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Abstract 

This paper presents a new nonlinear mathematical model to solve a cell formation problem which assumes that processing time and inter-
arrival time of parts are random variables. In this research, cells are defined as a queue system which will be optimized via queuing theory. 
In this queue system, each machine is assumed as a server and each part as a customer. The grouping of machines and parts are optimized 
based on the mean waiting time. For solving exactly, the proposed model is linearized. Since the cell formation problem is NP-Hard, two 
algorithms based on genetic and modified particle swarm optimization (MPSO) algorithms are developed to solve the problem. For 
generating of initial solutions in these algorithms, a new heuristic method is developed, which always creates feasible solutions. Also, full 
factorial and Taguchi methods are used to set the crucial parameters in the solutions procedures. Numerical experiments are used to 
evaluate the performance of the proposed algorithms. The results of the study show that the proposed algorithms are capable of generating 
better quality solutions in much less time. Finally, a statistical method is used which confirmed that the MPSO algorithm generates higher 
quality solutions in comparison with the genetic algorithm (GA). 
Keywords: Cell formation, Queuing theory, Particle swarm optimization, Branch and bound. 

1. Introduction 

Group Technology (GT) can be defined as a 
manufacturing philosophy which identifies similar parts 
and groups them together to take advantage of their 
similarities in manufacturing and design (Papaioannou 
and Wilson, 2010). Cellular Manufacturing System 
(CMS) is an application of GT and has appeared as a 
promising alternative manufacturing system. CMS could 
be characterized as a hybrid system linking the 
advantages of both the jobbing (flexibility) and mass 
(efficient flow and high production rate) production 
approaches. There are three basic and significant steps in 
the design of CMS: Cell formation, intracellular machine 
layout, and cell layout (Ahi et al., 2009). The design of 
CMSs has been called cell formation (CF). Given a set of 
part types, processing requirements, part type demand and 
available resources (machines, equipment, etc.), a general 
design of cellular manufacturing comprises the following 
approaches: (a) part families are formed according to their 
processing requirements, (b) machines are grouped into 
manufacturing cells, and (c) part families are assigned to 
cells (Papaioannou and Wilson, 2010). 

Many studies investigate CMS problems in certain 
conditions, demand, machine availability, processing 
time, raw materials, and etc., but they are uncertain in real 
world and are changed randomly during the time horizon. 
Therefore, cellular manufacturing in uncertainty condition 
is an important area of investigation and making more  

 
 
 

accurate decisions. In this paper, uncertainty in processing 
time and inter-arrival time of parts are considered to fill 
this gap in the literature. Regardless of fuzzy uncertainty, 
two types of uncertainties might be introduced. The first 
is due to our limited knowledge of the input parameters 
and the second associates with planning for a future. The 
former leads to stochastic problems and the latter causes 
dynamic problems. It is assumed that our information of 
model parameters is incomplete in the static stochastic 
problems. In other words, the exact value of the 
parameters is unknown. It can only be predicted with 
probability; however, parameters are uncertain, static and 
do not change during time. There are two main 
approaches to static stochastic problems: scenario 
planning and the probabilistic approach. The scenario-
based planning is an approach in which uncertainty is 
captured by determining a number of possible future 
states by decision makers. Each possible future state is 
called a scenario. The goal is to find solutions performing 
well under all scenarios. Such a solution is called robust 
solution or compromise solution. In the probabilistic 
approach, the probability distribution of random variables 
is considered explicitly. Some researchers have placed 
probability distributions in the form of mathematical 
programming and some have put it in the context of 
queuing theory. 
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In the following, a brief review of previous studies 
based on the mentioned framework is presented. In 
uncertain CF problems, most articles are conducted on the 
uncertainty in demand, the processing time and the 
reliability of machines. However, the reliability of 
machine can have an impact on the processing time, but 
due to the large number of articles, this issue is 
investigated separately. Regarding stochastic demand, 
Arzi et al. (2001) investigated multi-objective approach 
for the formation problem in a lumpy demand 
environment. They found out that in lumpy demand the 
required capacity is influenced by demand variability and 
there is a correlation between the part types assigned to 
the cells and it causes machine idleness, or, alternatively, 
capacity shortage. They described a mixed integer 
programming model via typical examples and concluded 
that using traditional approaches designers do not obtain 
optimal solutions and might make decisions on the basis 
of wrong results. Tavakkoli-Moghaddam et al. (2007) 
examined a mathematical model to solve a facility layout 
problem in CMSs with stochastic demands. The main 
purpose of their study was to minimize the total costs of 
inter-cell and intra-cell movements in both machine and 
cell layout problems in CMS simultaneously. They 
considered part demand as an independent variable with 
the normal probability distribution. Egilmez et al. (2012) 
proposed a non-linear mathematical model to solve the 
stochastic CMS design problem. In their paper processing 
times and customer demand were viewed uncertain with 
the normal distribution. The study was meant to design a 
CMS with product families that are formed with the most 
similar products and minimum number of cells and 
machines for a specified risk level. Egilmez and Suer 
(2014) offered two models for analyzing the interaction 
between CF stage and cell scheduling stage in terms of 
the risk taken by decision-makers. The first model formed 
manufacturing cells with the objective of maximizing 
total pair-wise similarity among products assigned to cells 
and minimizing the total number of cells. The second 
model, maximizes the number of early jobs. The demand 
and the processing time in both models are random 
variables with normal distribution. Concerning the 
machine reliability, JabalAmeli et al. (2008) investigated 
the effects of machine breakdowns on the CF problem 
with a new perspective. The results of their study showed 
that although considering machine reliability can increase 
the movement costs, it significantly reduces the total costs 
and total time for CMS. JabalAmeli and Arkat (2008) 
conducted a study on the configuration of machine cells 
considering production volumes and process sequences of 
parts. Further, they studied alternative process routings 
for part types and machine reliability considerations. They 
found out that the reliability consideration has significant 
impacts on the final block diagonal form of machine-part 
matrixes. Chung et al. (2011) found that machine 
reliability has meaningful effects on the reducing of the 
total system cost. Regarding probability distributions in 
the form of queuing theory, Kannan and Palocsay (1999) 

