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Abstract 

In this study, we discuss the capacitated facility location-allocation problem with uncertain parameters in which the uncertainty is 
characterized by given finite numbers of scenarios. In this model, the objective function minimizes the total expected costs of 
transportation and opening facilities subject to the robustness constraint. To tackle the problem efficiently and effectively, an efficient 
hybrid solution algorithm based on several meta-heuristics and an exact algorithm is put forward. This algorithm generates neighborhoods 
by combining the main concepts of variable neighborhood search, simulated annealing, and tabu search and finds the local optima by using 
an algorithm that uses an exact method in its framework. Finally, to test the algorithms’ performance, we apply numerical experiments on 
both randomly generated and standard test problems. Computational experiments show that our algorithm is more effective and efficient in 
term of CPU time and solutions quality in comparison with CPLEX solver. 
Keywords:Capacitated Facility Location-allocationProblem, Single Allocation, Uncertainty, Hybrid Algorithm.

1. Introduction 

Facility location problems are generally concerned with 
how to locate some facilities and how to allocate a given set 
of clients to them, subject to various constraints and aiming 
to optimize some objectives such as minimizing 
transportation cost. These problems have been extensively 
investigated and encompass a wide range of literature and 
numerous applications in operations management (Owen and 
Daskin, 1998; Melkote and Daskin, 2001; Marianov and 
Serra, 2002; Manzour-al-Ajdad; Torabi et al., 2012).In line 
with this subject, many models have been introduced and 
solved in the literature(Brandeau and Chiu, 1989; Ghiani, 
Guerriero et al., 2002; Pasandideh and Chambari, 2010; 
Ghaderi, Jabalameli et al., 2011) in which the Capacitated 
Facility Location Problem, CFLP, due to its real assumption 
has attracted the attention of several researchers(Küükdeniz, 
Baray et al., 2012; Yin and Mu, 2012). The CFL P assumes 
that each facility has a limited capacity to serve the 
customers. Likewise, it covers a substantial scope of 
application, such as determining the location of schools, 
hospitals, fire service stations; location of warehouses in a 
supply chain; production planning; telecommunication  

 

 
 
 
 

network design, power stations, and so forth. Although this 
problem can be easily understood, it is intractable from 
thecomputational point of view. The CFLP is an NP-hard 
problem which is generalized from the simple plant location 
problem. As a result, a lot of solution algorithms have been 
used to solve the CFLP. In this regard, Lagrangean 
Relaxation(LR)is widely considered in the literature as an 
efficient solution algorithm to solve the capacitated 
problems.Cornuejols, Sridharan et al. (1991) provided an 
excellent theoretical analysis of all possible Lagrangean 
relaxations and the linear programming relaxation for the 
CFLP. Beasley (1993)presented a solution framework based 
on langrangian to solve different facility location problems. 
In the proposed method for the CFLP, allocation constraints 
and facilities' capacity constraints are incorporated into the 
objective function by Lagrangian multipliers  . Barahona and 
Chudak (2005)firstly provided the linear programming 
relaxation of the CFLP and then applied the Lagrangean 
relaxation to solve the linear problem. Similarly, exact 
methods are developed to solve the CFLP, for example,Sa 
(1969)relaxed the CFLP to obtain the transportation problem 
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andNauss (1978) relaxed capacities constraints and added a 
set of surrogate constraints to obtain tighter bounds. 

Moreover,Sun (2011) applied the Tabu Search (TS)to 
solve the CFLP and compared it with the Lagrangean and the 
surrogate/Lagrangean heuristic methods.In the study, a long 
term memory based on primogenitary linked the quad tree to 
store the visited solutions and prohibit them from being 
generated again.Korupoluet al. (2000) proposed a simple 
local search heuristic for the capacitated facility location 
problem. Hindi and Pienkosz (Hindi and Pienkosz, 1999) 
developed a heuristic based on the Lagrangean relaxation 
with the VNS to solve the capacitated single source location 
problem. Fleszar and Hindi (2008) proposed an efficient 
variable neighborhood search heuristic for the capacitated P-
median problem.Manzour-al-Ajdadet al. (2012)developed an 
iterative two-phase heuristic algorithm to solve the single-
source capacitated multi-facility weber problem. They also 
proposed a Simulated Annealing (SA) algorithm to complete 
the first phase of their algorithm. Last but not least,Leitner 
and Raidl (2012) proposed algorithms based on the variable 
neighborhood search and the greedy randomized adaptive 
search to solve the connected facility location problem.  

