Journal of Optimization in Industrial Engineering 14 (2014) 13-26

Comparing Parallel Simulated Annealing, Parallel Vibrating Damp
Optimization and Genetic Algorithm for Joint Redundancy-

Availability Problems in a Series-Parallel System with Multi-State

Components

Mani Sharifi*”, Morteza Mousa Khani®, Arash Zaretalab®

& Assistant Professor, Faculty of Industrial & Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
b Associate Professor, Faculty of Management & Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran
“ MSc, Faculty of Industrial & Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Received 10 October, 2012; Revised 19 March, 2013; Accepted 20 May, 2013

Abstract

In this paper, we study different methods of solving joint redundancy-availability optimization for series-parallel systems with multi-state
components. We analyzed various effective factors on system availability in order to determine the optimum number and version of
components in each sub-system and consider the effects of improving failure rates of each component in each sub-system and improving
reliability of each sub-system. The target is to determine optimum values of all variables for improving the availability level and decreasing
the total cost of the system. At first, the exact values of variables are determined using a mathematical model; then, the results of SA-
Parallel, VDO-Parallel and genetic algorithms are compared with the exact solution.

Keywords: SA; VDO; Parallel; Availability; Multi-state; Redundancy.

1. Introduction

The effective factors in system availability in general
include component types in each sub-system, the number
of components in each sub-system and the level of
improving failure rates for each component in each sub-
system, as well as improving reliability of each sub-
system. The third factor concerns decreasing the failure
rate of each component and increasing the reliability of
subsystems by spending money. For example, if we
consider more skilled workers in each subsystem, the
reliability of the sub-system and in turn its availability
will increase.

In traditional models, the components and subsystems
have only two states: working, not working (failed). But it
is obvious that they may be in the states between the two
above states. These states are caused by slight failures and
operational defects. These systems are called multi-state
systems (MSS) (Barlow & Wu, 1987; Boedigheimer et al,
1994; Lisianaski et al, 2003; Zuo et al, 2006; Zuo et al,
2007).

In this regard, efforts have been made to optimize the
level of redundancy in the various subsystems of a
system. Levitin et al (1998) developed a model to
determine the optimal version of subsystem components

" Corresponding author E-mail: mani.sharifi@yahoo.com

13

in a multi-state series-parallel system. Coit and Ramirez
Marquez (2004) introduced a heuristic method for multi-
state Redundancy Allocation Problem (RAP), and Tian
and Zuo (2006) provided a method based on physical
programming and genetic algorithm for multi-state RAP.
In both models, RAP was the only factor in the
improvement of system operation, but Tian et al (2009)
introduced a modern method for optimizing series-parallel
systems. In doing so, they provided two options for
improving system reliability and availability: optimal
redundancy allocation in various subsystems and
improving the reliability of components through affecting
functional rates. Furthermore, Tian et al (2005) presented
a joint reliability-redundancy optimization method for
multi-state series-parallel systems inspired by the method
described above. In their method, transition rates affect
component state distributions and redundancy is
considered as a variable of the problem. After Chern
(1972) proved that RAP belongs to NP hard problems,
Mehta heuristic algorithms are used increasingly in the
area. In this regard, Gen and Kim (1999) used a hybrid
genetic algorithm to optimize reliability problems and
Konak et al (2003) took advantage of using the tabu
search for RAP. Liang et al (2004) solved RAP using the



Mani Sharifi et al./ Comparing Parallel Simulated Annealing ...

ant colony algorithm while Chen and Liang (2007) solved
series-parallel RAP by VNS. Moreover, Lisnianski et al.
(2008) described Universal Generating Function (UGF)
for RAP in fuzzy and crisp situations.

In the same vein, in the present paper we use Simulated
Annealing (SA) -parallel, Vibrating Damp Optimization
(VDO) -parallel and genetic algorithms for solving series-
parallel RAP as we calculate system availability by UGF.
Comparing the results with other algorithms, it seems that
the presented algorithms are effective.