examined cellular versus process layouts based on the 
impact of learning on shop performance. They modeled 
mean flow time for the shops, in manufacturing process 
and cellular by queuing theory and showed a cellular shop 
needs only achieve a marginally higher learning rate than 
a job shop in order to perform at a comparable level. 
Pitchuka et al. (2006) carried out a study to explore 
whether splitting the part population into part families can 
offset the effect of partitioning the machine population on 
queue time. Their study recognizes certain situations 
where a cellular system without getting benefits in factor 
settings outperforms a functional system. Ghezavati and 
Saidi-Mehrabad (2011) assumed that each machine works 
as a server and each part is a customer where servers 
should give service to customers. Accordingly, they 
defined the formed cells as a queue system which can be 
optimized by queuing theory. By maximizing the 
probability that a server is busy, the optimal cells and part 
families formed. Fardis et al. (2013) examined CF 
problem considering stochastic parameters the arrival rate 
of parts into cells and machine service rate describing by 
an exponential distribution. The objective function of 
presented model minimized the summation of the idleness 
cost of machines, the subcontracting cost for exceptional 
parts, non-utilizing machine cost, and the holding cost of 
parts in the cells. After presenting the research conducted 
in the static stochastic problems with the probabilistic 
approach, a review of the investigations conducted on the 
static stochastic problems with the scenario planning 
approach is presented. A mathematical model for cellular 
manufacturing problem integrated with group scheduling 
in an uncertain space was proposed by Ghezavati and 
Saidi-Mehrabad (2010). In this model, cell formation and 
scheduling decisions are optimized concurrently. It is 
assumed that the processing time of parts on machines is 
stochastic and described by discrete scenarios. Their 
model minimizes the expected cost consisting of 
maximum tardiness cost among all parts, the cost of 
subcontracting for exceptional elements and the cost of 
resource underutilization.  

Finally, the studies carried out on dynamic stochastic 
problems in the frameworks of stochastic demand and the 
reliability of machine are presented, respectively. 
Asgharpour and Javadian (2004) presented a 
mathematical model for designing CMSs based on 
dynamically generated, stochastic demand, routing 
flexibility, and machine flexibility. Three distributions 
normal, binomial and beta for demand considered and the 
total sum of machine purchase cost, operating cost, inter-
cell and intra-cell material handling costs, machine 
relocation cost and the absolute sum of the demand 
deviation from mean for part types over the planning 
horizon minimized. Das et al. (2007) proposed a 
preventive maintenance planning model for the 
performance improvement of CMSs in the terms of the 
machine reliability, and resource utilization. Considering 
machine failure times follow a Weibull distribution, the 
presented model in their study determines a preventive 
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maintenance interval and a schedule for performing 
preventive maintenance actions on each machine in the 
cell by minimizing the total maintenance cost and the 
overall probability of machine failures. In another study, 
Das et al. (2007) examined a new approach to the design 
of CMS by considering the machine reliability within a 
multi-objective optimization framework which seeks to 
strike a balance between the costs and reliability goals. 
The CMS design problem comprises assigning the 
machines to cells, and selecting, for each part type, the 
process route with the highest overall system reliability 
while minimizing the total costs of manufacturing 
operations, machine under-utilization, and inter-cell 
material handling. It has been assumed that machine 
failure and repair times are exponentially distributed. Das 
(2008) in another model, based on the Weibull 
distribution and the exponential distribution approach 
suggested designer or user to select the suitable failure 
rate for a specific situation. In this article, when system 
reliability expectation is high, the Weibull distribution 
may be viewed to generate better cell configuration. 
Rafiee et al. (2011) proposed the integrated approach to 
analyze better CMS, since different aspects of the 
manufacturing system are interrelated. The Weibull 
distribution, assigned to machine failure time distribution 
and to conquer the breakdowns, preventive and corrective 
actions had been considered. Table 1 indicates the 
summery of the presented literature review.  

In this paper, a stochastic mathematical programming 
model for CF in CMS is proposed. The main aim of the 
proposed model is optimization of the mean waiting time 

for processing parts on machines to have optimal 
grouping of machines and parts. However, mathematical 
models of this type may impose computational difficulties 
and may not be solvable using commercial optimization 
software for medium-to-large sized problems. Thus, two 
algorithms based on particle swarm optimization (PSO) 
algorithm and the genetic algorithm (GA) is proposed to 
solve the model. The remainder of this paper is organized 
as follows. The problem formulation is described in 
Section  2. The MPSO algorithm and GA are described in 
Sections  3. The computational results and conclusion are 
reported in Section  7 and  1, respectively. 