Despite these attentions, the researchers have mainly 
considered the CFLP with deterministic data while in the 
reality this assumption is rarely satisfied. Facility location 
decisions are long-term decisions and almost impossible to 
change. On the other hand, utilized data in managerial 
decisions are usually incomplete and there is no historical 
information to estimate the models’ key parameters 
effectively. Therefore, optimizing under uncertainty in 
location problems has received increasing attention during 
the last decade(Snyder, 2006; Nikoofal and Sadjadi, 2010; 
Murali, Ordóñez et al., 2012), and several approaches are 
proposed to tackle the uncertainty. These approaches 
typically employ robust or stochastic optimization.Robust 
models typically minimize the worst scenario which yields in 
intractable models and too conservative solutions. On the 
other hand, stochastic models usually minimize the expected 
cost which may perform poorly in the long run and under a 
certain realization of random data. However, a new 
optimization approach is introduced by Snyder and Daskin 
(2006)which minimizes the expected costs while relative 
regret in each scenario must not be greater than a positive 
value, known as the robustness coefficient.They combined 
the minimum-expected-cost and p-robustness measures 
together to introduce the stochastic p-robust optimizing 
model .This approach was adopted for the classical models 
of the UFLP and P-median problem(PMP). The researchers 
intended to find a solution that had the minimum-expected-
cost while the obtained solution was p-robust, i.e., the cost 
under each scenario for each feasible solution must be within 
100(1+p)  %  of the optimal cost for that scenario(p is the 
robustness measurement).They solved the proposed models 
by using Lagrangian decomposition. The proposed algorithm 
reduces problems to the multiple-choice knapsack problem. 
They also discussed a mechanism for detecting infeasibility. 
In the present study, we use this approach to resolve the 
uncertainty which may appear in the key parameters of the 

CFLP. For further discussion on this approaches, the readers 
may read the work presented by Rahmanini et al. 

In short, our problem is locating several capacitated 
facilities in a network to service a given set of customers. 
These customers can only receive service from one facility 
and each customer should be completely satisfied. Moreover, 
the objective function minimizes transportation and 
operating costs. In order to face the today’s fierce and 
changing business environment more appropriately, we 
assume that the key parameters are uncertain and the 
uncertainty is associated with demands and distances. The 
uncertain parameters are characterized with a given number 
of scenarios in which each scenario has a specific probability 
to occur. Furthermore, we discuss both robust and stochastic 
formulation and present the stochastic p-robust formulation 
for the problem in hand. Moreover, from a computational 
point of view it is very challenging to solve this problem. As 
a result, we propose an algorithm to tackle the problem 
effectively. This algorithm is a combination of the variable 
neighborhood search, simulated annealing, tabu search, and 
an exact method. To test its performance, we solve a wide 
range of test instances and compare the computational results 
of the algorithm with the CPLEX. 

The reminder of this paper is organized as follows: in the 
next section the mathematical formulation of the problem is 
presented. A solution approach based on the VNS is 
presented to solve the problem in Section 3.Our numerical 
experiment is summarized in Section 4 and finally our 
conclusion is discussed in Section 5. 

2. Model Formulation  

In this part, we address the problem descriptions and its 
mathematical formulation. To begin with, we present the 
notations and assumptions and then we discuss the problem’s 
mathematical formulation.  

2.1 Notations and Assumptions 

For the sake of convenience in presenting the 
mathematical formulation in this article, the following 
notations are defined to be used throughout the paper.The 
index sets and model parameters are respectively described 
in Table 1.  
Table1 
Index sets 

Symbol Indexed by Description 

I   1, 2, ...,i I  set of costumers; 

S   1, 2, ...,s S  Set of scenarios; 

J   1, 2, ...,j J  set of potential facility site; 

 
In this problem, we have |I| centers of customers and a 

number of facilities which are to be located at |J| potential 
sites.  These facilities which have limited capacity, C, should 
satisfy customers’ demands in such a way that the total 
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construction costs and travel costs are minimized. Since 
locating a large number of facilities is highly undesirable, we 
confine the number of facilities to V. Moreover, in order to 
deal with the today’s fierce and changing environment more 
appropriately, we assume that the model’s parameters are 
under uncertainty and we have no specific probability 
distribution at hand to estimate them. Accordingly, we 
estimate the demands, set-up costs, and distance by using 
several discrete scenarios. Each scenario has a specific 
probability of occurrence, Sq , which also shows the 
importance of that scenario in decision making.  
 
