically.
The work proposes an exact solution algorithm based on
the integer L-shaped method and three tour construction-
based heuristics for quickly solving the PGSTP.

Among the heuristic approaches for solving the GTSP
is [20], which combines a Genetic Algorithm with a local
tour improvement heuristic, resulting in optimal and near-

optimal solutions. In [18], a composite heuristic for
solving the GTSP is proposed which is comprised of three
phases: the construction of an initial partial solution, the
insertion of a node from each non-visited node-subset,
and a solution improvement phase.

In this paper new heuristic algorithms called Moment-
based algorithms are developed for solving some
variations of the Generalized Traveling Salesman
Problem: Section 2 deals with the single-vehicle single-
depot GTSP, where a detailed solution is provided for a
sample problem; Section 3 addresses the multi-vehicle
single-depot GTSP; and Section 4 tackles the multi-
vehicle multi-depot GTSP. The final Section provides
discussion and conclusion.

2. Algorithm for Single-Vehicle Single-Depot GTSP

Although usually rather bad, nearest neighbor solutions
have the advantage that they only contain a few severe
mistakes. Therefore, they can serve as good starting
solutions for subsequently performed improvement
methods, and it is reasonable to put some effort in
designing heuristics that are based on the nearest neighbor
principle.

The Moment-based algorithms developed in this paper
take advantage of the nearest neighbor heuristic’s speed
and the rather low cost of connections at the outset of
execution. On the other hand, they try to overcome the
poor performance of the nearest neighbor method by
avoiding the selection of a next visiting point merely
based on the closest neighbor. Instead, they make a
judgment between two closest neighbors, while regarding
the consecutive neighbors of those two, and select a
neighbor with a minimal total expected cost. An extension
to k closest neighbors is discussed in the last Section.

However, in order to apply this concept to a GTSP,
where there exist clusters instead of points, we
decompose the problem into two repeating phases:

1) Identifying the next cluster to visit,
2) Specifying the node within that cluster to be visited.
Prior to dealing with the algorithm for solving the

Single-Vehicle Single-Depot GTSP, some preprocessing
steps should be taken, as described below.

2.1. Preprocessing Steps

a) Set W = {S1, S2, …, Sm}, as the set of all clusters.

b) Obtain the Cost Matrix C:

C = {(cij) | ∀ i , j ∈ N ; i , j ∉ Sk}

c) Obtain the Distance Matrix D. Any other metric (e.g.
time) can also be used instead of distance.

D = {(dij) | ∀ i , j ∈ N ; i, j ∉ Sk}

Elips masehian / New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman ...

52

d) Calculate the average cost between each two clusters by:

1 1
,

= =
=

×

∑ ∑
ji nn

ij
i j

S Si j
i j

c
c

n n
, ∀ Si, Sj ∈ W, (1)

and form the Average Cost Matrix as:

{ }, ,= ∀ ∈
i jS S i jC c S S W (2)

e) Using the coordinates of each node in each cluster,
compute the gravity center of each cluster (i.e. the mean
of x- and y- coordinates of all nodes in the cluster) by:

11 , ,== ∀ ∈= =
∑∑

k k

nn kk

kk ji ji
S S

k k

S Wk

yx
u v

n n
 (3)

f) Calculate the average distance between clusters by:

2 2
, ,() () ,= − + − ∀ ∈S S i j i j i ji j

d u u v v S S W (4)

and form the Average Distance Matrix as:

{ }, ,= ∀ ∈
i jS S i jD d S S W (5)

g) Calculate the average ‘moment’ between clusters by

, , ,= ×
i j i j i jS S S S S Sx c d (6)

and form the Average Moment Matrix as:

{ },, ,= ∀ ∈
i ji j

S SS S i jX x S S W (7)

h) For each row of the Average Moment Matrix (7), sort
the neighbors of each cluster in ascending order,
assigning 1 to the closest neighbor, and continuing to
rank m − 1. Import these rankings in an m × m matrix
called Cluster Closeness Ranking (CCR) Matrix.

The algorithm’s name ‘Moment-Based’ is derived
from the fact that it selects the next visiting cluster and
node based on the matrix (7), which is the product of
cost × distance, analogous to the momentum of a force
in physics, which is the product of force × distance.

