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Abstract 

In order to implement the cellular manufacturing system in practice, some essential factors should be taken into account. In this paper, a 
new mathematical model for cellular manufacturing system considering different production factors including alternative process routings 
and machine reliability with stochastic arrival and service times in a dynamic environment is proposed. Also because of the complexity of 
the given problem, a Benders’ decomposition approach is applied to solve the problem efficiently. In order to verify the performance of 
proposed approach, some numerical examples are generated randomly in hypothetical limits and solved by the proposed solution approach. 
The comparison of the implemented solution algorithm with the conventional mixed integer linear and mixed integer non linear models 
verifies the efficiency of Benders’ decomposition approach especially in terms of computational time. 
Keywords: Cellular manufacturing system, Benders’ decomposition approach, Machine reliability, Machine utilization factor. 

1. Introduction 

Cellular Manufacturing System (CMS) is a practical 
manufacturing strategy which is derived from the Group 
Technology (GT) concept. CMS can be used in many 
industrial plants in order to increase both flexibility and 
productivity of manufacturing systems. Major benefits of 
CMS implementation include quality and efficiency 
improvement, material handling cost reduction, work in 
process inventory reduction, setup cost reduction and so 
on. Four main decisions should be considered in order to 
design a CMS.  
a) Cell Formation (CF): grouping machines (parts) into 

manufacturing cells in order to decrease inter-intra cell 
part trips.  

b)  Group Layout (GL): an optimal layout of machines 
and cells within cells and manufacturing space 
respectively should be determined during this 
optimization process. 

c)  Group Scheduling (GS): scheduling process of 
different parts on corresponding machines based on 
process routings. 

d) Operator Assignment (OA): assigning operators to 
machines and cells in such a way that a minimum 
value of operator related costs be obtained. 

As pointed out by Dimopoulos et al. (2000), a CMS 
problem is known as a NP-hard problem; hence, 
optimization of these decisions has been an important  

 
 
 
 
concern in recent years, especially in complicated models 
in which two or more of these decisions are considered 
concurrently. Accordingly, many researchers have 
investigated the CMS design problem from both 
designing and optimization aspects.  
Onwubolu and Mutingi (2001) proposed a mathematical 
model for CF problem with the aim of cell load variation 
minimization. Moreover; Jabal-Ameli and Arkat (2008) 
introduced a pure integer mathematical model to solve the 
CF problem. In their study, machine reliability and 
Alternative Process Routings (APR) are considered. The 
integration of CF problem with Production Planning (PP) 
and system reconfiguration was investigated by Kioon et 
al. (2009). Satoglu and Suresh (2009) introduced a goal 
programming approach to solve a hybrid CMS. Three 
steps are proposed. First, parts with erratic demands 
should be determined and selected as special parts. These 
parts are processed in a functional layout of the 
manufacturing environment because of their demand’s 
erratic nature. In the second step, a mathematical model is 
proposed to solve the CF problem. At last, considering the 
obtained machine-cell solution, the OA problem is solved 
using a goal programming technique. Mahdavi et al. 
(2010) integrated a dynamic CF problem with PP and OA. 
The overall goals were minimization of inventory holding 
and backorder costs, inter cell part trip cost, machine 
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reconfiguration and operator related costs including 
hiring, firing and salary. Aryanezhad et al. (2009) 
developed a new mathematical model which solves the 
CF and OA problems simultaneously. Part routing 
flexibility, machine flexibility and also promotion of 
workers from one skill level to another have been 
considered. Bagheri and Bashiri (2014) developed a new 
mathematical model which integrates the CF problem 
with inter-cell layout and RA problems. In their research, 
it was shown that these problems are inter-related and 
should be solved concurrently. However, incorporating 
many production factors in the mathematical 
programming approaches increases the problem 
complexity strictly. Finding an optimal solution using 
conventional approaches like Branch and Bound (B&B) 
algorithm, especially for large size problems, is almost 
intractable due to the combinatorial nature of the CMS 
problem. Hence, in recent years many heuristic and meta-
heuristic approaches have been introduced and 
implemented to solve the problem efficiently.  
Krishnan et al.  (2012) investigated the inter-intra cell 
layout problem in a CM environment. Their research 
includes three basic steps; at first a mathematical model is 
proposed for grouping the machines into cells in order to 
inter-cell part total movements be minimized. The second 
step addresses two heuristic procedures to grouping the 
parts into cells based on machine grouping solution. At 
last, a genetic algorithm is implemented to determine the 
best inter-intra cell layout.  Wu et al. (2010) proposed a 
water flow- like meta-heuristic to solve the CF problem. 
The proposed approach was verified in terms of both 
solution effectiveness and efficiency aspects in 
comparison with other solution methods. Also, a multi 
objective Particle Swarm Optimization (PSO) algorithm 
was implemented by Tavakkoli-Moghaddam et al. (2007) 
to solve a CMS design problem. The model objectives 
were optimal labor allocation and cell utilization 
maximization. Kia et al. (2012) proposed a Simulated 
Annealing (SA) approach to solve the CF and inter-intra 
GL problems concurrently. Furthermore, Jolai et al. 
(2011) developed an electromagnetism-like approach to 
solve the CF problem integrated with inter-intra GL 
problem. Tavakkoli-Moghaddam et al. (2005) 
investigated the efficiency of three basic meta-heuristics 
including Genetic Algorithm (GA), SA and Tabu search 
(TS) in solving a dynamic CMS problem. Saidi-Mehrabad 
and Mirnezami-ziabari (2011) developed a new 
mathematical model for dynamic CMS considering some 
essential objectives such as cell load variation 
minimization and also utilization rate of human resource 
maximization by considering the constant and variable 
costs of machine, inter - cell material handling costs by 
assuming the operation sequence and machine relocation 
costs. Moreover, they applied a multi objective PSO to 
solve the problem efficiently.   Bagheri and Bashiri 
(2014) developed a hybrid GA and Imperialist 
Competitive Algorithm (ICA) to solve a CF problem. 
Saidi-Mehrabad and Mirnezami-ziabari (2011) developed 

