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Abstract 

Data Envelopment Analysis (DEA) has been widely studied in the literature since its inception with Charnes, Cooper and Rhodes work in 
1978. The methodology behind the classical DEA method is to determine how much improvements in the outputs (inputs) dimensions is 
necessary in order to render them efficient. One of the underlying assumptions of this methodology is that the units consume and produce 
real valued data. This paper deals with the extension of this methodology for the case of integer-valued data. Based on an additive DEA 
model, a mixed integer linear programming model is proposed for setting integer-valued targets. An empirical example illustrates the 
approach. 
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1. Introduction 

Data envelopment analysis (DEA) is a mathematical 
programming approach used for performance analysis of 
observed decision making units (DMUs). One of the main 
purposes of this analysis is to determine the best performers 
along with guidelines for improving the rest. Typically, 
these guidelines stem from benchmarking against a set of 
good performers in order for a poor performer to improve. 
As we know from the literature, when utilizing DEA to 
evaluate a set of decision making units (DMUs), an 
efficient frontier is created that determines which DMUs 
are performing well (efficient) and, which are not 
(inefficient), or, in Pareto-Koopmans’ sense, which are 
non-dominate and, which are dominate.  

One of the underlying assumptions of conventional 
DEA is that the units consume and produce real valued 
data. However, there are many occasions in which some 
inputs and/or outputs must only take integer values. In the 
former DEA literature, Integer-valued DEA (IDEA) has 
been recently studied from different points of view. The 
most of these approaches deal with the integer-valued data 
as categorical or ordinal data (see for example [1]; [5]; [9]; 
among others). One can find a few works focused on  

 

 
 
 

 
the integer numbers. Lozano and Villa [8] were among the 
first scholars to address a DEA based MILP model to 
guarantee the required integrality of the computed targets 
with integer valued inputs and outputs. The approach 
introduced by these authors is fully analyzed by 
Kuosmanen and Kazemi Matin [6, 7].  

They developed and generalized the axiomatic 
foundation for DEA models that assumes subsets of input 
and output variables to be integer-valued. In these papers, it 
is shown that the conventional axioms of production 
technologies fail if DMUs are restricted to operate with 
integer valued input and output quantities and new 
refinements of the classical axioms consistence with integer 
environment are introduced. It is also shown that the 
production possibility set proposed by Lozano and Villa 
(2006) satisfies the minimal extrapolation principle under 
the new set of axioms. Kauosmanen and Kazemi Matin [6, 
7] made modifications to Farrell’s efficiency measure to 
take into account the possibility of integer valued inputs 
and outputs and presented a MILP formulation for 
computing it.  Here, due to space limitations, we will not 
examine the details of their axiomatic approach. For details 
of the results see [6, 7]. 
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 In this paper, a computational point of view is followed 
and by using the radial model introduced in [8] we will 
discuss in details the influences of the integrality 
assumption over its introduced targets.  

Lozano and Villa’s approach, based on a modified CCR 
model [3], examines the smallest scale to assess an 
efficiency index and projects the unit under evaluation on 
an integer-valued target point.  

This paper goes beyond the axiomatic foundation of 
their model to show that the results of the introduced radial 
DEA model may be unstable and extremely sensitive to 
small variations of data and, hence, can lead to some 
inconsistencies. Accordingly, a modified additive model 
will be introduced later for setting integer-valued targets 
which may overcome this problem.  

The rest of the paper is organized as follows. In section 
2, Lozano and Villa's radial DEA model is introduced. A 
simple numerical example shows our motivation and 
reflects the influences of data perturbation on the 
introduced targets of their radial model. Section 3 is 
devoted to introducing our modified additive model for 
target setting. An empirical example on 42 university 
departments of Karaj Islamic Azad University (KIAU) is 
presented in section 4 to illustrate the approach further. 
Section 5 concludes the paper. 

2. A Radial Approach 

Following the most standard DEA notation, for DMUj 
let ijx  and  rjy  show the amounts of its i th input  and 
r th output respectively, where = 1, ,i mL , = 1, ,r sL  
and = 1, ,j nL . 