It should be noted that in the absence of the nodes’
location or distance data, the Average Cost Matrix (2)
can be used instead of the Average Moment Matrix (7).

i) Determine the starting cluster So ∈ W and the starting
node Po within So (serving as depot). If not specified,
select them arbitrarily. Next, update W = W \ So.

j) Specify a value or a function for the parameter FNP
(discussed below).

2.2. Selection Strategy

In order to control and devise a strategy for the
advancement of the algorithm, we introduce a control
parameter, named First Neighbor Preference (FNP) rate.

The FNP shows the desire for selecting the nearest
cluster as the most appropriate one, thus ignoring the
effect of more distant clusters on the current cluster.
Higher rates of FNP make the selection greedier and less
conservative, i.e. the algorithm adopts a ‘short-sighted’
attitude towards the selection process. Therefore,
adjusting the FNP to a proper value enables the algorithm
to work moderately, or even predictive.

We can gain a great flexibility by setting the FNP to a
changing variable, rather than a fixed value. For instance,
if we let FNP to increase in parallel with iterations
progression, the selection trend will be more conservative
at the beginning of the process, shifting gradually to a
greedy approach, providing some rapid convergence in
last iterations.

Moreover, we can control the amount of the increment
or decrement of the FNP by assigning a function instead
of a constant value, as:

FNP(k) = f(k) , f(k) ∈ [0, 1] ∀ k ∈ [1, N] (8)

where FNP(k) indicates the value of FNP at k-th iteration,
and N is the total number of nodes. Different functions
may be used to determine the selection strategy
dynamically, provided that they keep FNP(k)∈ [0, 1], as
the linear and sigmoid-type functions displayed in Fig. 3:

4 2

4 2
()

1

−

−
=

+

k
N

k
N

f k e

e

Fig. 3. Some incremental functions for dynamic tuning of the FNP. N is
the total number of nodes, and k is the counter of iterations number.

It is also possible to assign different values or
functions to each cluster. For a neither conservative nor
greedy approach, set FNP = 0.5.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(k
)

k

() =
k

f k
N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

f(k
)

Journal of Industrial Engineering 3(2009)49-58

53

2.3. Main Steps

A) For the starting cluster, So, find the first degree
neighbor (i.e. the closest cluster) and the second degree
neighbor (i.e. the second closest cluster):

{ }1 , ,() ,= ∀ ∈≤
o j o io j S S S S iN S S x x S W

{ }12 , ,() \ (),= ∀ ∈≤
o k o io k S S S S i oN S S x x S W N S

B) For the clusters N1(So) and N2(So), find each one’s
closest unvisited cluster such that:

{ }1 11 1 (), (), 2(()) \ (),= ∀ ∈≤
o l o io l N S S N S S i oN N S S x x S W N S

{ }2 21 2 (), (), 1(()) \ (),= ∀ ∈≤
o m o io m N S S N S S i oN N S S x x S W N S

C) For determining the next cluster to be visited (Snew),

check:

1 1 1 1

2 2 1 2

, () (), (())

, () (), (())

(1)

(1)

⋅ + − ⋅ ≤

⋅ + − ⋅
o o o o

o o o o

S N S N S N N S

S N S N S N N S

FNP x FNP x

FNP x FNP x
 (9)

If the above condition holds, then Snew = N1(So));
otherwise, Snew = N2(So)). This means that Snew is a
neighboring cluster of the current cluster So that has a
less moment from So. For a better understanding of the
above equations refer to Fig. 4.

Fig. 4. A representation of relative positions of clusters, with their
gravity centers (shown with black solid dots), and containing nodes
(white circles). The hatched node signifies the starting node, and the
arrows show paths used for determining the next node to visit in Step D.

D) In order to select the next visiting node Pnew in Snew, for
each node in Snew compute:

{ }, ,= +
o i i jPi j P P P PC Max x x , (10)

where { }1 2, , (), () .∈ ∈∀ ∈ ∀ ∈ new newo o i new j N S N S WP S P S P

For instance in Fig. 4, if the hatched node is Po ∈ So and
Snew = N2(So), then the solid and dashed arrows outgoing
from each node Pi ∈ N2(So) are used to compute (10).