a new mathematical model for dynamic CMS considering 
some essential objectives such as cell load variation 
minimization and also utilization rate of human resource 
maximization by considering the constant and variable 
costs of machine, inter - cell material handling costs by 
assuming the operation sequence and machine relocation 
costs. Moreover, they applied a multi objective PSO to 
solve the problem efficiently.    
An essential drawback of these algorithms is their 
incapability in finding an optimal solution especially for 
large scale problems which is a necessary concern in 
many industrial plants. So introducing and implementing 
new exact algorithms in which an optimal solution can be 
obtained in a reasonably computational time, is an 
interesting subject to be investigated. Also according to 
the literature, many real world production elements such 
as machine reliability, process uncertainty and APRs are 
not incorporated in many studies. Ghotboddini et al 
(2011) investigated the possibility of applying Benders’ 
decomposition approach on a CMS design problem. 
However, essential production factors like machine 
reliability and APRs are not considered in their research. 
In this paper, first a mathematical model based on these 
essential factors is proposed. The objectives of presented 
mathematical model are: inter-intra cell part trips 
reduction, minimization of machine breakdown and 
operator related costs including hiring, firing and training 
cost and maximization of machines utilization factor. 
Then, because of complexity of the given mathematical 
model, Benders’ decomposition approach, which is an 
exact solution method, is implemented to solve the 
problem efficiently.  

The rest of the paper is organized as follows: In the 
next section, a non-linear mathematical model (MINLP), 
based on the aforementioned objectives, is proposed and 
in order to obtain a linear (MIP) model, a linearization 
technique is applied. Benders’ decomposition approach 
which is an effective optimization tool is discussed in 
section 3. In section 4, the efficiency of proposed model is 
verified and analyzed by some numerical examples 
followed by conclusion in section 5. 

2. The Mathematical Model 

2.1 problem description and crucial assumptions 

In many studies existing in the literature, it is assumed 
that a machine type is always reliable and can process in 
its production horizon without any interruption and 
breakdown. However, this assumption is not valid in 
many real industrial plants. In this paper, it is assumed 
that machines reliability follows an exponential 
distribution with a known failure (breakdown) rate. Also 
breakdown cost for each machine type is known and is 
based on its repairing cost, install/uninstall cost, etc. The 
reliability of a machine type during its operating time can 
be calculated as: 
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exp( )R t   

Where   is its failure rate which is known and fixed 
during the production horizon. Based on exponential 
distribution behavior, the Mean Time Between Failures 
(MTBF) can be calculated as follows: 