In order to assess the relative performance of the 
existing DMU in the variable returns to scale (VRS) 
integer-valued scenario and based on a classical DEA 
models, Lozano and Villa (2006), introduced the following 
MILP model.  
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Where {1,2, , }I m⊆ L  and {1,2, , }O s⊆ L  show 
subsets of indices associated with integer-valued inputs and 

outputs, respectively. They used the optimal solution of this 
model for efficiency evaluation and setting targets by 
imposing the integrality assumption on the computed 
targets of DMUk in the VRS DEA model. 

Having acknowledged the authors for their novel 
approach in this area, here we attempted to examine their 
model from a computational point of view. In this paper, it 
is shown that the results are sensitive to the data errors 
which are likely to occur in the software packages, based 
on their designed algorithms for solving MILP models (e.g. 
cutting plane approaches).  

2.1 Motivation 

The model (1) was applied to sample data presented in 
Table 1. Four units are considered with two inputs and one 
constant output. All variables are assumed to take integer 
values. Table 1 shows the efficiency scores *( )kθ , and 
computed targets of the model (1). Due to the results of the 
model (1), the integer valued units A, B and D are BCC 
([2]) integer-efficient and unit C is inefficient. Note that C 
has the unit D as its target point.  

 
Table 1  
Sample data with two inputs and one output 
DMU 1x

 
2x y *

kθ   *
1s *

2s − *
1s + *

1x *
2x *y

A 0  3  1  1  0  0  0  0  3  1 
B 2  0  1  1  0  0  0  2  0  1 

C 0  4  1  0.7
5

0  0  0  0  3  1 

D 1  1  1  1  0  0  0  1  1  1 

 
Now, we show that the above radial approach may be 
unstable in the presence of data perturbations. Consider the 
following table. 
 
Table 2 
 Perturbed data and results of the model  
DMU

1x  
2x   Y *

kθ   *
1s   *

2s −   *
1s +  

A’ 0.0001  3  1  10000  0  29999  0 
B’ 2  0.0001  1  10000  19999  0  0 
C’ 0.0001  4  1  10000  0  39999  0 
D 1  1  1  1  0  0  0 

  
The data are given by replacing the zeros in Table 1 with 
relatively small values. The new results show that the 
model (1) is quite sensitive to the small noises. In 
production theory, we are unable to interpret these results 
for the efficiency scores and slacks value in improving a 
unit. The results also lead us to a different set of targets. 
These inconsistencies could be even worse if we use 
smaller noises and the model could lead us to an 
unbounded solution. In the following section, we will 
reexamine this example with a new procedure. 

 In introducing a new procedure, our idea is similar to 
the classical techniques in solving MILP models and is 
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based on the results obtained from the corresponding real-
valued DEA model. If the coordinates of the computed 
target did not satisfy the integrality assumption(s) a non- 
dominated integer-valued target point will be computed by 
solving a modified additive-DEA model. Our approach can 
be easily implemented and rectifies the above-mentioned 
difficulties in applications. 

3. A Modified Additive Model for Setting Integer-Valued 
Targets 

To set an integer-valued efficient target for kDMU , first, 
we solve the associate DEA model (here we are using a 
variable returns to scale technology ); If the computed 
target point ˆ ˆ( , )k kx y , does not satisfy the integrality 
assumption(s), we switch to a non-dominated point in a 
small neighborhood of this point based on the following 
approach. The possible input excesses and output shortfalls 
for i I∈  and r O∈  which may be caused in the rounding 
non-integer components of ˆ ˆ( , )k kx y  to its near feasible 
point in the production set, is discovered by solving the 
following MILP model.  
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Let * * *( , , )λ δ δ− +  as the optimal solution of the above 

model, then the following values give the components of 
computed target point for the unit k .  
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To incorporate decision makers preferences into the 

evaluation, one can replace the objective function in the 

model (2) with a non-negative weighted sum of slacks as 

i i r ri I r O
w wδ δ− − + +

∈ ∈
+∑ ∑ .  