The next node to be visited is the one with minimal cost:

() ,argmin .= ∀ ∈new i i newCPP P S (11)

In other words, Pnew is a node which its maximum integral
moment about the last visited node and either of its two
closest clusters is the least among all other nodes in Snew.

E) Set So = Snew, Po = Pnew.
 Update W = W \ So.
 While W ≠ ∅ go to step A, else stop.

Like many other heuristics, the moment-based
algorithm is also sensitive to the starting point. It is
recommended to start with a cluster which has the
minimum total closeness ranking, i.e. its columnar sum in
the CCR matrix is the least among all clusters. The
maximum iterations required to complete the tour is
m − 1, where m is the total number of clusters.

In order to illustrate the algorithm’s performance, its
application to a sample problem is provided bewlow.

2.4. A Numerical Example

A set of 12 nodes is partitioned into 6 clusters, as
depicted in Fig. 5. The coordinates of nodes are not
available, but the traveling Cost Matrix C is given bellow.
Find a minimal cost tour such that all clusters are covered
once and only one node within each cluster is visited.

C
S1 S2 S3 S4 S5 S6

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

S1 P1 7 6 11 10 9 6 11 5 14 12 8

S2
P2 7

11 15 6 22 12 14 30 25 19

P3 6 10 10 12 18 24 31 25 17 26

S3

P4 11 11 10

20 17 32 41 29 21
P5 10 15 10 10 18 51 26 41 25
P6 9 6 12 19 27 54 65 25 23

S4
P7 6 22 18 20 10 19

10 26 32 47

P8 11 12 24 17 18 27 12 24 58 61
S5 P9 5 14 31 32 51 54 10 12 11 32 21

S6

P10 14 30 25 41 26 65 26 24 11
 P11 12 25 17 29 41 25 32 58 32

P12 8 19 26 21 25 23 47 61 21

Fig. 5. A schematic of the 12 nodes and 6 clusters in the example. Note
that the nodes’ locations are not exact.

P12

P2

P3

P4

P5
P6

P7

P8

P9

P10

P11 P1

Clusters Nodes

S1

S2

S3 S4

S5

S6

N1(So)

So

N2(So) N1(N2(So))

N1(N1(So))

Elips masehian / New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman ...

54

Preprocessing Steps

a) Set W = {S1, S2, S3, S4, S5, S6}

b – g) Form the Average Cost Matrix C . Note that since
the data for clusters’ distances are unavailable, we can
take C as the Average Moment Matrix X.

C S1 S2 S3 S4 S5 S6

S1 6.5 10 8.5 5 11.33

S2 6.5 10.66 19 22.5 23.66

S3 10 10.66 18.5 45.66 32.88

S4 8.5 19 18.5 11 41.33

S5 5 22.5 45.66 11 21.33

S6 11.33 23.66 32.88 41.33 21.33

h) Form the Cluster Closeness Ranking (CCR) matrix:

CCR S1 S2 S3 S4 S5 S6

S1 2 3 4 1 5
S2 1 2 3 4 5
S3 1 2 3 5 4
S4 1 4 3 2 5
S5 1 4 5 2 3
S6 1 3 4 5 2

i) Set So = S1, Po = P1, W = {S2, S3, S4, S5, S6}.

j) Set FNP = 0.5. Since cluster 1 has the least columnar
sum and so is closer to all other clusters, it is
appropriately set as the depot (starting point).

Iteration 1

A) N1(S1) = S5
 N2(S1) = S2.
B) N1(S5) = S4
 N1(S2) = S3.
C) (0.5)5 + (1 − 0.5)11 = 8
 (0.5)6.5 + (1 − 0.5)10.66 = 8.58
 Next visiting cluster: Snew = S5.
D) Node P9 selected.
E) So = S5, Po = P9, W = {S2, S3, S4, S6}.