 1


MTBF  

Considering these definitions, a machine’s total 
breakdowns over its production periods can be determined 
by multiplying MTBF by its total processing time. 
Ultimately, by multiplying this value by the machine 
breakdown cost, total machine failure cost can be 
determined.  
In many industrial plants, there are Alternative Process 
Routings (APR) for some part types. It seems that 
considering this factor is necessary to have a real 
production system. In this paper, the routings are selected 
in such a way that machine breakdown cost will be 
reduced.  
In this paper, the part uncertainty concept appears in 
arrival time of the parts and also machine service time is 
supposed to follow an exponential distribution with a 
known rate. Accordingly utilization factor or probability 
that each machine type is busy can be considered as 
essential parameters to evaluate the performance of CMS.   
Also operator related assumptions are as follows: 
1. An operator can be assigned to only one cell. The 

operator transmission between cells is not allowed. 
2. An operator can be assigned to more than one machine 

based on his/her capability.  
3. An operator can be trained to operate with specific 

machine in a production period by spending a training 
cost. Training process is performed between periods 
and it takes zero time. 

2.2 Notation 

Indices and their relative upper bounds: 

I Number of machines  
J Number of parts 
C Number of machine cells 
H Number of production periods 
K number of available operators 
Lj Number of available routings for part type j  
i Index for machines ( 1,..,i I ) 
j Index for parts ( 1,..,j J ) 

c, c  Index for machine cells ( 1,..,c C ) 
h Index for production periods  ( 1,..,h H ) 
k Index for operators ( 1,..,k K ) 
l Index for operations required by part j in period 
h ( 1,.., jd L )  

Input parameters: 

h
jD  Demand value for part j in period h 

h
jit  Processing time of part j on machine i in period h 

ljK  Number of machines in routing l of part type j 
 

 ( )(1) (2) (3), , ,..., ljK
lj lj lj ljU U U U  Machine index in routing l of 

part type j 
 

1A  Inter-cell part trip unit cost 

2A  Intra-cell part trip unit cost 

jh   Mean arrival rate for part j in period h 
 h

i  Number of parts served by machine i per unit 
time in production period h 

,c cu l  The upper and lower machine capacity for cell c 
,i iu l  The maximum and minimum number of 

operators required by machine i 
,k ku l  The maximum and minimum number of 

machines which can be assigned to operator k 
1


i
i

MTBF  Mean time between failures for machine 

type i based on its exponential distribution parameter  i  

iBR  Breakdown cost for machine type i 

kia  Training cost for operator k to operate with 
machine i 

kHR  Hiring cost of operator k 

kFR  Firing cost of operator k 
L ow Em  Minimum number of operators should 
be hired in each production period 
Decision variables: 

1; if machine type i is located in cell c in period h;
0;


 


h
icX

Otherwise
1; If routing l of part type j is selected
 as process plan in period
0;

h
ljZ h

Otherwise


 



 

i  Utilization factor for machine i (or the 
probability that the machine i is busy) 
 

1; If operator employed in period
0;


 


t
k

k is to be t
Em

Otherwise
 

1; If operator is assigned to machine in period
0;


 


t
ki

k i t
r

Otherwise

  
1; If operator is assigned to cell in period
0;


 


t
kc

k c t
S

Otherwise
 

1; If operator is unable to operate with machine
 in period ( 2).
0;

t
ki

k
Y i t t

Otherwise


 


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2.3 Objective function and constraints  

     The MINLP model for the CMS design is presented as 
follows: 

1

1

1

1

1 ( ) ( )
1 1 1 1 1 1

2 ( ) ( )
1 1 1 1 1

1 1

( )

1 1 1 1

min 1
j lj

i i
lj lj

j lj

i i
lj lj

j lj i
lj

i
lj

L KH J C C
h h h h
lj j U c U c

h j l i c c
c c

L KH J C
h h h h
lj j U c U c

h j l i c

H I
h
i

h i
h hL KH J lj j j U

i
h j l i U

A Z D X X

A Z D X X

Z D t
BR

MTBF

OF












     


    

 

   

















11 1 1

1 1
)( (1 )k k

H C I K
h h h h h
k ki ic kc ki ki

ch i k
H K

h h
k k

h k

Em Yr X S a

Em HR Em FR

  

 



  







 

 

1

1

1

1

:

,

,

1 ,

1 ,









 

 

 

 








j

I
h
ic c

i
I

h
ic c

i
C

h
ic

c
L

h
lj

l

Subjected To

X Low c h

X UP c h

X i h

Z j h

 

 

1 1

( )

1

1

1

,

1 ,

;

, , ;
, , ;

, ;