Nomenclature

7 . Number of sub-systems
n;  Number of component(s) in sub-systems *

Hi - Number of versions in sub-systems

B 1+ Number of components for version h in sub-system *
Mi . Maximum of components variety in sub-system *
Msi * Maximum states in subsystem ¢
M : Maximum states for series-parallel system
j“ji * Failure rate from state J to state ¢
H j i ° Repair rate from state 7 to state
D; (t) . The probability that component isin  intime T
k Number of technical and organizational activities in sub-
i system !
ko Number of available organizational activities in sub-
sie system !

Tki A binary variable which equals 1 when technical activity
Wk in sub-system ! for version h is done

A binary variable which equals 1 when organizational

Thy: ko i
activity " in sub-system ° is done
Xi h + Vector for component version I in sub-system i
X : Variables vector
a, I . Represented factf)r for effefts of activity k on transition
v rate from state J to state !
i . Operation rate according to state i for component
nit g ;
version 7 in sub-system
UI(Z) U function for sub-system
U(Z ) U function for series-parallel system
®¢ : UGF operator
A : System availability
AO . System availability constraint

D : Demand level

14

.- Unit cost for organizational activity on component

version h for sub-system *

k

Unit cost for technical activity " on component version

cl :
kh h i
for sub-system

k

CTi . Total cost for technical activity ™ on component version
khO *

h for sub-system *

1 . e
Ccom > Cost of sub-system ! components

i . L
Cac, > Cost of sub-system ! activities
C': Cost of subsystem ¢
C(X) System cost
UGYF : Universal generation function
(G A : Genetic algorithm

The remainder of this paper is organized as follows.
Section 2 describes the system definition under study
along with the related mathematical model. Section 3
presents the mathematical model. Section 4 presents the
proposed solution procedures. The experimental design
and the numerical example appear in this Section. Finally,
the paper is concluded in Section 5.

2.  System Definition
2.1 Assumptions

The assumptions of this paper regarding multi-state
systems are as follows:
e Components are independent,
e In different states, components have different
operational rates,
e Operation rate of a parallel sub-system is equal
to the sum of operation rates of all components,
e  Operation rate of a series-parallel system is equal
to minimum operation rates of sub-systems.

2.2. State diagram and Marcovian model:

In multi-state systems, the first thing to calculate is the
state probability distribution that depends on failure and
repair rates of components. The transition rates can be
estimated by the historical data obtained from past failure
and repair times. In this paper, we concentrate on the
differential equation obtained from Marcovian model.
Random process models such as Marcov and semi
Marcov models can be used to illustrate a multi-state
component as shown in Figurel.



Journal of Optimization in Industrial Engineering 14 (2014) 13-26

Z“M’ M1

Har-1.m

AM’ -LM-2

Har—o.m—1

Hiz

Fig.1. The state space diagram for a repairable system.

Assume that each component has (M +1) state(s) and
transitions are possible between two adjacent states. So a
system of differential equation must be solved to
determine the state probability distributions at the timez .
The systems of differential equations are as follows:

d t
L():_'uo.l po(t)+ll.0 pl(t)
dt
d t
L():um p.(t)+
dt
2/2,1 pZ (t)_(ll,[) +’Lll,2)pl(t)
: : (1)
d t
4 paa(t) By o Py 1)+
dt
lM,M*I pM (t)_(lM -1,M -2 + ’LlM -1,M )pM -1 (t)
dp, (¢
#U: Hy am Py (t)_j’M,M—I Py (t)
And the initial conditions are:
0)=0 ; i=12,....M-1
pl( ) l (2)

Pu (0)= 1

Now it is necessary to discuss the effects of technical and
organizational activities on the system reliability. When
technical or organizational activities are done, the
transition rate changes in order to improve the system
availability. Generally, with these activities, the failure
rate decreases and the repair rate increases. Assume that
TK, is a binary variable showing whether activity & is

done or not. Now to determine the new values of
transition rate, we have:

if TK, =1 :{

A =y j % A

A3)
Hjp=ay ;i xHj
In this paper two different kinds of activities are
considered:
e Activities at the component level called technical
activities,
e Activities at the sub-system
organizational activities.

level called

15

TK flk is the technical activity that presents activity & on

component version /z on sub-system i . The cost of this
type of activities depends on the number of affected

components. TK,i is the organizational activity that

presents activity 4 on sub-system ; and affects all
components in sub-system i. The cost of this kind of
activity is independent of the number of sub-system
components.