2. Problem Formulation 

As pointed out in the above literature review, one of the 
solution methods for CF is the mathematical 
programming. In this section, a new mathematical model 
is presented in which the processing time and the time of 
inter-arrival parts into the cells, are considered random 
variables. To formulate the problem, a queuing model is 
used. In this queuing model, the part as customer and the 
machine as server are considered. The M/M/1 model is 
used in this queuing model. Service discipline is based on 
first come, first service. In this model, the time between 
two successive arrival customers and service time is 
exponentially distributed. The queuing system is shown in 
Fig. 1. 

Table 1 
The summary of the literature review 

Author(s) stochastic problems 
Arzi et al. (2001)  

demand 
   Tavakkoli-Moghaddam et al. (2007) 

Egilmez et al. (2012) 
Egilmez, and Suer (2014) 
JabalAmeli et al. (2008)  

machine reliability JabalAmeli and Arkat (2008) 
Chung et al. (2011) 
Kannan and Palocsay (1999)  

Queuing theory Pitchuka et al. (2006) 
Ghezavati and Saidi-Mehrabad (2011) 
Fardis et al. (2013) 
Ghezavati and SaidiMehrabad (2010) scenario planning 
Asgharpour and Javadian (2004) Demand  Das et al. (2007)  

machine reliability Das et al. (2007) 
Das (2008) 
Rafiee et al. (2011) 

 
 
 
 
 
 

Fig. 1. Queuing system for the proposed model 
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In this model, the mean waiting time of part 
processing time is considered to be optimized. Optimizing 
average waiting time leads to increased number of parts 
processed in intra-cell and minimal inter-cell 
transportations of parts. In the optimization of the mean 
waiting time, the first idea that comes to mind is 
minimizing the mean waiting time. However, within the 
cellular manufacturing framework, for forming cells, each 
part must be assigned only to one cell and each machine 
also must be assigned only to one cell. This is an 
important barrier to minimize the mean waiting time. 

Minimizing the mean waiting time within cellular 
manufacturing framework makes parts and machines have 
a tendency not to be in a cell and thus decreases the 
waiting time. But it should be noted that this locating will 
not form the manufacturing cells (see Fig. 2). As a result, 
maximizing the mean waiting time in the CF problem 
decreases the number of inter-cell movements and finally 
leads to the formation of the optimal cells and part 
families. 

 

 
Fig. 2. The forming cells in minimizing average waiting time 

According to the queuing model and Fig. 1,  the part inter-
arrival time for processing on a particular machine is 
equal to the most minimization of the part arrival time for 
processing and it has the exponential distribution with 
parameter λୣ୤୤ (effective arrival rate) (Hillier and 
Lieberman, 1995). The λୣ୤୤  can be computed as follows: 

௘௙௙ߣ = ෍ ௜ߣ

௡

௜ୀଵ

 
(1) 

In which λ୧ is arrival rate for part ݅ and ݊ is a number 
of parts that are processed on the same machine. Hence, 
the mean waiting time of part, in order to be processed on 
the machine j, is calculated as follows: 

(2) 
 ௝ܹ =

1
௝ߤ − ௘௙௙ೕߣ

 

Based on the presented description, the 
proposed model can be formulated as follows: 

Indexing sets 
݅: index for parts i =  1, . . . , P 
݆: index for machines j =  1, . . . , M 
݇: index for cells k =  1, . . . , C 

Parameters 
 ௜: mean arrival rate for part i (mean number of partsߣ
entered per unit time). 
 ௝: mean service rate for machine j (mean number ofߤ
customers served per unit time by machine j). 
 .௠௔௫: the maximum number of machines per cellܯ
ܽ௜௝ = ቄ1 if part i is to be processed on machine j

0 otherwise
 

 

Decision variables 

௜௞ݔ = ቄ1    if part i is assigned to cell k
0 otherwise

 

௝௞ݕ = ቄ1 if machine j is assigned to cell k
0 otherwise

 

Mathematical model 
(3) 
ܼ ݔܽܯ  =

1
ܯ

෍
1

௝ߤ − ∑ ∑ ௝௞ݕ௜௞ݔ௜ܽ௜௝ߣ
௉
௜ୀଵ

஼
௞ୀଵ

ெ

௝ୀଵ

 

(4) 
.ݏ  ෍      :ݐ ௜௞ݔ

஼

௞ୀଵ

= 1 ∀݅ 

(5) 
 ෍ ௝௞ݕ = 1

஼

௞ୀଵ

∀݆ 

(6) 
 ෍ ௝௞ݕ ≤ ௠௔௫ܯ

ெ

௝ୀଵ

∀݇ 

(7) 
 ෍ ෍ ௝௞ݕ௜௞ݔ௜ܽ௜௝ߣ < ௝ߤ

௉

௜ୀଵ

஼

௞ୀଵ

∀݆ 

(8) 
 