Table 2 
Input parameters  

Symbol Description 
퐷  Demand at node i under scenario s 
푓  The set-up cost of facility on node j under scenario s 
푙  Travel distance between nodes i and j under scenario s 
푞

 
Probability of scenario s 

푉 Number of maximum allowable facilities for locating 
C

 
Capacity of facilities 

p Desired robustness coefficient 

푍∗ optimal objective value of the CFLP under the data from 
scenario s 

 
The decisions of the problem in hand include two sets of 

decisions regarding facilities’ location and costumers’ 
assignment. Likewise, according to the stochastic nature of 
the problem, we partition these decisions into two stages. As 
a result, the location variables (y) unlike the assignment 
variables (X) are independent of the s index to reflect the 
two-stage nature of the problem. 

 
if one facility is located at node j 1

0jy 




 
Otherwise 

if node i is assigned to the facility located at 
node j under scenario s ,

1

0
s
i jX 





 
Otherwise 

 
2.2 The mathematical formulation of the CFLAP under 

uncertainty 

In the robust optimization approaches, the objective 
function typically minimizes the worst case or the maximum 
relative regret over all possible scenarios. If we translate this 
perspective into a mathematical formulation, the objective 
function of the problem in hand would be as follows. 

 

푀푖푛 푚푎푥 ∑ 푓 푦 +∈ ∑ ∑ 퐷 푙 푋∈∈ ;	∀푠 ∈ 푆					(1) 

 
Robust models due to their mini max structure are hard to 

solve. Moreover, decisions of a robust model are 
unsurprisingly too conservative and may impose unnecessary 
costs in the long run. However, this approach is widely used 

in the literature to resolve uncertainties especially whenever 
scenarios’ occurrence probabilities are not given. Another 
alternative approach is stochastic programming models. In 
general, the typical stochastic programming may yield 
inexpensive solutions in the long run but perform poorly 
under certain realizations of the random data. In the 
stochastic approach, the objective function of the problem by 
multiplying the probability occurrence of each scenario to the 
objective function of that scenario would be as follows: 

 

푀푖푛 ∑ 푞∈ ∑ 푓 푦 +∈ ∑ ∑ 퐷 푙 푋∈∈ 															(2) 

 
In Eq.(2),the total expected costs of facilities construction 

and transportation are minimized.Moreover, each client 
should be completely satisfied. That means, the sum of total 
satisfied demand for each customer i, should be equal to its 
demand. Since we assume that the problem is a single-
allocation problem, we have constraint (3). 

 

∑ 푋 	∈ = 1							∀푖 ∈ 퐼																																																										(3) 

 
In addition, our facilities have a major constraint on their 

capacity and cannot supply an unlimited amount of demand 
to the customers and logically the customers should be only 
allocated to the facilities. By translating these perspectives 
into mathematical symbols, Eq.(4) represents the capacity 
constraint of our model.  

 

∑ 퐷 푋 	∈ ≤ 퐶	푦 							∀푖 ∈ 퐼, ∀푠 ∈ 푆																															(4) 

 
As mentioned before in this section, stochastic models 

may not perform well under certain realizations of data. For 
example, when disruption happens, the facilities may fail to 
serve customers. To overcome this problem and avoid the 
intractable structure of robust models, Snyder and Daskin 
(2006) introduced the stochastic p-robust optimization 
approach. In this approach, the objective function minimizes 
expected costs while the p-robustness condition is 
incorporated into constraints. One of the main goals of this 
approach is to design a more robust system with a little 
increase in the expected costs. 