2.3. System variables

For each sub-system, different versions of components are
available. We consider that for a specific sub-system,
different versions of components have the same available
states. Each version of components is defined and
categorized by operation rates of different states,
transition rates and unit costs.

Each sub-system can have different kinds of components.
In addition to the number of components, the type of
components in sub-systems must be determined. The
maximum variety of component types and component

versions in sub-system i isH,. The number of
component version /4 on sub-system i is #;,. So for
i,(1<i <N)
(nil’niz’---’”i,H,.) must be determined.

In addition, vector (TK;;],TKZZ,...,TK,I;ki) is used to

illustrate the set

sub-system the variables

of technical activities done on

components version/. T K;; . 1s a binary variable. If
activity k for sub-system i is performed for components
version & then 7K, =1, otherwise 7K, = 0.

X, = (n,,, KL TK . TKG, )

The system design variables vector related to components
version /4 in sub-system i,(lSi <N,1<h SH)
shown as X, is as follows:

X, = (n,,, KL TK . TKG, ) @)
To illustrate the set of technical activities on sub-
system i, we use(TK,il ,TK,ﬁ2 ,...,TK,ﬁ ) In this vector,



Mani Sharifi et al./ Comparing Parallel Simulated Annealing ...

TK ,(1<i<N<k<k +k,) is a
variable. If activity i is performed on the sub-system,
then TK,i =1, otherwiseTK,i =0.

So, for a series-parallel multi-state system with N sub-

binary

system and F{, version of component of sub-systemi,
the system design vector is as follows:

XX 1y TK

[ ETEED)
X =|TK} . XXy JK2 o TKE | O
X e X g JTKG e STK

In a vector of variables, we can identify the availability of

a multi-state system as follows:

e For each version of components in a sub-system,
identify the transition rate based on technical and
organizational activities,

e For each version of components in a sub-system,
identify state distributions based on transition rates
using Marcov model,

o Identify the system operation distribution based on the
state distribution using UGF.

2.4. System cost:

i i i
C - Ccam + Cact
HV
i i i (6)
Ccam - CO + Znih ch
h=1
K, Ki+K;
i, =S TK (el + el )+ S TK] !
act = ke \Crno T 15 Cyy k ko
k=1 K=k, +1

The total cost of the system is equal to the sum of sub-

system costs as follows:

N
cx)=>. (7)
i=1

2.5. UGF method

In 1986, Ushakov (1987) presented the general concepts
of universal generation function used for the system
reliability evaluation. Taking it a step further, Levitin and
Lisnianski made some studies of using UGF for analyzing
series-parallel and parallel-series multi-state systems
(Levitin and Lisnianski et al.1996).

With regard to multi-state systems, it should be pointed
out that when we study a multi-state component, for each
performance mode of component a probability is
considered. This increases the system performance state,
but the classic method cannot be used to calculate the
system reliability. Therefore, to calculate the system
reliability and availability, there was a tendency for using
mathematical methods. Using the UGF method for
analyzing a multi-state system decreases the system state

16

very much [17]. We use the UGF method to calculate the
system availability as follows:

Ui(2)= pho )2 + pi, (05 +--+ ph, 1)z

V') =0, ()it ()= 310

J

i
&Ehm;

= (3)
Zp;f (c)z*

U(z)= ®¢{U1(Z),U2(Z),...,UN(Z)}

=0
M\
rd

~

3. Multi-State Series-Parallel System Optimization
Model

In this section, the multi-state series-parallel system
optimization model with 7 series subsystem with parallel
components is presented. The objective function is to
minimize the system cost in order to satisfy the system
availability.