௜௞ݔ  , ௝௞ݕ  ∈ {0,1} ∀݅, ݆, ݇ 

The objective function (3) maximizes the average of 
the mean waiting time of parts for processing on different 
machines. The main point in the objective function is that 
the arrival rate for each part is added to the effective 
arrival rate for each machine when part needs to be 
operated on the machine, and the part and the machine are 
located in the same cell as well. The objective function 
increases the waiting time of the parts behind the 
machines, that is, it increases the parts in the cells as the 
machines and parts within the same cell are taken into 

 
2 3 5 1 4 

1 0 0 0 1 1 
3 0 0 0 1 0 
5 0 0 0 0 1 
2 1 1 1 0 0 
4 1 1 0 0 0 

 

Part 

Machine 
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account in the waiting time. Constraint (4) guarantees that 
each part must be allocated to one cell only. Constraint 
(5) guarantees that each machine must be allocated to one 
cell only. Constraint (6) guarantees that, number of the 
machines to be allocated to each cell, should be less than 
the maximum number of the machines allowed in each 
cell. Constraint (7) avoids instability of the queuing 
system, that is, the effective arrival rate will be 
necessarily less than service rate. Note that the effective 
arrival rate must be less than the service rate; otherwise 
the objective function is unclear. 

2.1. Linearization of the mathematical model 
In the proposed mathematical model, the objective 

function (3) and constraint (7) are nonlinear. For 
linearization, new binary integer variable V୧୨୩ is defined 
which is computed by the following equation: 

(9) 
 ௜ܸ௝௞ = ௜௞ݔ × ௝௞ݕ ∀݅, ݆, ݇ 

Equivalent of the objective function is given in 
appendix A and for linearization constraint (7), following 
equations should be added to the proposed model by 
enforcing these two linear inequalities simultaneously: 

(10) ௜ܸ௝௞ − ௜௞ݔ − ௝௞ݕ + 1.5 ≥ 0 ∀݅, ݆, ݇ 
(11) 1.5 ௜ܸ௝௞ − ௜௞ݔ − ௝௞ݕ ≤ 0 ∀݅, ݆, ݇ 

Overall, it is implied that proposed linearization model 
seeks to put those kinds of the parts in the cells that have 
higher arrival rates (larger numbers of them are needed to 
produce), because the arrival rate of each part as 
coefficient in the linearization objective function is 
appeared. 

3. The Proposed Algorithms 

It is well-known that cellular manufacturing problems 
are NP-hard (King and Nakornchai, 1982). Therefore, 
precise solution procedures and commercial optimization 
soft wares are unable to reach global optimum in an 
acceptable amount of time for medium and large size 
scale problems. To deal with this deficiency, two 
algorithms based on MPSO and GA meta-heuristics have 
been developed in this paper. 

3.1. The MPSO algorithm 

3.1.1 The Original PSO 
Kennedy and Eberhart (Kennedy and Eberhart, 1995; 

Eberhart and Kennedy, 1995) introduced PSO as an 
optimization tool that provides a population-based search 
method. In PSO, solutions are called as particles that 
modify their locations in each iteration. Particles fly 
around in a multidimensional search space, and during 

flight, each particle adjusts its location based on its own 
past, and the experience of neighbor particles. The 
original process for implementing PSO is as follows: 
1: Initialize a population array of particles (xሬ⃗ ୧) with 
random locations and velocities (vሬ⃗ ୧) on D-dimensions in 
the search space. 
2: loop 
3: For each particle, evaluate the desired optimization 
fitness function in D variables. 
4: Compare particle fitness evaluation with its pbest୧ 
(value of the best function result so far, for particle i). If 
existing value is better than pbest୧, then set pbest୧ equal 
to the current value, and p୧ equal to the current location xሬ⃗ ୧ 
in D-dimensional space. 
5: Recognize the particle in the neighborhood with the 
best success so far (gbest), and assign its index to the 
variable g. 
6: Modify the velocity and location of the particle based 
on the following equation (see notes below):  

 (12) 
ቐ

vሬ⃗ ୧ ← vሬ⃗ ୧ + Uሬሬ⃗ (0, ∅ଵ) ⊗ (pሬ⃗ ୧ − xሬ⃗ ୧) + Uሬሬ⃗ (0, ∅ଶ)
⊗ (pሬ⃗ ୥ − xሬ⃗ ୧)
xሬ⃗ ୧ ← xሬ⃗ ୧ + vሬ⃗ ୧

 

7: If a criterion is met (usually a sufficiently good fitness 
or a maximum number of iterations), exit loop. 
8: end loop 

Notes: 
– Uሬሬ⃗ (0, ∅୧)indicates the vector of random numbers 
uniformly distributed in [0, ∅୧]which is randomly 
produced at each iteration and for each particle. 
– ⊗ is component-wise multiplication. 
– In the original version of PSO, each component of vሬ⃗ ୧ is 
kept within the range [−V୫ୟ୶ , +V୫ୟ୶] (Poli et al., 2007). 

The original PSO algorithm was developed for 
continuous domains. A discrete version of the PSO 
algorithm was developed by Durán et al. (2010). In this 
paper, a modified PSO algorithm by Duran et al. (2010) is 
presented. The main modification compared to the 
original PSO algorithm consists in not using the vector of 
velocities that the original PSO algorithm does. This 
algorithm utilizes the concept of proportional likelihood 
with modifications, a technique applied in data mining 
applications.  