Iteration 2

A) N1(S5) = S4
 N2(S5) = S6.
B) N1(S4) = S3
 N1(S6) = S2.
C) (0.5)11 + (1 − 0.5)18.5 = 14.75
 (0.5)21.33 + (1 − 0.5)23.66 = 22.5
 Next visiting cluster: Snew = S4.

D) On node P7:
Max {(10+22), (10+18), (10+20), (10+10), (10+19)} = 32
 On node P8:
Max {(12+12), (12+24), (12+17), (12+18), (12+27)} = 39
 Node P7 selected.
E) So = S4 , Po = P7, W = {S2, S3, S6}.

Iteration 3

A) N1(S4) = S3
 N2(S4) = S2.
B) N1(S3) = S2
 N1(S2) = S3.
C) (0.5)18.5 + (1 − 0.5)10.66 = 14.58
 (0.5)19 + (1 − 0.5)10.66 = 14.83
 Next visiting cluster: Snew = S3.
D) On node P4:
Max{(20+11), (20+10), (20+41), (20+29), (20+21)} = 61
 On node P5:
Max{(10+15), (10+10), (10+26), (10+41), (10+25)} = 51
 On node P6:
Max{(19+6), (19+12), (19+65), (19+25), (19+23)} = 84
 Node P5 selected.
E) So = S3 , Po = P5, W = {S2, S6}.

Iteration 4

A) N1(S3) = S2
 N2(S3) = S6.
B) N1(S2) = S6
 N1(S6) = S2.
C) (0.5)10.66 + (1 − 0.5)23.66 = 17.16
 (0.5)32.88 + (1 − 0.5)23.66 = 28.27
 Next visiting cluster: Snew = S2.
D) On node P2: Max {(15+30), (15+25), (15+19)} = 45
 On node P3: Max {(10+25), (10+17), (10+26)} = 36
 Node P3 selected.
E) So = S2 , Po = P3, W = {S6}.

Iteration 5

A) N1(S2) = S6.
 Next visiting cluster: Snew = S6.
D) On node P10: Max{(25+14)} = 39 (distance to node P1)
 On node P11: Max{(17+12)} = 29 (distance to node P1)
 On node P12: Max{(26+8)} = 34 (distance to node P1)
 Node P11 selected.
E) So = S6 , Po = P11, W = ∅.

The solution to the problem is therefore the tour:

P1 → P9 → P7 → P5 → P3 → P11 → P1

with a total cost of 64. By choosing other starting nodes
or other patterns for the First Neighbor Preference (FNP),
alternative solutions may be obtained.

Journal of Industrial Engineering 3(2009)49-58

55

3. Algorithm for Multi-Vehicle Single-Depot GTSP

The Generalized Traveling Salesman Problem
discussed so far has only one traveler; that is, the
proposed algorithm yields an itinerary for a single
vehicle. A more general case is when there are k vehicles
(1 < k < number of clusters) available at the depot, each
one ready to cover a sub-tour of the whole route, such that
all clusters should be visited, again through a single node
within. It should be noted that the number of vehicles
actually planned could be less that k, in which case some
of vehicles may remain unutilized.

The details of an iterative algorithm for solving a
multi-vehicle single-depot GTSP are presented below. At
each iteration of the algorithm, in addition to determining
the next cluster and the node within to be visited, the
visiting vehicle is decided as well.

3.1. Preprocessing Steps

a) Calculate the Cost Matrix (C), Distance Matrix (D),
Average Cost Matrix (C), Average Distance Matrix (
D), and Average Moment Matrix (X) as described in
the Section 2.1.

b) Determine the starting cluster and the starting node
within (serving as depot), So and Po, respectively. If
not specified, select them arbitrarily.

c) Taking So
k as the last cluster visited by vehicle k, and

Po
k as the last visited node within cluster So

k, initially
set So

k = So, ∀ vk ∈ V, in which V is the set of vehicles.
d) Set W = {S1, S2, …, Sm} \ So as the set of clusters

available for every vehicle. Note that a cluster can
only be visited by a singe vehicle.