By means of the following theorem, now we have a 
non-dominated integer-valued activity as a target point of 
the unit under evaluation.   
 
Theorem 1. The integer-valued activity * *( , )k kx y  computed  
by (3) is a BCC-Integer efficient.   
Proof.  Otherwise, there exists a feasible integer-valued 
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Combining (3) and (4) with the dominance assumption we 
get 
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which contradicts with the optimality condition of the 
vector * * *( , , )λ δ δ− +  for the model (2). This completes the 
proof.  

Illustration 

By starting from the computed target of a real-valued DEA 
model, the above MILP model moves toward the frontier of 
PPS with integer valued steps for possible improvements of 
selected integer-valued unit. 

Figures 1 and 2 here are used to illustrate the procedure 
further. A typical PPS of integer-valued data with VRS 
technology in three dimensions (two inputs and one 
constant output) is depicted in Fig.1. First, the unit D’ with 
non-integer coordinates is obtained by solving the radial 
BCC model in evaluating performance of the unit D. With 
our rounding method, we get D” which is a dominated-
integer valued production plan. Now, by using the model 
(2) we can remove the integer input excesses of the first 
input with the value *

1 = 2δ − . This leads to the non-
dominated integer-valued target point B which is marked 
by ٭ in the figure. Fig. 3 also shows a similar situation in 

outputs space. 
 Note that the model (2) is obviously feasible and its 

objective value is bounded above by the amount 
ˆ max { }ik j rji I r O
x y

∈ ∈
⎡ ⎤ +∑ ∑ . In addition, and because 

in the introduced non-radial approach, the slacks could just 
vary over a limited range within the production space, the 
results will be stable against data errors. 

Finally, in comparison with the model (1), the new 
introduced MILP model has less m s+  variables and also 
less 2 2 1 (| | | |)m s I O+ + − +  constraints, which could 
alleviate the computational burden. In the next section of 
results, a comparison between the number of branches and 
also computed projections of two models in an empirical 
study is shown.  

Here, we come back to Table 2 and reexamine the effect 
of the small error on the results of the new model.  
The reported results in the Table 3 shows that the 
introduced MILP model could easily handle the perturbed 
data and the computed targets are reasonable. 

In the next section, we will apply both approaches in an 
empirical study to make a better comparison of their 
features. 
 
Table 3 
 Perturbed data and target setting with the model 3.1 
DMU *

1δ
−   *

2δ
−   *

1δ
+   *

1x   *
2x *y  

A’ 0  2  0  1  1  1 
B’ 1  0  0  1  1  1 
C’ 0  2  0  1  1  1 
D 0  0  0  1  1  1 

4. An Empirical Application 

To illustrate the above procedures and for comparison 
purposes, we apply models 1 and 2 to a data set of 42 
departments of IAUK. The data set is available in 
Kuosmanen and Kazemi Matin [6].  

In this evaluation, each department has post graduate 
students ( 1x ), bachelor students ( 2x ), masters students ( 3x ) 
as its inputs and graduated students (

1y ), members for 
scholarship ( 2y ), research products ( 3y ) and manager 
satisfaction (

4y ) as the outputs. Note that all coordinates 

have integer structure and 4y  is an ordinal data.  
To make a comparison with reference results, the 

efficiency scores and targets computed by the BCC model 
are shown in Table 4 (Appendix 1.). Note that, except for 
the observed efficient DMUs, the rest of units have 
fractional valued target and we need to run the model (2) 
for these units. The results of the models (1) and (2) for the 
data setting are summarized in Table 5 (Appendix 1.).  

The computed targets in our integer DEA model come 
very close to DEA BCC model, and it is notable to see 
differences between the results of mode (1) and BCC 
model; for example, see the targets for units 42, 41, 1 and 
23. This is also true for benchmarks obtained for these two 
models. Moreover, there exist considerable differences 
between the computed targets in our integer DEA model 
and those obtained by the model (1). 