3.1.2 Particle structure 
The particle representation involves two sections: the 

first section indicates the cells assigned to machines and 
the second section represents the cells assigned to parts. 
The particle used for the proposed model is presented in 
Fig. 3. 

 
 

Part P ⋯ Part2 Part1 Machine M ⋯ Machine2 Machine1  
3 ⋯ 2 3 1 ⋯ 2 1 number of 

cells 
Fig. 3. Sample of particle structure 
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Fig. 4. Heuristic algorithm to generate a feasible initial population 

r=1(index for population) 

The number of all machines of the 
cell =0 

 

i=1(index for machine and part) 
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be processed? 
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the queue length of machines that are 
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queue length is infinite? 

Subtract the arrival rate for the 
part i of the queue length of the 
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3.1.3 The proposed generating initial population 

To present a qualified initial population, a heuristic 
method that may always produce a feasible solution is 
proposed. The heuristic method has been presented in Fig. 
4. In the first step, machines are allocated to cells based 
on capacity of cells and in the second step parts are 
allocated to cells considering constraint (7) for all 
machines. 

3.1.4 Improvement procedure 

In this phase, the linearization objectives function is 
used as the fitness function of the MPSO algorithm. The 
updating process is based on xሬ⃗ ୧, pሬ⃗ ୧, and pሬ⃗ ୥, and it works 
as follows. In the original PSO process, the velocity of 
each particle is iteratively adjusted so that the particle 
stochastically oscillates around pሬ⃗ ୧ and pሬ⃗ ୥ locations. In 
fact, the velocity of a particle must be understood as an 
ordered set of transformations that operates on a solution. 
Therefore, each particle of MPSO algorithm, ( xሬ⃗ ୧ − pሬ⃗ ୧) 
and (xሬ⃗ ୧ − pሬ⃗ ୥) indicates the necessary movements to 
modify the location given by the first term to the location 
given by the second term of each expression. The 
difference between xሬ⃗ ୧ and pሬ⃗ ୧ represents the changes that 
will be needed to move the particle i from xሬ⃗ ୧ to pሬ⃗ ୧.  If the 

difference between a given element of xሬ⃗ ୧ and pሬ⃗ ୧ is not 
null, it means that the mentioned position is susceptible to 
change through operations described below. 

A new vector P is generated to record the positions 
where the xሬ⃗ ୧ and  pሬሬሬ⃗ ୧ elements are not equal. The vector Q, 
is defined with the same length with the vector P. Binary 
elements for the vector Q is randomly generated. In any 
position of the vector Q, if the element is 0, the change is 
not performed, but if the element is 1, the element of the 
same position of the vector P is selected. This element in 
the vector P shows the position of vector pሬ⃗ ୧ which should 
be copied in xሬ⃗ ୧. Then, the feasibility of constraints (6) and 
(7) is evaluated. The procedure continues, if it is true, 
otherwise, the applied changes return and the next 
element of the vector P will be tested, which is specified 
by the vector Q (see Fig. 5). A similar process is done to 
update the new locationx′ሬሬ⃗

୧ bypሬ⃗ ୥  and to obtain the new 
location of xሬሬ⃗ ୧. Similarly, the feasibility of constraints (6) 
and (7) are examined, and pbest୧ (the best value of each 
particle) and gbest (the best value of the whole swarm) 
are calculated by the fitness function. Finally, a criterion 
for stopping algorithm (maximum number of iterations) is 
examined. This procedure is repeated for any particle. 
Flowchart of the MPSO algorithm is presented in Fig. 6.

 
 

 

Fig. 5. An example of how doing the first stage for the MPSO algorithm 

 

݅ݔ = [3  1  1  2  2]
݅݌ = [2  1  2  3  2]ൠ → ݅ݔ − ݅݌ = [1  0 − 1 − 1  0] → ൜ܲ = [1  3  4]

ܳ = [1  0  1]ൠ → ݅ݔ
′ = [2  1  1  3  2] 

௜݌ = [2  1  2  3  2]
⬚

௜ݔ = [3  1  1  2  2]
ൡ → ௜ݔ

ᇱ = [2  1  1  3  2] 

Positions 

Selected elements 
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Fig. 6. Flowchart of the MPSO algorithm 
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If  Q(j) = 1, the change is made (namely, xሬ⃗ ୧൫P(j)൯ ← pሬ⃗ ୧(P(j))) 

Equations (6) and (7) 
are satisfied? 

Does next 
position 
for P 
exist? 

No 

Yes 

Yes 

P ←Positions where the elements x′ሬሬ⃗
୧ and pሬ⃗ ୥ are not equal? 

No 

Generated Q and set j=1  

If  Q(j) = 1, the change is made (namely, x′ሬሬ⃗
୧൫P(j)൯ ← pሬ⃗ ୥(P(j))) 

Fitness evaluation Update gbest and pbest୧ 

Iteration  ≥Maximum iteration 
Yes 

END No 

Equations (6) and (7) are 
satisfied? 

Does next 
position 
for P 
exist? 