Min C(X)
st: A=A,
n,>20 ;1<i<N,I<h<H, 9
TK) =0orl ;1<i<N,<h<H 1<k <k,
TK, =0or1 ;1<i <N,K,+1<k <k, +K,

4. Solving Approach
4.1. SA-Parallel algorithm

In 1983, Kirkpatrick et al. (1983) developed simulated
annealing (SA) algorithm which is a single point Meta-
heuristic algorithm. In this algorithm, first, we obtain a
random solution and introduce it to a predefined
neighborhood and get another solution as the neighbor of
the present solution. Then, if the new solution has a better
objective function than the old solution, it replaces the old
solution. But if the new solution does not have a better
objective function than the old solution, it still has the
opportunity to replace the old solution under a probability.
This probability defined under an acceptance function is
as follows:

_b/,
Uniform (0,1) <e it (10)
In equation number (10), the temperature in each repeat of
algorithm is ¢ (il‘ ), and A is defined as follows:
A=f,—f (11)
In equation number (11), f, is the new solution and f

is the old solution. We can normalize the A as follows:



Journal of Optimization in Industrial Engineering 14 (2014) 13-26

A:fé_ﬁ
A

Clearly, this acceptance function which depends on the

(12)

temperature is each repeat ¢ (il‘ ) of the SA algorithm.

After this stage, the old solution remains or is replaced by
the new solution. In both situations, the result is again
sent to the neighborhood function to get a new solution
and this procedure repeats till the algorithm satisfies the
stop conditions.

Now we present an improved version of the SA present
that is called SA-Parallel. In the SA-Parallel the algorithm
starts with generating more than one point (random
solution) and these solutions are sent to the neighborhood
function to generate new solutions. The number of these
points is npop . Also to produce more improvement, we
can generate more than one new solution from each old
solution. We show the number of new solutions obtained
from an old solution as nmove . So, in each iteration of
the algorithm, the number of new solutions
isnpop X nmove . Then we rank all new solutions and

select the first npop solutions. These new best solutions

are again sent to the neighborhood function to generate
nmove new solutions. This procedure repeats until the
algorithm satisfies the stop conditions. To compare the
new solutions with the old ones, each new solution is
compared with the same rank old solution.

The structures of the solutions if the algorithm is Meta-
heuristic are as follows:

e Structure related to redundancy:
Position.Redundancy.n,

e Structure related to technical activities:
Position.tkh ,

e Structure related to organizational

activities: Position.tk .
4.1.1.  Neighborhood function:

One of the most important bases in the SA algorithm is
neighborhood function. Regarding this function, all
solutions are categorized into two categories. The first
category contains the solutions under SWAP or
REVERSION. The second category contains the solutions
under MUTATION.

4.1.1.1. First category

SWAP
In the SWAP condition, for each old solution in the
neighborhood function, two elements of solution are
selected randomly and then replaced by each other as
follows:

N
e 7 A
-~ -~ Y
(2 4B12 1B 7 )=—>(2 410512 1[3]7)

REVERSE

In this condition in each old solution, two random
elements are selected and then the places of the elements
between these two points are reversed as follows:

(2 4[] 2151 7T)—>(2 451 237)
Thus in the operators of the first category, entering new
variables is impossible and only the places of the
variables changed. But in the second category, it is
possible to enter a new variable into a solution.
4.1.1.2. Second category
MUTATION
In this category, a new matrix named M is generated
with the same rank of the solution matrix. In the new
matrix, each array is filled with a random variable
between 0 and 1. Then in the solution matrix, the
variables with a correspondence amount less than (0.2 in

matrix M are replaced with a random new variable as
follows:

(%]
I
=
(%]
-
(4]

M)—>(2 4012 1 518)

b S B o I o R = B =]
Vo o« s B A

M=( @ @ = © @ 3 4

. [ - T s R
o o o o o o o

In each new set of solutions in the SA algorithm, some of
the results are obtained from the first category and the
other results from the second category. So we have a wide
range of results in each iteration. In Figure 2, the pseudo
code of the neighborhood function is presented.