3.2. Main Steps

A) Among the unvisited clusters Sj, to determine the next
cluster to be visited and the visiting vehicle, for each
vehicle vk calculate a minimal cost for such a trip by:

,,
+=k

j k j oo j S SS Sc x x , ∀ Sj ∈ W (12)

{ } , .= ∀k
k jj

c Min c j (13)

in which ,k
o jS S

x is the distance between the gravity

centers of clusters So
k and Sj, obtained from the matrix

C . This means that for every vehicle vk located on its
last visited point, the least cost of moving to a new
unvisited point and returning to the depot afterwards is
computed. This step guarantees a closed tour for each
vehicle.

The next vehicle to move is:

vnew = {vk | ck ≤ ci, ∀ k, i ∈ V}, (14)

and the next cluster to visit is:

Snew = {Sj | cj
vnew ≤ ci

vnew, ∀ j, i ∈ W}. (15)

Update W = W \ Snew.

Note that since we assume the vehicles are identical
and are located in the only depot at the beginning, the
ck

j and ck for all vehicles are equal at the first iteration,
and so the first vehicle to move is selected arbitrarily.

B) In order to determine the next node to be visited by the
vehicle vnew, for each node Pi in Snew compute:

{ },,new

new

i jo i
v

v
P P PP Pi j

C Max x x= + (16)

where
{ }1 2, , (), () .newv k

new newo o i new j N S N S WP S P S P∈ ∈∀ ∈ ∀ ∈

The next node is the one with minimal cost:

,argmin .newv
new Pi newiCP P S 

 
 

= ∀ ∈ (17)

In other words, Pnew is a node which its maximum
integral moment about the last visited node and either
of its two closest clusters is the least among all other
nodes in Snew.

C) Set Po
k = Pnew

 So
k = Snew

 while W ≠ ∅ go to step A, else stop.

For further clarification of the algorithm’s
performance, a sample problem is solved below.

3.3. A Numerical Example

Solve a 2-vehicle GTSP for the sample problem
introduced in the Section 2.4, assuming that the vehicles
start their tours from node P2 in the cluster S2 (see Fig. 5).

Preprocessing Steps

a) The matrices X =C and CCR are calculated as before.
b) So = S2, Po = P2.
c) Po

1 = Po
2 = P2, So

1 = So
2 = S2.

d) W = {S1, S3, S4, S5, S6}

Iteration 1

A) c1 = c2 = Min{(xS2,S1+xS1,S2),(xS2,S3+xS3,S2),(xS2,S4+xS4,S2),
 (xS2,S5+xS5,S2), (xS2,S6+xS6,S2)} = Min{(6.5+6.5),
 (10.66+10.66), (19+19), (22.5+22.5), (23.66+23.66)}
 = 13.
 vnew = v1 (arbitrarily), Snew = S1, W = {S3, S4, S5, S6}.
B) Pnew = P1 (since it is the only node in S1).
C) Po

1 = P1, Po
2 = P2, So

1 = S1, So
2 = S2.

Elips masehian / New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman ...

56

Iteration 2

A) c1 = Min{(xS1,S3+xS3,S2), (xS1,S4+xS4,S2), (xS1,S5+xS5,S2),
 (xS1,S6+xS6,S2)} = Min{(10+10.66), (8.5+19),
 (5+22.5), (11.33+23.66)} = 20.66
 c2 = Min{(xS2,S3+xS3,S2), (xS2,S4+ xS4,S2), (xS2,S5+xS5,S2),
 (xS2,S6+xS6,S2)} = Min{(10.66+10.66), (19+19),
 (22.5+22.5), (23.66+23.66)} = 21.33
 vnew = v1, Snew = S3, W = {S4, S5, S6}.
B) On node P4 and for ∀ Pj ∈ {S4, S6}:
 C1

P4 =Max{(xP1,P4+xP4,P7), (xP1,P4+xP4,P8), (xP1,P4+xP4,P10),
 (xP1,P4+xP4,P11), (xP1,P4+xP4,P12) = Max{(11+20),
 (11+17), (11+41), (11+29), (11+21)} = 52
 On node P5 and for ∀ Pj ∈ {S4, S6}:
 C1