No 

Yes 

Yes 

No 

The made change 
returns  

The made change 
returns  

j ← j + 1 

j ← j + 1 

i  ≥population 

i ← i + 1 

Yes 

No 

Begin MPSO 

Create initial population (Fig. 4) and set i=1 

Fitness evaluation 
Calculating the pbest୧  and gbest 
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3.2. The proposed genetic algorithm 

Genetic algorithm has been derived from natural 
selection in biology. GA follows some steps to find better 
solutions. At first, the initial solution population is 
generated randomly or used by a special heuristic. Then, 
some members of the generated populations are selected, 
with regard to evaluation function, which is called fitness 
function. Members with higher fitness can be selected by 
the high probability. So, members, being less fit, are 
substituted by the better ones. This procedure is repeated 
to reach to a certain number of iterations (Mahdavi et al., 
2009).  
GA chromosome structure for this model is like particle 
structure for MPSO. The pescudo code main steps of the 
proposed GA are as follows: 
1. Initial population is generated using the proposed 

heuristic algorithm (see Fig. 4). 
2. The fitness value of a chromosome is calculated by the 

linearization objectives function.  
3. Producing a new population is based on the repetition 

of the following  steps: 
3.3. Crossover operator 

3.3.1. Selection of two parent chromosome in one 
population is based on the tournament selection method. 
Tournament selection involves running several 
"tournaments" among a few individuals chosen (two or 
three) at random from the population. The winner of 
each tournament (the one with the best fitness) is 
selected for crossover. 
3.3.2. Two parents are selected from the selection 
population. Then a number between 1 and M + P (M is 
the number of machines and P is the number of parts) is 
selected. A single crossover point on both parent’s 
chromosome has been selected. All data beyond that 
point in either chromosome is swapped between the two 
parent chromosomes. The derived combinations are the 
children (see Fig. 7). After crossover, the feasibility of 
constraints (6) and (7) are evaluated. The procedure 
continues, if it is true, otherwise, the made change 
returns.  
3.4. The fraction of the initial population is selected 

with a probability and then mutations are performed 
on them. Used mutation alters one array value in a 
chromosome from its initial state. A number 
between 1 and M + P is selected. Then, mutation 
operator of Mahdavi et al. (2009) is used for the 
mutation. After mutation, the feasibility of 
constraints (6) and (7) are evaluated. The procedure 

continues, if it is true, otherwise, the made change 
returns.  

4. The size of the next population is as the same as the 
previous one, that is derived from selecting the best 
solutions by comparing the previous generations and 
the solutions generated by mutation and crossover 
operators. 

5. Check stopping criteria (number of iterations). 
6. If the stopping condition is not met, go to step two. 

7. Computational Results 

This section describes some computational 
experiments which are implemented to evaluate the 
efficiency and performance of the proposed GA and 
MPSO algorithms in finding solutions with high quality. 
For this purpose, 19 sample problems are defined and 
then solved by Lingo software B&B algorithm, MPSO 
and GA. Finally, the generated solutions will be compared 
with each other according to the criteria of solution 
quality and solving time. The proposed model is coded in 
LINGO 8.0 optimization software and the proposed meta-
heuristic algorithms are coded in MATLAB 2010a on a 
computer with 2.99 GB RAM and core i3with 3.1 GHz 
processor.  For each problem, 5400 seconds (1.5 hours) 
are allowed to run. In B&B algorithm (obtained by Lingo 
software package), if the problem was solved in less than 
5400 seconds (1.5 hour), it is categorized as small-
medium size problems; otherwise, it is categorized as 
large size problems. This procedure is similar to Safaei et 
al. (2008). Since the efficiency of the meta-heurstics 
algorithms depends strongly on the operators and the 
parameters, the design of experiments is done to set 
parameters. Design of experiments finds the combination 
of control factors that has the lowest variation, aiming for 
robustness in solutions. To cover different sizes, problems 
with small size (8×11), medium size (9×18) and large size 
(16×30) have been selected. The MPSO and GA, 
parameters are set using the full factorial design and 
Taguchi technique design, respectively. A summary of all 
obtained MPSO and GA parameters are given in Tables 2 
and 3, respectively. 

 
 
 
 

 

 
Fig. 7. An example for one-point crossover  
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Table 2 
The obtained values for MPSO parameters 

16×30 9×18 8×11                                        Size 
parameter 

4000 1050 450 population 
50 60 10 Iteration 

 

 
Table 3 
The obtained values for GA parameters 

16×30 9×18 8×11                                        Size 
parameter 

4000 1100 450 Population 
70 60 20 Iteration 
0.6 0.7 0.7 Probability of crossover 
0.1 0.3 0.4 Probability of mutation 

3 2 3 Number of members competing 
in the tournament 

 

 
According to the Lingo software documents, Fୠୣୱ୲ 

shows the best feasible objective function value (OFV) 
which has been found so far.Fୠ୭୳୬ୢindicates the bound on 
the objective function value. Thus, a possible domain for 
the optimum value of the objective function (F∗) is 
limited betweenFୠ୭୳୬ୢ ≥ F∗ ≥  Fୠୣୱ୲. 