 

∑ 푓 푦 +∈ ∑ ∑ 퐷 푙 푋∈∈ ≤ (1+ 푝)푍∗	∀푠 ∈ 푆															(5) 

 
Accordingly, Eq.(5) represents the p-robustness 

constraint. In this constraint, the objection function of each 
scenario(푠 ∈ 푆) should not be greater than(1 + 푝)% optimal 
cost of that scenario.Finally, Eq.(6) specifies the maximum 
number of facilities that can be open and Eq.(7 and 8) 
indicate decision variables.     
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푦 ≤ 푉
∈

 (6) 

푋 ∈ {0, 1}∀푖 ∈ 퐼, ∀푗 ∈ 퐽, ∀푠 ∈ 푆
 

(7) 

푦 ∈ {0, 1}	∀푗 ∈ 퐽
 

(8) 

It is also interesting to note that if 푝 = ∞and|푆| = 1the 
presented mathematical formulation would become 
equivalent to the traditional CFLP. 

3. A Fix-and-Optimize Algorithm 

The developed model is an NP-Hard model since it is an 
extension of another NP-Hard problem under uncertainty. 
Therefore, for realistically sized instances it is very 
challenging to solve most of the test instances within a 
reasonable computer CPU time using the known 
optimization solvers. Therefore, in this article, a fix-and-
optimize heuristic procedure which uses an exact method and 
several meta-heuristics is developed to solve the model.The 
main procedure of neighborhood generation is based on the 
Variable Neighborhood Search (VNS)(Brimberg and 
Mladenovi´c, 1996; Hansen, Mladenovi´c et al., 2010), 
Simulated Annealing (SA)(Pahlavani and Saidi-Mehrabad, 
2011), and Tabu Search (TS)(Sun 2011) while the local 
search is based on a method that uses branch & bound in its 
framework. Generally, the VNS generates next 
neighborhoods based on a specific neighborhood structure 
(i.e. k). In other words, it randomly selects k basic nodes and 
replaces them with k non-basic nodes. This algorithms starts 
with k=1 and if the objective does not improve, the 
neighborhood structure increases by on (푘 ← 푘 + 1) and it 
resets k to one if푘 > 푘 . On the other hand, the SA, 
unlike the VNS, accepts worse moves with a small 
probability in order to escape from being trapped in local 
optima. This probability is calculated by the Boltzmann 
function which uses Eq.(9). 

 

푃푟 = 푒 × ≥ 푟 (9) 

 
where C is change in the evaluation function (i.e. 

퐶 = 퐹 − 퐹 ),훼is a constant, and T is the current 
temperature. If Pr is greater than a random number, r, in 
interval [0, 1], it will accept a worse move. Moreover, in the 
proposed solution algorithm a long-term memory with a 
simple heuristic procedure is applied to store the visited 
moves and prevent them from being visited again. 

 
 
 
 

3.1 Initial solution 

With no doubt, the initial solution has an enormous 
impact on every solution algorithm. Our computational tests 
indicated that the optimal solution of each scenario (i.e. when 
we solve a deterministic CFLP model with data from that 
scenario s)in the most cases has a close gap with the optimal 
solution of the problem.As a result, we randomly take the 
solution of one of the scenarios as the initial solution. 

3.2 Neighborhood generating procedure 

The performance of the proposed algorithm significantly 
depends on the neighborhood structure and other related 
operators. Consequently, using an efficient scheme for 
neighborhood generation is crucial for a successful algorithm 
implementation. As we discussed earlier, the VNS randomly 
replaces k basic nodes with k non-basic nodes and in each 
iteration when the objective function does not improve, it 
increases the neighborhood structure by one until k become 
greater than Kmax or the objective function improves which 
resets k to one. We tested this procedure to solve our model 
but the performance of the algorithm was very weak. As 
majority of the improvement moves are visited when the 
algorithm uses the first neighborhood structure, we modify 
the scheme of changing the neighborhood structure. 
Accordingly, we increase the neighborhood structure if and 
only if the current move does not improve the objective 
function and satisfies the following equation.  

exp − ≥ 푟푎푛푑표푚(0, 1)																																														(10) 

Additionally, in each iteration we use the following 
cooling equation. 

푇 ← 훼 × 푇     (11) 

3.3 Local search  

In this article, we use an exact method to return the local 
optima of the generated solutions. In better words, we use the 
software developed by Ferris (2005)that makes an interface 
between MATLAB and GAMS, in which MATLAB passes 
the generated moves to GAMS and then using the CPLEX 
solver , GAMS determines their local optima while the 
location variables are fixed.  