As we can see, the computed targets based on model (1) 

 
Fig. 1. Integer target setting constant output 

and two case 
Fig. 2. Integer target setting constant input 

and two output case 
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contain some dominated activities, which are marked by ×  
in Table 5 (Appendix 1.). This means that using model 1 
can lead to suboptimal efficiency scores and performance 
targets.  

Finally, the empirical study also highlights more 
discrimination power in the introduced approach in setting 
integer-valued targets in comparison with the other 
approaches in the literature.  

5. Conclusion 

In this paper, an additive model is presented for setting 
targets with integer-valued coordinates in activity analysis. 
It is shown that the results of our MILP formulation are 
stable against the data errors; the computed targets are non-
dominated points of production set and very close to their 
targets with classical DEA models. An empirical 
application study on 42 university departments further 
illustrated the differences resulting from alternative 
approaches. The application also shows the computational 
advantage of our non-radial model as well as its higher 
discrimination power.  

As suggestions for future study, it seems to be 
interesting for the upcoming researchers to adapt non-radial 
models like slack based measure ([10]) for the case of 
integer-valued data and define a new complete efficiency 
measurement model. 

6. Acknowledgements 

The author is grateful to the managers of the Journal of 
Industrial Engineering and two anonymous reviewers of 
this journal. The author also wishes to thank Islamic Azad 
University, Karaj Branch for providing financial support 
for this study.  

7. References 

[1] R.J. Banker, R. C. Morey, The use of categorical variables 
in data envelopment analysis. Management Science, 32(12), 
1613-27, 1984.  

[2] R. J. Banker, A. Charnes, W. W. Cooper, Some models for 
estimating technical and scale inefficiencies in data 
envelopment analysis. Management Science, 30(12), 1078-
1092, 1984.  

[3] A. Charnes, W. W. Cooper, E. Rhodes, Measuring the 
efficiency of decision making units. European Journal of 
Operational Research, 2, 429-444, 1978.  

[4] W. W. Cooper, L. M. Seiford, K. Tone, Data envelopment 
analysis: A comprehensive text with models, applications, 
references and DEA-solver software. Kluwer Academic 
Publisher, 1999.  

[5] W. A. Kamakura, A Note on the use of categorical variables 
in data envelopment analysis. Management Science, 34(10), 
1273-1276, 1988.  

[6] R. Kazemi Matin, T. Kuosmanen, Theory of integer-valued 

data envelopment analysis under alternative returns to scale 
axioms. Omega, 37, 988-995, 2009. 

[7] T. Kuosmanen, R. Kazemi Matin, Theory of integer-valued 
data envelopment analysis. European Journal of Operational 
Research, 192, 658-667, 2009.   

[8] S. Lozano, G. Villa, Data envelopment analysis of integer-
valued inputs and outputs. Computers & Operations 
Research 33, 3004-3014, 2006. 

[9] J. J. Rousseau, J. H. Semple, Categorical outputs in data 
envelopment analysis. Management Science, 39(3), 384-
386, 1993. 

[10] K. A. Tone, A slack based measure of efficiency in data 
envelopment analysis. European Journal of Operational 
Research, 130, 498-509, 2001. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Journal of Optimization in Industrial Engineering 8 (2011) 33-40

37



 

Appendix 1.  
Table 4 
Efficiency scores and BCC projections b 
DMU  jθ  Benchmarks ( )0* >jλ  

  

BCC Projections  

  jx1ˆ  jx2
)

 jx3ˆ  jy1ˆ  jy2ˆ  jy3ˆ  jy3ˆ  

1 0.8842  16(0.07)17(0.88) 18(0.05)  0  230.7762  0  225  6.59  1 3.72  
2  1  -  0  170  56  213  2  0  3  

3  1   0  281  70  326  2  0  3  

4  0.9514  2(0.19) 14(0.61) 17(0.19) 18(0.11)  0  131.2932  31.3962  159  1  0.33  2.37  