P5 =Max{(xP1,P5+xP5,P7), (xP1,P5+xP5,P8), (xP1,P5+xP5,P10),
 (xP1,P5+xP5,P11), (xP1,P5+xP5,P12) = Max{(10+10),
 (10+18), (10+26), (10+41), (10+25)} = 51
 On node P6 and for ∀ Pj ∈ {S4, S6}:
 C1

P6 =Max{(xP1,P6+xP6,P7), (xP1,P6+xP6,P8), (xP1,P6+xP6,P10),
 (xP1,P6+xP6,P11), (xP1,P6+xP6,P12) = Max{(9+19),
 (9+27), (9+65), (9+25), (9+23)} = 74
 Pnew = P5.
C) Po

1 = P5, Po
2 = P2, So

1 = S3, So
2 = S2.

Iteration 3

A) c1 = Min{(xS3,S4+xS4,S2), (xS3,S5+xS5,S2), (xS3,S6+xS6,S2)}
 = Min{(18.5+19), (45.66+22.5), (32.88+23.66)}
 = 37.5
 c2 = Min{(xS2,S4+ xS4,S2), (xS2,S5+xS5,S2), (xS2,S6+xS6,S2)}
 = Min{(19+19), (22.5+22.5), (23.66+23.66)}
 = 38
 vnew = v1, Snew = S4, W = {S5, S6}.
B) On node P7 and for ∀ Pj ∈ {S5, S6}:
 C1

P7 = Max{(xP5,P7+xP7,P9), (xP5,P7+xP7,P10),
 (xP5,P7+xP7,P11), (xP5,P7+xP7,P12)}
 = Max{(10+10), (10+26), (10+32), (10+47)} = 57
 On node P8 and for ∀ Pj ∈ {S5, S6}:
 C1

P8 = Max{(xP5,P8+xP8,P9),(xP5,P8+xP8,P10),
 (xP5,P8+xP8,P11), (xP5,P8+xP8,P12)}
 = Max{(18+12), (18+24), (18+58), (18+61)} = 79
 Pnew = P7.
C) Po

1 = P7, Po
2 = P2, So

1 = S4, So
2 = S2.

Iteration 4

A) c1 = Min{(xS4, S5 + xS5, S2), (xS4, S6 + xS6, S2)}
 = Min{(11+22.5), (41.33+23.66)} = 33.5
 c2 = Min{(xS2, S5 + xS5, S2), (xS2, S6 + xS6, S2)}
 = Min{(22.5+22.5), (23.66+23.66)} = 45
 vnew = v1, Snew = S5, W = {S6}.
B) Pnew = P9 (since it is the only node in S5).
C) Po

1 = P9, Po
2 = P2, So

1 = S5, So
2 = S2.

Iteration 5

A) c1 = Min{(xS5,S6+xS6,S2)} = Min{(21.33+23.66)} = 45
 c2 = Min{(xS2,S6+xS6,S2)} =Min{(23.66+23.66)}= 47.33
 vnew = v1, Snew = S6, W = ∅.
B) On node P10 and Pj = P2:
 C1

P10 =Max{(xP9,P10+xP10,P2)} = Max{(11+30)} = 41
 On node P11 and Pj = P2:
 C1

P11 =Max{(xP9,P11+xP11,P2)} = Max{(32+25)} = 57
 On node P12 and Pj = P2:
 C1

P12 =Max{(xP9,P12+xP12,P2)} = Max{(21+19)} = 40
 Pnew = P12.
C) Po

1 = P12, Po
2 = P2, So

1 = S6, So
2 = S2.

The solution to the problem is therefore the tours:

Vehicle 1: P2 → P1 → P5 → P7 → P9 → P12 → P2
Vehicle 2: Unused
Total cost = 7 + 10 + 10 + 10 + 21 + 19 = 77.

4. Algorithm for Multi-Vehicle Multi-Depot GTSP

Suppose that the initial location of the vehicles is not
bound to a specific depot, and there are multiple depots.
So the problem is to determine the initial location of each
vehicle, such that it starts and ends a trip from a specific
point.

Because the Average Moment Matrix (7) will vary for
each vehicle k, it is wise to locate each vehicle close to
the gravity center of each cluster of nodes, calculated on
the basis of the vehicle’s own Cost Matrix. Note that
never can two vehicles visit a single cluster, and so the
available clusters at the beginning are the non-depot
clusters.