3.4 Stopping criteria 

The algorithm stops whenever it meets one of the 
following criteria: 

 Elapsing the considered maximum CPU time 
 Achieving the optimal solution  
 The objective function does not improve after 3*|J| 

iterations. 
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Fig. 1. The flow chart of the proposed algorithm 

4. Numerical Experience 

In this part, we present the result of our computational 
study and analyze the algorithm’s efficiency in terms of CPU 
time requirement and optimality gap. The developed model 

was implemented on a range of test problems solved with the 
standard mathematical programming software GAMS 
23.3.3, namely with the branch-and-bound algorithm of 
CPLEX 12.1, and the algorithm was coded in MATLAB 7.6 
on a Personal DELL computer with a 2.22GHz processor 
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solution 
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Yes  

No 

No 
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and 3GB of RAM . Note that in all data sets each node serves 
as both a customer and a potential facility site (i.e., I  =J). 

4.1 Data generation 

To test the efficiency of our algorithm, we solve a variety 
of test problems which include both standard and randomly 
generated test problems. The standard test problems are 
taken from the original authors’ website, Snyder and Daskin 
(2006)  . That means for the standard test problems the data 
used for the uncertain parameters, i.e.푓 ,퐷 , and 푙 , are taken 
from he reference(Snyder and Daskin 2006). These test 
problems have 49 and 55 nodes with 9 and 5 scenarios, 
respectively. 

In the generated test problems, the locations of the 
costumers are generated randomly and uniformly distributed 
over an100 × 100 area.In each data set, demands and fixed 
costs for scenario-1 are drawn uniformly from [0, 10000] and 
[4000, 8000], respectively. Additional scenarios are 
generated by multiplying scenario-1 data by a random 
number drawn uniformly from [0.5, 1.5]. Travel distances 
between the facilities and the customers for scenario-1 are 
considered equal to their Euclidean distances, and other 
scenarios are obtained by multiplying random numbers 
drawn uniformly from [0.5, 1.5] by the scenario-1 data. In 
order to test the algorithm’s capabilities any further, we 
generated symmetrical travel distances in all scenarios 
whereas these values f are nonsymmetrical or the standard 
test problems. 

For the sake of convenience, we assume that all scenarios 
have an equal occurrence probability, or 푞 = 1

푆 . In 
addition, facilities’ capacity is computed by means of 
Eq.(12). In other words, the maximum demand over all 
scenarios is determined and then is divided by the maximum 
allowable number of facilities. Since the number of open 
facilities is equal to or lower than the V facilities, it should be 
possible that the model determines the number of optimal 
open facilities between 1 to V facilities. Thus, an arbitrary 
value(  ) is added to the adequate capacity for V open 
facilities. 

 

퐶 = ∈ ∑ ∈ +																																															(12) 

4.2 Computational results 

The developed model has not been considered formerly 
in the literature. Accordingly, we cannot compare our 
algorithm’s efficiency to the other solution algorithms and, in 

turn, we compare it with the CPLEX solver which is the 
most powerful solver for mixed-integer models.  

In the present paper, we have fixed the maximum CPU 
run time at 2000 seconds for the test problems with up to 50 
nodes and for the other instances at 4000 seconds. Ten and 
fifteen percent of networks nodes, 푉 = (10%	표푟	15%) ×
|퐽|, are considered as the maximum number of facilities. 
Finally, in two cases the proposed algorithm is compared 
with the CPLEX. Accordingly, the computational results of 
the discussed test problems for the minimax regret 
formulation (i.e. Eq.(1, 3, 4, 6, 7, and 8))are reported in Table 
3 and those of the min-expected-cost objective function 
when p=∞ (i.e. Eq.(2, 3, 4, 5, 6, 7, and 8)) are presented in 
Table 4.  