, ;

j

i
lj

LJ
h
lj jh

j lh
i h

U

h
i

h
k

h
k

h
k

K

k
h

ki
h
kc

K
h

ki i
k
K

h
ki i

k

Z
i h

i h

Em lowEm

Em

S Em

h

r k i h
k c h

r u i h

r l i h








 








 

 













 

 









 

 
 

 (1-1) 

 
(1-2) 

 
 

(1-3) 
 
 

(1-4) 
 

 
(1-5) 

 
(1-6) 

 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 

 
(6) 

 
(7) 

 
(8) 

 
(9) 

 
(10) 

 
(11) 

 
(12) 

 

 

1

1

1

1
1 ( )

0 ,

, ;

, ;

, ;

, ,

1 1,.. 1, , ;

, , , , , 0,1

h
k

h
k

h
k

h
ki

h
j

I
h

ki k
i
I

h
ki k

i
C

h
kc

c
C

h h h
ki ic kc

c
h h

ki ki

Em l

S Em

Y Y

j h

r Em u k h

r k h

k h

r X S k i h

r h H k i

r S Em Z X Y















 

 

 





 

    









  

 

(13) 

 
(14) 

 
(15) 

 
(16) 

(17) 

(18) 

(19) 
 

The first and second terms of objective function minimize 
inter-intra cell part trips, respectively. Term (1-3) 
maximizes utilization factor (the probability that each 
machine is busy). Actually, in order to increase the total 
production efficiency, a large value of utilization factor is 
desirable. Term (1-4) minimizes the machine breakdown 
cost. As stated previously, some part types have different 
process routings from which one routing should be 
selected for each part type according to its production 
characteristics. One such  important characteristic stated 
in this paper is machine reliability which can be appeared 
as machine breakdown cost. Term (1-5) in the objective 
function minimizes operators’ training cost which is based 
on the operators’ capabilities in working with different 
machines. At last operators’ hiring and firing costs should 
be minimized by Term (1-6). 

Cells lower and upper capacity bounds are restricted 
by terms (2) and (3), respectively. Constraint (4) is to 
ensure that each machine is assigned to only one cell. 
Constraint (5) implies that just a single process routing 
should be selected for each part type. Constraints (6) 
computes utilization factor for each machine type. 
Constraint (7) guarantees that utilization factor for each 
machine cannot exceed one. As stated by Ghezavati and 
Saeidi-Mehrabad (2011), maximum utilization factor for a 
machine type is always one. Constraint (8) ensures that 
minimum numbers of operators are hired. Constraints (9) 
and (10) state that an operator can be assigned to a 
machine and a cell, respectively, only if is hired in that 
period. Minimum and maximum number of operators 
required by each machine type is restricted by constraints 
(11) and (12), respectively. The maximum and minimum 
numbers of machines dedicated to each operator are 
restricted by constraints (13) and (14), respectively. 
Constraint (15) ensures that an operator can be assigned to 
a machine in the same cell. Actually, this constraint 
restricts the operator transmission between cells. 
Constraint (16) guarantees that each hired operator should 
be assigned to only one cell. Training effect is taken into 
account by constraint (17) and it states that the trained 
operator in a period will not need to learn again to work 
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with the same machine in the next periods. Constraints 
(18) and (19) define variables type.  

2.4 Model linearization  

The proposed mathematical model is a non-linear model 
because of the product of binary decision variables in 
terms (1-1), (1-2), (1-5) and constraints (16) and (17). 
Non-linear models are basically much harder to be solved 
than linear models. So the model has been reformulated as 
a mixed-integer linear programming model by introducing 
and implementing new variable sets. Also some additional 
constraints should be added to the model. 
Let define new binary variables, 1( )( ) i i

lj lj

h
lj U U cc

Q , 

1( )( )i i
lj ljlj U U c

B , h
kicXS , h

kiRY  and h
kicN  which are 

computed by following equations: 
1 1( )( ) ( ) ( )  

i i i i
lj lj lj lj

h h h h
ljlj U U cc U c U c

Q Z X X  

1 1( )( ) ( ) ( ) i i i i
lj lj lj lj

h h h
ljlj U U c U c U c

B Z X X  

h
kic

h h
ic kcXS X S  

h h
ki ki

h
kiYRY r  

h h h
kic kic ki

h
kN Em XS RY  

By considering these equations, the following auxiliary 
constraints should be added to the proposed model: 
 