Assuming that Mk is the set of clusters visited by
vehicle k (including the cluster containing its depot), and
Nk is the set of visited nodes, the Average Moment of
these points would be

,

, ,= ∀ ∈
∑ ∑ k

i j
i jk

S kk k

x
X i j N

M
. (18)

in which kM is the number of clusters visited by
vehicle k.

The Preprocessing and Main steps of the multi-depot
variant of the algorithm are the same as described in the
Section 3, except for the Step A, which should be
replaced with the following:

A) To determine the next cluster to be visited, and the
visiting vehicle, calculate:

Journal of Industrial Engineering 3(2009)49-58

57

, ,
+=k

j k kk ko j j Sk
XS S S

c x x (19)

{ } , .∀ ∈= k
k jj

j Wc Min c (20)

The next vehicle to move is:

vnew = {vk | ck ≤ ci, ∀ k, i ∈ V}, (21)

and the next cluster to visit is:

Snew = {Sj | cj
vnew ≤ ci

vnew, ∀ j, i ∈ W}. (22)

Applying the above modification causes a group of

clusters close to the initial location of a certain vehicle to
be allocated to that vehicle, thus minimizing the total
traveling distance of each vehicle.

5. Discussion and Conclusion

The standard traveling salesman problem is the source
of many NP-hard problems. An interesting extension to
this problem is the GTSP, where the single nodes are
replaced with a cluster of them. The heuristic algorithms
proposed in this paper suggest efficient and fast solutions
to single-vehicle and multi-vehicle GTSP problems by
completing the route through a number of iterations and
selecting the next cluster, and afterwards the appropriate
node within, by a predictive method, thus avoiding a
shortsighted approach. The multi-vehicle GTSP algorithm
tackles both single-depot and multi-depot GTSPs.

An effective parameter for controlling the searching
process is the First Neighbor Preference (FNP), which
enables the algorithm to fluctuate between
conservativeness and greediness, by varying between 0
and 1. An interesting additional control over the searching
strategy is gained through the possibility of tuning the
FNP dynamically, such that for instance, it can be set to
lower values (nearly 0) to have the algorithm act
conservatively, and then be gradually increased (toward
1) to expedite and focus the search.

The time complexity of the preprocessing phase is in
O(n2), n being the number of nodes, due to forming and
sorting of the Cost, Distance, and Moment n × n matrices.
The main steps of the single-vehicle algorithm take O(n)
time since the total number of iterations is n − 1, and at
each iteration the number of calculations performed to
determine the next cluster and node to visit is in linear
time. Therefore, the Total time complexity of the single-
vehicle problem will be in O(n2), which is consistent with
that of the nearest-neighbor algorithm. The total number
of iterations in the multi-vehicle algorithm is n − 1, and
the main steps take O(kn) time as k tours must be

calculated at each iteration, and so the time complexity of
the multi-vehicle algorithm will be also O(n2).

A variation to the algorithm is obtained by taking a
representative node as the gravity center of a cluster, thus
obviating the need for calculating the clusters’ centers, as
done in (3).

In order to increase the ‘exactness’ of the algorithm
and slacken its heuristic nature, we can extend and
complicate the calculation of the next visiting cluster
beyond the two levels implemented in steps A, B and C of
the single-vehicle algorithm (Section 2.3), or the step A in
the multi-vehicle algorithm (Section 3.2). That is, instead
of just determining the nearest 2 clusters of the current
position (based on which the next cluster to be visited is
calculated in (9)), we can determine the nearest k clusters
as follows:

, ()
=1

= argmin ⋅
  =   
  

∑ o j o

k

new i j S N S
j

S S i FNP x , (23)

1

1
k

j
j

FNP
=

=∑ ,

in which , ()o j oS N Sx is the moment (i.e. cost × distance) of

the j-th nearest cluster to the current cluster So. This
means that Snew, the next cluster to visit from the current
cluster, is the one having the minimal total moment up to
k levels from the current cluster.

The implementation of the algorithm is very easy and
straightforward, as featured in the solved problems.
Experimental results showed fast performance of the
algorithm, and optimal or suboptimal solutions to the
many solved problems.