In these tables, the labeled columns under "Test 
Problems"with "TP", "No"., "Fac", and "Scen  " represent the 
number of test problems, number of nodes, number of 
facilities, and number of scenarios, respectively. Moreover, 
the columns under “CPLEX” which are labeled "Lower 
bound","GAP%", and  " CPU Time"symbolize the lower 
bound, the relative error between the final solution and the 
lower bound that is computed by means of Eq. (13) and the 
elapsed CPU time in seconds, respectively. Furthermore, the 
column under “Hybrid Algorithm” which is labeled with 
"Bcpu" reports the elapsed time when the best solution is 
obtained by the algorithm. In addition, the average CPU time 
requirements in seconds and the average gap are listed in the 
last rows. 

푮풂풑% = 푶풃풋. 푳푩
푳푩

× ퟏퟎퟎ																																															(13) 

Note from Table 3 that for those test problems with zero 
gap(TP1 and TP2), on average the heuristic found the 
optimal solutions in less than 12.65 seconds whereas the 
CPLEX required 192.50 seconds.For other instances (TP3-
7), on average the heuristic reported results that by using 
1144.11 seconds have 31.28   % gap while the CPLEX 
reported solutions with 51.32   % gap by elapsing 3200 
seconds. In other words, the VNS was able to reduce the 
average gap and the average elapsed time of the CPLEX 
more than 39.06 % and 64.25 % respectively. 
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Table 3 
 Performance comparison: under minimax regret formulation 

Test Problems 
 

CPLEX 
 

Hybrid Algorithm 

TP No. Fac. Scen. 
 

Lower bound GAP% CPU Time (s) 
 

GAP% Bcpu(s) 

TP1 10 
1 10 

 
0.1082 0.00 3.31 

 
0.00 3.11 

2 10 
 

0.8147 0.00 9.95 
 

0.00 3.23 

TP2 20 
2 10 

 
0.3867 0.00 94.21 

 
0.00 7.94 

3 10 
 

0.2311 0.00 662.54 
 

0.00 36.30 

TP3 40 
4 10 

 
0.1349 19.52 2000 

 
16.98 35.08 

6 10 
 

0.2836 63.11 2000 
 

18.39 473.77 

TP4 49 
5 9 

 
0.0232 4.34 2000 

 
4.34 420.91 

8 9 
 

0.0234 0.86 2000 
 

0.86 275 

TP5 55 
5 5 

 
0.0737 35.18 4000 

 
13.40 1080.93 

9 5 
 

0.0661 31.09 4000 
 

25.47 605.95 

TP6 60 
6 10 

 
0.1040 78.42 4000 

 
40.87 562.36 

9 10 
 

0.0910 89.17 4000 
 

70.47 1538.33 

TP7 80 
8 10 

 
0.0606 95.53 4000 

 
68.97 2925.61 

12 10 
 

0.0785 96.00 4000 
 

53.02 3523.14 

AV.  
 

  36.66 2340.72 
 

22.34 820.83 

 

 
Fig. 2. Performance comparison of the proposed algorithm with CPLEX solver 

 
It is also interesting to compare the obtained feasible 

solutions with each other in addition to the gap comparison. 
To do so, we divided the algorithm results by the CPLEX 
results. The obtained ratio shows a fraction of CPLEX’s 
results which has been obtained by the algorithm. For 
example, 0.40 indicates that the algorithm has been able to 
improve the CPLEX’s result by 60%. The computed results 
are depicted in Figure 2 with "upper bound ratio"and "Time 

ratio” legends. Figure 2 obviously shows that the algorithm 
has performed  much better for all test problems. 
We also tested the attractiveness of our algorithm in 

solving min-expected-cost objective functions.The obtained 
gaps and elapsed times are reported in  
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Table .Our algorithm was able to achieve the optimal 
solution for those instances that their optimality was proved 

by the CPLEX(TP1-2).For these instances on average the 
algorithm used 7.92 seconds of CPU time whereas the 

CPLEX required 40.76 seconds.For other instances(TP3-
TP7), the average time and the average gap obtained by the 

algorithm were 1184.44 and 3.72, whereas these values for 
the CPLEX were 3200 and 6.34respectively.Note from  

Table  that for the TP7 with 5 facilities the CPLEX failed 
to achieve any initial feasible solution while the algorithm 
was able to find a solution that is close to the lower bound 
(i.e., 9.08%).On average, the proposed algorithm obtained 
2.66%gap within849 seconds and the CPLEX was able to 
achieve solutions that have 4.39%gap within 2297.36 
seconds. 