1

1

1 1

1 1

1

1

( )( )

( )( ) ( )

( )( ) ( )

( )( ) ( ) ( )

( )( )

( )( ) ( )

(

2





 

 









 

 







   





i i
lj lj

i i i
lj lj lj

i i i
lj lj lj

i i i i
lj lj lj lj

i i
lj lj

i i i
lj lj lj

lj

h h
ljlj U U cc

h h
lj U U cc U c

h h
lj U U cc U c

h h h h
ljlj U U cc U c U c

h
ljlj U U c

h
lj U U c U c

lj U

Q Z

Q X

Q X

Q Z X X

B Z

B X

B 1 1

1 1

)( ) ( )

( )( ) ( ) ( )
2

 

 



   

i i i
lj lj

i i i i
lj lj lj lj

h
U c U c

h h h
ljlj U U c U c U c

X

B Z X X

 

1





  

h
kic

h
kic

h
kic

h
ic

h
kc

h h
ic kc

XS X

XS S

XS X S

 

 
(20) 

 
(21) 

 
 

(22) 
 
 

(23) 
 
 

(24) 
 
 

(25) 
 

(26) 
 
 
 

(27) 
 

(28) 
 
 

(29) 
 

(30) 
 

1

2





  







   

h
ki

h h
ki ki

h h
ki ki

h
kic

h h
kic kic

h h
kic ki

h h h
kic kic ki

h
ki

h
ki

h
k

h
k

Y

Y

N Em

N

N

N Em

RY r

RY

RY r

XS

RY

XS RY

 

(31) 
 
 

(32) 
 

(33) 
 
 

(34) 
 
 

(35) 
 

(36) 
 
 

(37) 

The ultimate linear model can be presented as follows: 

1

1

1

1

1 ( )( )
1 1 1 1 1 1

2 ( )( )
1 1 1 1 1

1 1

( )

1 1 1 1

1

min 2












     


    

 

   























j lj

i i
lj lj

j lj

i i
lj lj

j lj i
lj

i
lj

L KH J C C
h h
j lj U U cc

h j l i c c
c c

L KH J C
h
j lj U U c

h j l i c

H I
h
i

h i
h hL KH J lj j j U

i
h j l i U

K

ki
k

A D Q

A D B

Z D t
BR

MTBF

OF

a
11 1

1 1
)( (1 )

 

 
  





h
kic

k k

H C I

ch i
H K

h h
k k

h k

N

Em HR Em FR
 

 
 

(1-7) 
 
 

(1-8) 
 
 

(1-3) 
 
 

(1-4) 
 
 

(1-9) 
 
 

(1-6) 

Subjected to: 

Unaltered set constraints (2) – (15), (18), new auxiliary 
constraints (20) – (37) and also: 

Set constraint (16) is replaced by: 

1
, ,


 

C
h h

ki ikc
c

r XS k i h  
 

(38) 

Set constraint (17) is replaced by: 

1 1,.. 1, , ;      h h
ki ki

h
kiY Y RZ h H k i  (39) 

Set constraint (19) is replaced by: 

 , , , , , , , , , , 0,1r S Em Z X Y Q B N XS RY  (40) 
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3. Solution approach 
 
3.1 Benders’ decomposition solution approach  

 
The combinatorial nature of CMS design problem causes 
a difficulty in finding an optimum even a feasible solution 
in a reasonably computational time. As stated earl, many 
heuristic and meta-heuristic approaches have been 
introduced in recent years to solve this NP-hard problem. 
However, finding the optimal solution in many industrial 
plants is a necessary concern. Since non-linear models are 
basically much harder to be solved efficiently, we first 
transformed the proposed model into a Mixed Integer 
Linear Programming (MILP) model. There are several 
exact algorithms such as Bender’s decomposition and 
Lagrangian relaxation to solve MILP models efficiently.  

Benders’ decomposition solution approach, 
which was originally proposed by Benders (1962), 
partitions the problem into two smaller problems 
including master and sub problems, instead of solving the 
original problem directly. Actually, the computational 
time difficulty of optimization process depends on a 
number of variables and also constraints strictly. Hence 
the fundamental approach is iteration of solving process 
between master and sub problems. A master problem is a 
MILP model which includes all integer variables of the 
original problem and a continuous variable. Also a sub 
problem or a dual sub problem is an LP in which all 
integer variables are fixed to their values obtained by the 
master problem. Accordingly, integer solution is obtained 

by solving the master problem and then these variables 
are fixed to the corresponding values in the dual sub 
problem. Dual sub problem generates an optimal even a 
feasible cut for the corresponding integer solution which 
should be added to the master problem. This iterative 
process continues on tile the upper and lower bounds are 
as close as it desirable. 
A general MILP model has the following form: 

min

. .