indicates the comparison of the Lingo software B&B 
algorithm results with MPSO and GA corresponding to 19 
test problems. Each problem is run 10 times and the 
average of OFV (Zୟ୴ୣ), the best OFV (Zୠୣୱ୲), and also 
average of run time (T୑୔ୗ୓) are represented in. The 
relative gap between the best OFV found by Lingo (Fୠୣୱ୲) 
and Zୟ୴ୣ that is found by metaheuristic algorithms are 
shown in column ‘‘Gୟ୴ୣ’’. The Gୟ୴ୣ is calculated as: 
Gୟ୴ୣ = [(Zୟ୴ୣ − Fୠୣୱ୲)/Fୠୣୱ୲] × 100. Also, the relative 
gap between Fୠୣୱ୲ and Zୠୣୱ୲ is shown in column ‘‘Gୠୣୱ୲’’. 
In a similar manner, the Gୠୣୱ୲ is calculated as: Gୠୣୱ୲ =
[(Zୠୣୱ୲ − Fୠୣୱ୲)/Fୠୣୱ୲] × 100. In the Lingo software 
B&B algorithm, ifFୠ୭୳୬ୢ =  Fୠୣୱ୲, the optimal solution is 
achieved. In, in some cases Zୟ୴ୣ and Zୠୣୱ୲ are 
betweenFୠ୭୳୬ୢ and  Fୠୣୱ୲ that shows a feasible better 
solution, under this condition Gୟ୴ୣ and Gୠୣୱ୲ are positive. 
But in cases that Zୟ୴ୣ and Zୠୣୱ୲ are out of the domain of 
[ Fୠୣୱ୲, Fୠ୭୳୬ୢ]Gୟ୴ୣ and Gୠୣୱ୲ will be negative numbers. 
To compare MPSO and GA some columns are defined as: 
Ga-ave, Ga-best and R that are formulated as: Gaୟ୴ୣ =
(Zୟ୴ୣ

୑୔ୗ୓ − Zୟ୴ୣ
ୋ୅ )/Zୟ୴ୣ

୑୔ୗ୓ , Gaୠୣୱ୲ = ൫Zୠୣୱ୲
୑୔ୗ୓ − Zୠୣୱ୲

ୋ୅ ൯/
Zୠୣୱ୲

୑୔ୗ୓ and R = (T୑୔ୗ୓ − Tୋ୅)/Tୋ୅ , respectively.  

As mentioned above, in small-medium size examples, 
a limited run time (1.5 h) is considered for Lingo solver to 
find optimal solutions. Therefore, as it can be concluded 
from, the percent error of optimal solution is very low 
when different problems are selected. Also, in large size 
examples, MPSO and GA perform better than the Lingo 
software B&B algorithm in most problems in a limited 
time. It implies that MPSO and GA algorithms are so 
effective in solving the proposed model in all class of 
problems. Also, performance of MPSO and GA has been 
indicated in Fig. 8 and Fig.9. With regard to Fig. 8 and 
Fig. 9, it can be gathered that Zୟ୴ୣ and Zୠୣୱ୲ solutions for 
small and medium size problems are so close to Fୠୣୱ୲ and 
even coincided. In large size problems, meta-heuristic 
algorithms which have been used, generate better 
solutions from the Lingo software B&B algorithm or 
solve problems with negligible error. Fig. 10 represents 
the time for solving meta-heuristic algorithms and the 
Lingo software B&B algorithm. It is obvious that the 
solving time for meta-heuristic algorithms while 
increasing the size of the problem is much less than the 
Lingo software B&B algorithm. A paired t-test was 
conducted to analyze the significant difference between 
the obtained solutions of the algorithms. The statistical 
details are shown in Table 4. This test shows that there is 
a statistically significant difference between solutions 
obtained by MPSO and GA. Considering this table, it can 
be gathered that the obtained solutions by MPSO are 
apparently better than GA. 

 
Table 4 
Detailed statistics of paired t test. 

Paired Differences t df  Sig. (2-tailed) 

Mean 
Std. 
Deviation 

Std. Error 
Mean 95% Confidence Interval of the Difference 

Lower Upper 
Pair1 
MPSO-
GA 

3.47421E1 70.29767 16.12739 .85971 68.62450 2.154 18 .045 
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Table 5 
 Comparison of B&B, MPSO and GA runs 

B&B MPSO GA  MPSO & GA comparison 

Problem 
No. 

No. of 
parts 

No. of  
machines 

No. of 
cells Mmax Fbest Fbound TB&B(s) Zave Zbest TMPSO(s) Gave(%) Gbest(%) Zave Zbest TGA(s) Gave(%) Gbest(%) 

Ga-
ave 

Ga-
best R 

1 4 4 2 3 244 244 0 244 244 0 0.00 0.00 244 244 0 0.00 0.00 0.00 0.00 - 

2 5 5 2 3 525 525 0 525 525 0 0.00 0.00 525 525 0 0.00 0.00 0.00 0.00 - 

3 7 6 2 3 738 738 0 738 738 0 0.00 0.00 738 738 0 0.00 0.00 0.00 0.00 - 

4 8 6 2 4 906 906 1 894 894 0 -1.32 -1.32 894 894 0 -1.32 -1.32 0.00 0.00 - 

5 9 7 3 4 1113 1113 3 1065.4 1113 0 -4.28 0.00 1094.8 1113 0 -1.64 0.00 -2.76 0.00 - 

6 11 8 3 4 1408 1408 13 1352 1408 0 -3.98 0.00 1354.4 1384 0 -3.81 -1.70 -0.18 1.70 - 

7 12 9 3 4 2223 2232 70 2062.8 2133 4.3 -7.21 -4.05 2068.2 2133 7 -6.96 -4.05 -0.26 0.00 -38.57 