References

[1] Ben-Arieh D., Gutin G., Penn M., Yeo A., and Zverovitch A.,
Transformations of generalized ATSP into ATSP: Experimental
and theoretical study, Operations Research Letters, Vol. 31, pp.
357-365, 2003.

[2] Bodin L., Golden B., Assad A. and Ball M., Routing and
scheduling of vehicles and crews – the state of the art, Computers &
Operations Research, Vol. 10, No. 2, pp. 63-211, 1981.

[3] Christofides N., Uses of a vehicle routing and scheduling system in
strategic distribution planning, Scandinavian Journal of Mat.
Admin., Vol. 7, No. 2, pp. 39-55, 1981.

[4] Crowder H. and Pedberg M., Solving large-scale symmetric
traveling salesman problems to optimality, Management Science,
Vol. 26, No. 5, pp. 495-509, 1980.

[5] Dror M. and Haouari M., Generalized Steiner problems and other
variants, Journal of Combinatorial Optimization, Vol. 4, pp. 415-
436, 2000.

[6] Garey M., Graham R. and Johnson D., Some NP-complete
geometric problems, in Proceedings of the 8th SIGACT Symposium
on the Theory of computing, pp. 10-22, 1976.

[7] Glicksman H. and Penn M., Approximation algorithms for group
prize-collecting and location-routing problems, Discrete Applied
Mathematics, Vol. 156, pp. 3238-3247, 2008.

Elips masehian / New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman ...

58

[8] Gutin, G. and Karapetyan D., Generalized traveling salesman
problem reduction algorithms, to appear in Algorithmic Operations
Research, arXiv: 0804. 0735v2, 2009.

[9] Held M. and Karp R., The traveling salesman problem and
minimum spanning trees, Operations Research, Vol. 18, pp. 1138-
1162, 1970.

[10] Henry-Labordere A.I., The record balancing problem: A dynamic
programming solution of the generalized traveling salesman
problem, RIRO B-2, pp. 43-49, 1969.

[11] Karp R., Reducibility among combinatorial problems, in
Complexity of Computer Computations, R. Miller and J. Thatcher
(Eds.), Plenum Press, New York, pp. 85-104, 1972.

[12] Laporte G. and Palekar U., Some Applications of the Clustered
Traveling Salesman Problem, Journal of the Operational Research
Society, Vol. 53, No. 9, pp. 972-976, 2002.

[13] Miliotis P., Integer programming approaches to the traveling
salesman problem, Mathematical Programming, Vol. 10, pp. 367-
378, 1976.

[14] Noon C.E. and Bean J.C., A Lagrangian based approach for the
symmetric generalized traveling salesman problem, Operations
Research, Vol. 39, pp. 623-632, 1991.

[15] Noon C.E. and Bean J.C., An efficient transformation of the
generalized traveling salesman problem, Technical Report 91-26,
University of Michigan, October 1991.

[16] Papadimitriou C., The Euclidean traveling salesman problem NP-
complete, Theoretical Computer Science, Vol. 4, No. 3, pp. 237-
244, 1977.

[17] Pop P.C., New integer programming formulations of the
generalized traveling salesman problem, American Journal of
Applied Sciences, Vol. 4, No. 11, pp. 932-937, 2007.

[18] Renaud J. and Boctor F.F., An efficient composite heuristic for the
Symmetric generalized traveling salesman Problem, European
Journal of Operations Research, Vol. 108, No. 3, pp. 571-584,
1998.

[19] Rosenkrantz D., Sterns R. and Lewis P., An analysis of several
heuristics for the traveling salesman problem, SIAM Journal of
Computation, Vol. 6, pp. 563-581, 1977.

[20] Snyder L.V. and Daskin M.S., A random-key genetic algorithm for
the generalized traveling salesman problem, European Journal of
Operational Research, Vol. 174, pp. 38-53, 2006.

[21] Tang H. and Miller-Hooks E., Solving a generalized traveling
salesperson problem with stochastic customers, Computers &
Operations Research, Vol. 34, pp. 1963-1987, 2007.