0,

 



 

 

T TZ c x d y

S t

Ay b

Ex Fy h

x y S

 

By representing the number of continuous variables, 
integer variables, constraints which contain only integer 
variables and mixed integer-continuous constraints as n, 
p, m and q, respectively, we considered A as a (m×p), E as 
a (q×n), F as a (q×p), cT as a (1×n), dT as a (1×p) and h 
as a (q×1) matrices. So the master, sub and dual sub 
problems can be derived as follows: 

Table 1 
Sub and dual sub problems parameters 

Master Problem (MP): 
min

. .

T T
lower

T
lower

Z c x d y
S t
Z d y
Ay b
y S

 






 

Sub Problem (SP): 

min
. .

ˆ
0

Tc x
S t
Ex h Fy
x

 


 

ŷ : Solution of the master problem 

Dual Sub Problem (DSP): 
ˆmax ( )

. .

0

T

T

h Fy u
S t
E u c
u






 

 

 

During the optimization process, an upper bound solution 
for the original problem can be obtained as equation (41) 
in terms of DSP. In this equation ˆ pu  is an optimal dual 
solution.  

ˆ ˆ ˆ ˆ( )  T T p
upperZ d y h Fy u  (41) 

 

If ˆ ˆ upper lowerZ Z ε  then the process should be stopped. 

The corresponding solution is optimal. Otherwise an 
optimality cut as ˆ( )  T T p

lowerZ d y h Fy u should be 
added to the MP. Moreover; during the optimization 
process if an unbounded solution is obtained for DSP (an 
infeasible solution for SP), an infeasibility cut as 

ˆ( ) 0 T rh Fy u  will be added to MP in next iteration.    
 The flowchart for the Benders’ decomposition is depicted 
in Figure 1. 
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Fig. 1. Flow chart of benders’ decomposition algorithm 

3.2 Driving MP and DSP for the proposed MILP 

According to the previous section, we apply the benders’ 
decomposition approach to the proposed MILP model. So 
the master and dual sub problems are derived as follows.  
 

 

3.2.1 DSP  

In the following formulation, variables which are fixed in 
their values are shown by hats (^) symbols. We define a 
real variable set θ1 and θ2 for the DSP driving. Actually, 
DSP is obtained after driving the SP.  Also the following 
formulation computes Equation (1) directly.  

  
 
 

 

Solve the MP 

Solve the DSP 

Feasible solution 
Infeasible solution Unbounded solution 

Add a new bender’s cut to the MP 

ˆ( )  T T p
lowerZ d y h Fy u  

Add a new bender’s cut to the MP 

ˆ( ) 0 T rh Fy u  

Infeasible or unbounded 
solution for the primal 

problem 

Stop 

Optimality 
Converged? Yes 

No 

Infeasible solution 

(Stop) 
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3.2.2 MP 

The master problem for the proposed mathematical model includes optimization of binary variables and finding 
a lower bound for the original problem. 

ˆmin 4  lowerOF Z  
Subjected to: 
Constraints (2) – (5), (8)-(15) and (20) – (37) 
The optimality cut as : 
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And a feasibility cut as: 
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4. Numerical Examples 

In order to evaluate the performance of the proposed 
solution approach and also applicability of the proposed 
mathematical model, some numerical examples are 
generated randomly in hypothetical limits and is solved 
using Gams 23.5-Cplex on a Core i5 PC with 1 GB RAM. 
Examples information and also comparison between the 
proposed Benders’ decomposition method and 
conventional solution approaches are reported in table 2. 
Considering the last example which is a large size one, the 
MILP model could not find an optimal solution after 1000 
seconds. Another essential point is that implemented 
Benders’ decomposition method has high efficiency in 
comparison to the conventional MIP model.  

 
 

Computational time of Benders’ decomposition approach 
has lower slope by increasing the problem size in 
comparison to the MIP and MINLP models. 