 
Table 4   
Algorithm performance for infinite robustness coefficient (p=∞) 

Test Problems 
 

CPLEX 
 

Hybrid Algorithm 

TP No. Fac. Scen. 
 

Lower bound GAP% CPU Time (s) 
 

GAP% Bcpu(s) 

TP1 10 
1 10 

 
1267514.65 0.00 3.45  0.00 13.21 

2 10 
 

763966.02 0.00 4.43  0.00 4.08 

TP2 20 
2 10 

 
2654621.79 0.00 97.31  0.00 2.18 

3 10 
 

1993644.51 0.00 57.86  0.00 22.20 

TP3 40 
4 10 

 
3234733.69 2.30 2000  1.36 1042.62 

6 10 
 

2448367.03 12.99 2000  3.36 762.34 

TP4 49 
5 9 

 
27791.27 0.11 2000  0.09 653.02 

8 9 
 

42648.34 4.38 2000  4.38 111.21 

TP5 55 
5 5 

 
14502.71 1.66 4000  1.22 116.79 

9 5 
 

15079.76 2.98 4000  0.96 1037.91 

TP6 60 
6 10 

 
3363407.22 8.17 4000  5.89 1077.65 

9 10 
 

2496276.67 5.04 4000  5.04 762.54 

TP7 80 
8 10 

 
4077224.66 "N/A" 4000  9.08 3115.61 

12 10 
 

3035864.14 19.46 4000  5.82 3164.75 

AV.  
 

  4.39 2297.36  2.66 849.00 

4.3 Behavior comparison between the algorithm and the 
CPLEX  

For the standard test problem with 49 nodes and 5 
facilities (TP4), we investigated the behavior of both CPLEX 
and the proposed algorithm in improving their solutions’ 
quality and their convergence speed over time. As a result, 
the CPU times when the solutions improved are recorded and 
the gap of these values with the best known lower bound 
(seeTable3) are calculated. These values are depicted in 
Figure 3.As this plot shows, the proposed initial solution has  

 
less optimality gap in comparison with the first feasible 
solution of the CPLEX. Moreover, after 1600 seconds the 
CPLEX improves its solution for the last time while the 
algorithm has found the same solution quality in 420 
seconds. 

4.4 Cost vs. Regret 

One of the main purposes of the developed model is to 
design a more robust system.In other words, a large 
reduction in the maximum regret makes a little increase in 
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the expected objective function (costs). As it was pointed out 
by Snyder and Daskin(Snyder and Daskin, 2006), a more 
robust design can be bought with small increases in the 
expected costs. Similar phenomena can be observed for the 
developed model in this study.In line with this subject, we 
first solved the model with the infinite robustness coefficient, 
and then we calculated the maximum relative regret over all 
scenarios. Subsequently, the p value  the problem was re-

solved.This process was continued until no feasible solution 
could be found. We performed this process on the 
TP2(V=2). We observed that with 15.71%reduction in the 
maximum regret the expected cost increases only by1.94 %. 
In addition, reducing p value from infinite to the minimum 
value for the TP4 did not cause any increase in the expected 
costs.

 
Fig.3.Convergence speed comparison between CPLEX and the Algorithm 

5. Conclusion 

In this paper an extension of the capacitated facility 
location problem under uncertain environment was studied. 
We discussed both stochastic and robust formulation of the 
problem and used the stochastic p-robust approach to face 
the uncertainty in the parameters. The objective function of 
the developed model minimized the total expected costs of 
operating and transportation while the relative regret in each 
scenario was restricted. In order to solve the model, we also 
proposed a fix-and-optimize hybrid algorithm. This 
algorithm uses several meta-heuristic algorithms to generate 
neighborhoods and uses an exact method to find the local 
optima. Additionally, to test the algorithm’s performance, we 
applied numerical experiments on a wide range of both 
standard and randomly generated test problems. The 
computational results demonstrated that the proposed 
algorithm, besides being simple, was very efficient and 
attractive in terms of CPU time requirement and solution 
quality in comparison with the CPLEX solver.Further 
Studies may take into account other real assumptions such as 
disruption, congestion, queening, inventory, and so forth. 
Furthermore, developing other solution algorithms and an 
efficient local search algorithm to solve larger instances seem 
to be appropriate future research avenues.  
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