The flowchart of the SA-Parallel algorithm is as follows

in Figure 3:

e =Uniforme (0,1)

if e <0.5
Swap
Reverse
Else
M utation
End .

Fig. 2. The pseudo code of neighborhood function



Mani Sharifi et al./ Comparing Parallel Simulated Annealing ...

Generating mpop primary random solution

l

|

1 Sending each solution to neigborhood function and generating mmove new solutions

l

| Sorting npop*nmove new solutions |

!

| Comparing new solution with old ones |

r

The old solution replaced by the new one

Is the new

solution
better

than old
one?

RAND<p ?

Is Mo

The old solution doesn'treplace by the new one

1 Updating the best solution )

Is

situations
satsfystop

cond

the

itions ?

Stop algorithm |

Fig. 3. The flowchart of the SA-Parallel algorithm

4.2. VDO-Parallel algorithm

The VDO algorithm developed by Mahdizade and
Tavakoli-Moghadam (2009) is a single point Meta-
heuristic algorithm which is very similar to SA. In this
paper the performance of this algorithm is evaluated in
reliability problems. The main difference between SA and
VDO is their acceptance function. This function in the
VDO algorithm is as follows:
{i)

P=1-e\* (13)
The parameter A4 in each iteration of the algorithm is
updated as:

15
A=4,e? (14)
A,, 7y and o must be predetermined. The steps of the
VDO-Parallel algorism are similar to the SA-Parallel.

18

4.3. Parameter tuning

We use the RSM methodology for tuning the SA and
VDO parameters. It is similar to problem 1 used by
Levitin et al. (2009) in 2009. The results are presented in
Figures 4 and 5 along with the information in Tables 1
and 2. Also stop condition in both algorithms is 30
generation without improve

Table 1
SA-Parallel parameters

Lower value Upper value
npop 3 5
nmove 10 20
A 1000 10000

t, is the starting temperature.



Journal of Optimization in Industrial Engineering 14 (2014) 13-26

Analysis of Variance for Cost

Source DF Seq
Regression 9 4440
Linear 3 2644
npop 1 674
nmove 1 1440

t0 1 529
Square 3 1453
npop*npop 1 1257
nmove*nmove 1 2
t0*t0 1 193
Interaction 3 342
npop*nmove 1 133
npop*t0 1 209
nmove*t0 1 0
Residual Error 8 1162
Lack-of-Fit 5 1080
Pure Error 3 82
Total 17 5603

Table 2
VDO-Parallel parameters

Ss  Adj Ss
.68  4440.68
.03 1226.44
.04 1024.74
.00 19.33
.98 206.70
.79 1453.79
.76 1115.98
.27 12.46
.75 193.75
.86 342.86
.66 133.66
.10 209.10
.10 0.10
.90 1162.90
W22 1080.22
.69 82.69
.58

Adj MS F
493.41 3.39
408.81 2.81
1024.74 7.05
19.33 0.13
206.70 1.42
434.60 3.33
1115.58 7.68
12.46 0.09
193.75 1.33
114.29 0.79
133.66 0.92
209.10 1.44
0.10 0.00
145.36
216.04 7.84
27.56