To analyze the proposed mathematical model in more 
details, input information of P5 are reported in tables 3-5. 
Minimum and maximum numbers of operators required 
by each machine type are 1 and 4, respectively (

1, 4 i iL U ). Also the minimum and maximum 
machine capacities for each cell are 1 and 3, respectively (

1, 3 c cL U ).The maximum and minimum numbers of 
machines which can be assigned to an operator are 2 and 
4, respectively ( 2, 4 k kL U ).  
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Table 2 
The input information of different examples 

Example 
number 

Number 
of parts 

Number 
of 

machines 

Number 
of cells 

Number 
of 

operators 

Total 
available 

routes 

Objective 
function- 

Computational 
time: Benders’ 
decomposition 

approach 
(OF3-OF4) 

Objective 
function- 

Computational 
time(s): 

Conventional 
MIP model 

(OF2) 

Objective 
function- 

Computational 
time(s): 

MINLP model 
(OF1) 

P1 4 4 2 5 8 85500-0.1 85500-0.325 85500-10 

P2 5 5 3 8 15 6857-0.108 6857-0.99 6857-1208.3 

P3 5 6 3 8 15 9536-1.3 9536-1.6 9536-54.4 

P4 6 6 3 10 17 9377-1.7 9377-1.8 9377-363.3 

P5 8 7 3 10 20 14576-4 14576-12.88 16771-16*60 
 

 

Table 3 
The input information of part-machine matrix (period1)-P5 

Parts Routes Process sequence Processing time of each operation(t) 
Demand 
( 1

jD ) 
 
λ  

1 

Rout1 1-3-4-2-7-6 0.6, 0.3, 0.5, 0.7, 0.5, 0.4 

90 2 Rout2 1-3-5 0.6, 0.5, 0.2 

Rout 3 1-3-4-2-5-6 0.6,0.3,0.5,0.7, 0.2,0.4 

2 

Rout 1 5-6 0.1, 0.3 

100 6 Rout 2 5-7-1 0.1, 0.5, 0.1 

Rout 3 4-2-6 0.05,0.1,0.3 

3 

Rout 1 6-5-2-7-4-3 0.6, 0.1, 0.2, 0.2, 0.6, 0.6 
20 5 Rout 2 6-5-2-7-4-2 0.6, 0.1, 0.2, 0.2, 0.6,0.2 

Rout 3 6-5-4 0.6, 0.1, 0.2, 0.6 

4 
Rout 1 2-4-5 0.7, 0.3, 0.6 

100 4 
Rout 2 1-3-6 0.2, 0.6, 0.2 

5 

Rout 1 1-2-7-5-3 0.5, 0.7, 0.5, 0.5, 0.5 

70 5 
Rout 2 1-3-5 0.5,0.5, 0.5 

Rout 3 1-2-4 0.5,0.7, 0.3 

Rout 4 1-3-2-1 0.5, 0.5, 0.7, 0.5 

6 
Rout 1 1-2-5 0.1, 0.4, 0.3 

10 5 
Rout 2 1-6-7 0.1,0.5,0.1 

7 Rout 1 7-6-1-4-7-5-3 0.1, 0.4, 0.2, 0.5, 0.1 0.7, 0.6 30 3 

8 
Rout 1 5-2-7-6-4-3-7 0.1, 0.1, 0.4, 0.5, 0.1, 0.7,0.4 

60 4 
Rout 2 1-2-1-4-5 0.3, 0.1, 0.2, 0.1,0.1 
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Table 4 
The input information of part-machine matrix (period2)-P5 

 
 

Parts Routes Process sequence Processing time of each operation(t) 
Demand 
( 1

jD ) 
 