5  1   164  0  0  52  1  0  3  

6  1  -  291  815  0  1014  2  2  2  

7  1   0  0  61  50  0  0  4  

8  0.7928  5(0.55) 17(0.45)  89.5864  75.316  0  103.72  3.72  0  3.45  

9  1  -  0  727  0  675  3  0  3  

10  0.9863  9(0.79) 18(0.11) 32(0.11)  0  762.4099  0  697  2.57  0.32  3  

11  0.8333  7(0.78) 14(0.22)  0  0  54,9978  46  0  0  3.56  

12  0.3402  5(0.39) 17(0.40) 31(0.20)  117.7092  67.0194  0  132  3.83  0  3.40  

13  1  -  0  988  0  812  8  10  2  

14  1  -  0  0  34  32  0  0  2  

15  0.8609  13(0.04) 16(0.95) 18(0.01)  0  684.4155  0  601  6  11.82  2  

16  1  -  0  627  0  591  6  12  2  

17  1  -  0  166  0  166  7  0  4  

18  1  -  0  761  0  761  0  3  2  

19  1  -  193  124  0  293  0  0  3  

20  1  -  484  0  0  361  0  0  1  

21  0.8816  16(0.27) 17(0.47) 18)(0.26)  0  455.7872  0  434  4.92  4  2.95  

22  0.8756  16(0.24) 17(0.38) 18(0.38)  0  .511.876  0  492  4.12  4  2.77  

23  0.8404  16(0.10) 17(0.30) 18(0.60)  0  573.1528  0  565  2.7]  3  2.60  

24  0.7589  16(0.07)17(0.55) 18(0.38)  0  428.7785  0  423  4.26  2  3.1  

25  0.7406  16(0.17)17(0.50) 18(0.33)  0  446.5818  0  433  4.53  3  2.01  
26  0.8937  16(0.02) 17(0.72) 18(0.27)  0  333.3501  0  332  5.11  1  3.43  

27  0.9969  16(0.22) 17(0.66) 18(0.11)  0  345.9243  0  328  5.98  3  3.33  

28  1  -  0  0  70  51  0  3  4  

29  0.6181  J 7(0.87) 36(0.12)  0  202.7368  0  193.38  6.62  I  3.87  

30  0.6217  17(1)  0  166  0  166  7  0  4  

31  1  -  262  0  0  219  3  0  3  

32  1  -  0  1023  0  794  2  0  4  

33  1  -  223  0  535  232  14  6  4  

34  0.9649  14(0.24) 16(0.13) 17(0.27)  0  256.6634  14.4735  238  3.75  4  3  

  28(0.09)         

35  1  -  172  375  0  547  4  3  3  

36  1  -  0  460  0  385  4.  8  3  

37  1  -  223  0  535  232  14  6  4  

38  1  -  0  1202  58  1158  12  0  3  

39  0.3743  3(0.19) 17(0.41) 18(0.25)  0  383.6575  22.8323  394  4  1  3.25  

  28(0.08)         

40  0.9710  7(0.33) 28(0.67)  0  0  66.999  50.67  0  2  4  
41  0.8064  5(0.09) 31(0.91)  253.20960  0 0  204  2.82  0  3  

42  0.7357  20(0.05) 31 (0.95)  272.9447  0  0  226  2.85  0  2.90  
b The EMS software is used for these computations. 
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Table 5 
5 Integer projections and comparisons between models 3.1 and 2.1c 

DMU *+
ijδ  *+

rjδ  
Number of 
branches 

Integer BCC projections based on the model 
3.1 

 Integer BCC projections based 01: the model 2.1 
Number of
branches  ( )0>  ( )0>  *