8 18 8 3 5 1792 1792 588 1671.2 1704 4.7 -6.74 -4.91 1676.8 1696 7 -6.43 -5.36 -0.34 0.47 -32.86 

9 17 10 3 5 2680 2730 5400 2640 2660 18.3 -1.49 -0.75 2639 2660 80.6 -1.53 -0.75 0.04 0.00 -77.30 

10 18 9 3 5 2277 2277 1766 2088.9 2142 4.8 -8.26 -5.93 2117.7 2160 7 -7.00 -5.14 -1.38 -0.84 -31.43 

11 19 9 3 5 2331 2331 997 2195.1 2214 6.1 -5.83 -5.02 2176.2 2205 7 -6.64 -5.41 0.86 0.41 -12.86 

12 20 9 3 5 2304 2304 3560 2204.1 2232 19 -4.34 -3.13 2181.6 2232 7 -5.31 -3.13 1.02 0.00 171.43 

13 19 10 3 5 2770 2820 5400 2625 2660 30.2 -5.23 -3.97 2641 2650 77.2 -4.66 -4.33 -0.61 0.38 -60.88 

14 24 11 4 5 3377 3586 5400 3197.7 3311 21.9 -5.31 -1.95 3179 3245 84.1 -5.86 -3.91 0.58 1.99 -73.96 

15 24 14 4 5 4928 5404 5400 4671.8 4760 23.6 -5.20 -3.41 4635.4 4718 90.4 -5.94 -4.26 0.78 0.88 -73.89 

16 30 16 4 5 6544 7622 5400 6864 7040 34.5 4.89 7.58 6729.6 6960 89.1 2.84 6.36 1.96 1.14 -61.28 

17 35 20 4 7 8640 11840 5400 10408 10820 40.7 20.46 25.23 10220 10500 96.9 18.29 21.53 1.81 2.96 -58.00 

18 37 20 5 7 10160 12040 5400 10742 11080 40.9 5.73 9.06 10588 10840 101.75 4.21 6.69 1.43 2.17 -59.80 

19 43 22 5 7 10736 13398 5400 11077 11462 42.7 3.18 6.76 10903.2 11264 113.8 1.56 4.92 1.57 1.73 -62.48 

average -1.31 0.75 -1.59 0.01 0.24 0.68 -36.30 
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Fig. 8. Comparison of B & B,MPSO and GA results (Table 5):( Zୟ୴ୣ found by meta heuristic algorithms) vs. (Fୠ୭୳୬ୢ and Fୠୣୱ୲) 

 

 
Fig. 9. Comparison of B &B, MPSO and GA results (Table 5): (Zୠୣୱ୲ found by meta heuristic algorithms) vs. (Fୠ୭୳୬ୢand Fୠୣୱ୲) 

 

Fig. 10. Comparison of solving time 
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8. Conclusions 

In this paper, a new nonlinear mathematical model for 
the stochastic cell formation problem was proposed. The 
queuing theory was used for modeling and the machine 
was assumed as a server and the part as a customer. Inter-
arrival time and processing time were distributed 
exponentially. To find the optimal solution in a 
reasonable time, an equivalent procedure was used to 
linearize the nonlinear model. To study the proposed 
model, 19 sample problems with different sizes were 
used. The proposed model was solved by the Lingo 
software B & B algorithm. Because of the complexity 
class of this problem that is categorized as NP-hard, two 
meta-heuristic algorithms are developed to solve 
problems. Parameters setting for the MPSO algorithm 
have been done by the full factorial technique and for GA 
have been operated by the Taguchi technique.  Finally, 
the generated solutions by MPSO, GA and the Lingo 
software B & B were compared with each other by 
considering solving times. These comparisons confirmed 
the high efficiency of the proposed meta-heuristic 
algorithms for large size problems compared with the 
Lingo software B&B algorithm. The solutions generated 
by the MPSO algorithm were apparently better in 
comparison with GA solutions. Some suggestions can be 
highlighted for future research: implementing this study 
by maintaining its conditions for the dynamic state, 
adding machine locating concept to this study for 
achieving real results, and solving this problem with other 
meta-heuristic approaches such as ant-colony algorithm 
and comparing results with this study. 

Appendix A 

An equivalent (≡) objective function (3) is generated with 
respect to W୨ (the mean waiting time) that is always a 
positive quantity and defined binary integer variable in 
the equation (9), as follows: 

ݔܽܯ ቌ
1
ܯ ෍ ௝ܹ

ெ

௝ୀଵ

ቍ = ݔܽܯ ൬ ଵܹ

ܯ + ଶܹ

ܯ + ⋯ + ெܹ

ܯ ൰

= ݔܽܯ ൬ ଵܹ

ܯ ൰ + ݔܽܯ ൬ ଶܹ

ܯ ൰ + ⋯ 

ݔܽܯ+ ൬ ெܹ

ܯ ൰ ≡ ݊݅ܯ ൬
ܯ

ଵܹ
൰ + ݊݅ܯ ൬

ܯ
ଶܹ

൰ + ⋯ + ݊݅ܯ ൬
ܯ

ெܹ
൰
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ܯ
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+

ܯ
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+ ⋯ +
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The first term is always constant, thus it has no role in 
minimization: 
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