λ  

1 

Rout1 2-5 0.7, .03 

20 2 Rout2 2-4-1 0.7, 0.1, 0.2 

Rout 3 2-6-3 0.7, 0.2, 0.3 

2 

Rout 1 7-6 0.5, 0.4 

50 2 Rout 2 4-3-2 0.4, 0.2, 0.3 

Rout 3 4-2-6 0.4,0.3,0.4 

3 
Rout 1 6-7 0.1, 0.2 

100 2 
Rout 2 7-1-7 0.2,0.05,0.1 

4 
Rout 1 2-4-5 0.7, 0.3, 0.6 

80 2 
Rout 2 1-3-6 0.2, 0.6, 0.2 

5 

Rout 1 5-7-3-7 0.1, 0.5, 0.3, 0.5 

100 3 
Rout 2 1-2 0.8,0.1 

Rout 3 4-1-4 0.1,0.8,0.1 

Rout 4 5-1-3 0.1, 0.8, 0.3 

6 
Rout 1 5-3-7-1 0.6, 0.2, 0.6, 0.2 

70 3 
Rout 2 5-3-7-5 0.6, 0.2, 0.6, 0.6 

7 Rout 1 6-3-5-2-7-1 0.3, 0.6, 0.7, 0.6, 0.4, 0.4 10 3 

8 
Rout 1 5-1-2-7-3-7 0.1, 0.5, 0.2, 0.1, 0.4, 0.1 

90 3 
Rout 2 5-1-2-6 0.1,0.5,0.2,0.5 

Table 5 
Operator related information-P5 

  Hiring(firing) 
cost 

Machine 
Capabilities (1-Z) - training cost (a) of operators 

Operators 

 1 2 3 4 5 6 7 
1 100(80) 1-0 0-7 0-9 0-5 0-6 1-0 0-6 
2 100(80) 0-8 1-0 0-9 1-0 1-0 0-4 0-5 
3 80(60) 1-0 1-0 0-9 0-4 0-6 0-4 0-6 
4 40(20) 0-7 0-6 0-8 0-3 0-6 0-3 0-4 
5 30(10) 1-0 0-7 0-8 0-5 0-6 0-4 0-6 
6 40(20) 0-6 1-0 0-9 0-4 0-6 0-3 1-0 
7 50(20) 1-0 1-0 0-7 0-5 0-6 0-4 0-5 
8 50(20) 0-6 0-5 0-9 0-5 0-6 1-0 0-4 
9 50(20) 1-0 1-0 0-9 0-4 0-6 0-4 0-6 

 10 50(25) 0-10 1-0 0-7 0-3 0-6 0-3 0-4 
1 2
i i   

 
- - 20-20 15-15 20-20 10-10 16-16 16-16 15-15 

MTBFi - - 1.5 1.03 0.83 0.81 0.99 0.98 1.04 
BRi - - 9 12 20 25 14 17 20 

 

 

Table 6 
Optimal routings obtained for different part types-P5 

 

Part number 1 2 3 4 5 6 7 8 
Optimal Routing in period 1 2 1 2 2 1 1 1 2 
Optimal Routing in period 1 1 1 1 2 2 1 1 2 
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Table 7 
Optimal cell formation and machine busy time solution-P5  

Machine type 
Machine busy time 
factor 
Period 1 

Cell in which machine is 
located 
Period 1 

Machine busy time factor 
Period 2 

Cell in which machine is 
located 
Period 2 

1 0.7 2 0.5 3 
2 0.667 2 0.533 2 
3 0.4 1 0.3 3 
4 0.6 3 0 1 
5 0.875 2 0.5 1 
6 0.5 1 0.625 1 
7 0.533 3 0.533 1 

 

 

 

Fig. 2. Effect of Breakdown cost on machine 4 utilization factor in period 2 

Optimal cell formation and routing selection solutions 
obtained for this example are reported in tables 6-7. 
According to these tables, it is obvious that machine 4 is 
not applied in period 2. So its busy time is zero. 
Considering its operating costs, it was a predictable result. 
Actually machine 4 has minimum service rate irrespective 
of other production elements such as processing time and 
high operator training costs. Figure 2 illustrates different 
values of utilization factor for machine 4 in period 2 
versus different breakdown cost values. It can be inferred 
from this figure that breakdown cost has a significant 
impact on routing selection process which in turn affects 
the machine utilization factor. 

5. Conclusion   

A new mathematical model for considering both cell 
formation and operator assignment problems was 
proposed in this paper. Some essential manufacturing 
elements such as machine reliability, alternative process 
routings and machine utilization factor were taken into 
account. Since the proposed model was a MINLP model, 
in order to find an optimal solution in a reasonably 
computational time, a linearization method was applied to 
decrease its complexity. As the proposed model is known 
as a NP-hard optimization problem, a Benders’ 
decomposition method was applied to solve the model 
efficiently. In order to examine the efficiency of the 
applied optimization method, some numerical examples 

were generated randomly and solved using the Gams 
optimization package. Based on the computational time 
view point, Benders’ decomposition approach has lower 
slope by increasing the problem size in comparison to the 
MIP and MINLP models. Incorporating more 
manufacturing concepts such as production planning and 
group layout in the provided framework is suggested as 
future studies. Moreover; applying the modified Benders’ 
decomposition method on nonlinear models and 
comparing its performance with the original Benders’ 
decomposition approach may be investigated in the 
future.  
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