1 jx  *
2 jx  *

3 jx  *
1 jy  *

2 jy  *
3 jy  *

4 jy   *
1 jx  *

2 jx  *
3 jx  *

1 jy  *
2 jy  *

3 jy  *
4 jy  

1  None  None  3  0  231  0  225  6  1  3   0  256  0  237  5  1  3  38  

2*  - - - 0  170  56  213  2  0  3   0  170  56  213  2  0  3  - 

3* - - - 0  281  70  326  2  0  3   0  281  70  326  2  0  3  - 

4  None  1*
2 =−δ  3  0  132  32  159  2  0  3   0  134  32  159  2  1  3  24  

  1*
2 =−δ                   

5* - -  164  0  0  52  1  0  3   164  0  0  52  I  0  3  - 

6* - -  291  815  0  1014  2  2  2   291  815  0  1014  2  2  2  - 

7* - -  0  0  61  50  0  0  4   0  0  61  50  0  0  4  - 

8  None  3*
1 =−δ  4  90  16  0  106  3  0  3  X 101  84  0  89  2  0  3  12  

9* - -  0  727  0  675  3  0  3   0  727  0  675  3  0  3  - 

10  None  None  1  0  163  0  697  2  0  3  X 0  7i3  0  697  2  0  3  22  

11  None  None  1  0  0  55  46  0  0  3  X 0  0  61  50  0  0  4  18  

12  None  0;-' = 2  4  118  68  0  135  3  0  3  X 127  72  0  132  3  0  3  31  

13*  - -  0  988  0  812  8  10  2   0  988  0  812  8  10  2  - 

14* - -  0  0  34  32  0  0  2   0  0  34  32  0  0  2  - 

15  None  None  6  0  685  0  601  6  11  2  X 0  690  0  601  6  11  2  52  

16* - -  0  627  0  591  6  12  2   0  627  0  591  6  12  2  - 

17* - -  0  166  0  166  7  0  4   0  166  0  166  7  0  4  - 

I8* - -  0  761  0  761  0  3  2   0  761  0  761  0  3  2  - 

19*  - -  193  124  0  293  0  0  3   193  124  0  293  0  0  3  - 

20* - -  484  0  0  361  0  0  1   484  0  0  361  0  0  I  - 

21  None  None  3  0  456  0  434  4  4  2   0  463  0  434  5  4  3  74  

22  None  None  1  0  512  0  492  4  4  2  X 0  523  0  492  2  4  2  23  

23  None  None  3  0  514  0  565  2  3  2   0  590  0  565  2  4  2  28  

24  None  None  1  0  429  0  423  4  2  3  X 0  431  0  423  3  2  3  67  

25  None  2*
1 =−δ  1  0  441  0  433  4  3  3  X 0  449  0  433  4  3  3  43  

26  None  None  1  0  334  0  332  5  1  3  X 0  342  0  332  4  1  3  40  

27  None  None  3  0  346  0  328  5  3  3  X 0  347  0  328  2  3  3  7  

28* - -  0  0  70  51  0  3  4   0  0  70  51  0  3  4   

29  None  None  3  0  203  0  193  6  1  3   0  256  0  238  5  1  3  26  

30* - -  0  166  0  166  7  0  4   0  166  0  166  7  0  4  - 

31* - -  262  0  0  219  3  0  3   262  0  0  219  3  0  3  - 

32* - -  0  1023  0  794  2  0  4   0  1023  0  794  2  0  4  - 

33* - -  396  995  0  1111  2  2  3   396  995  0  1111  2  2  3  - 

34  None  1*
4 =−δ  1  0  251  15  240  3  4  3   0  260  14  238  3  4  3  28  

35* - -  172  375  0  547  4  3  3   172  375  0  547  4  3  3  - 

36* - -  0  460  0  385  4  8  3   0  460  0  385  4  8  3  - 

37* - -  223  0  535  232  14  6  4   223  0  535  232  14  6  4  - 

38* - -  0  1202  58  115&  12  0  3   0  1202  58  1158  12  0  3  - 

39   None  I  0  384  22  394  4  1  3  X 0  386  23  394  4  1  3  8  

40  None  None  0  0  0  61  50  0  2  4   0  0  61  50  0  2  4  3  

41  None  1*
1 =−δ  3  254  0  0  205  2  0  3   262  0  0  219  3  0  3  12  

42  None  None  0  213  0  0  226  2  0  2  X 325  0  0  226  I  0  2  15  

C The Lingo software used for these computations.                 
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