Fig. 4. ANOVA for SA

0.050
0.108
0.029
0.725
0.267
0.077
0.024
0.777
0.282
0.534
0.366
0.265
0.980

0.060

Parameter Optimal value
Npop 5
Nmove 20
t0 1000
Table 3
VDO-Parallel parameters
Lower value Upper value
npop 3 5
nmove 10 20
Ao 1000 10000
Y 0.01 0.001
(e} 4 10
Analysis of Variance for Cost
Source DF Seq SS Adj S5 Adj MS F P
Regression 20 10597.2 10597.2 £29.86 1.70 0.1%6
Linear 5 2067.6 2237.7 447.54 1.43 0.293
npop 1 6.4 1073.0 1072.98 3.44 0.093
nmove 1 165.6 52.6 52.64 0.17 0.690
AD 1 62.0 276.8 276.84 0.89 0.369
gamma 1 1545.7 66.3 66.30 0.21 0.655
sigma 1 288.0 31.6 31.64 0.10 0.757
Square 5 20792.0 2079.0 415.81 1.33 0.326
npop*npop 1 1083.5 700.8 700.79 2.24 0.165
nmove*nmove 1 32.0 0.3 0.33 0.00 0.975
AQ*R0 1 40.4 158.6 158.65 0.51 0.4%82
gamma * gamma 1 8€0.9 922.2 922.22 2.95 0.116
sigma*sigma 1 62.3 62.3 62.27 0.20 0.665
Interaction 10 6450.6 6450.6 645.06 2.07 0.134
npop*nmove 1 534.8 534.8 534.77 1.71 0.220
npop*Al 1 44 .6 44.6 44.5¢6 0.14 0.714
npop*gamma 1 2127.5 2127.5 2127.52 6.81 0.026
npop*sigma 1 23.3 23.3 23.28 0.07 0.790
nmove*A0 1 1787.2 1787.2 1787.18 5.72 0.038
nmove *gamma 1 5.0 5.0 4.95 0.02 0.%02
nmove*sigma 1 203.8 203.8 203.78 0.65 0.438
A0*gamma 1 1438.3 1438.3 1438.31 4.61 0.057
AO0*sigma 1 256.8 256.8 256.80 0.82 0.386
gamma * sigma 1 29.4 29.4 29.43 0.09 0.765
Residual Error 10 3122.4 3122.4 312.24
Lack-of-Fit 6 2042.2 2042.2 340.36 1.26 0.430
Pure Error 4 1080.2 1080.2 270.05
Total 30 13719.¢6

Fig. 5. ANOVA for VDO

19



Mani Sharifi et al./ Comparing Parallel Simulated Annealing ...

Table 4
VDO-Parallel parameters

Parameter Optimal value
Npop 5
Nmove 20
A0 100
Gamma 0.001
Sigma 10

4.4. Numerical examples

To illustrate the method introduced above, 6 numeric
examples are provided in this section. Assume a system
with two series sub-systems. In sub-system one, three
different versions of components are available and in the
second sub-system, four different components are
available. The components in the first sub-system have
three working states of 0, 1 and 2 while the components in
the second sub-system have two working states of
0 andl. Transitions are only available in the adjacent
states.

The operation rates, transition rates, component costs in
each version of subsystem 1 are presented in Table 5.
Assume that in the first sub-system, 8 different activities
are available numbered from 1 to 8. The actions

numbered 1 to 5 are technical activities while the
activities numbered 6, 7 and 8 are organizational
activities. The effects of technical activities in the three
versions of components on the first subsystem are
presented in Tables 6, 7 and 8. The pre cost of
components in the first sub-system is fixed on 50.

For subsystem 2, the operation rates, transition rates, and
component costs of all versions are reported in Table 9.
Assuming that in the second sub-system 4 different
activities are available, the actions numbered 1 to 3 are
technical activities and activity number 4 is an
organizational activity. The effects of technical activities
in the four versions of components on the second
subsystem are presented in Tables 10, 11, 12 and 13. The
pre cost of components in the second sub-system is fixed
on 60.

In this example, we assume that the operation rate of each
sub-system is equal to the sum of the components
operation rates and the operation rate of the system is
equal to the minimum operation rates of the two sub-
systems. We calculate the availability and cost of the

system and only a unique demand level W is available
(Tian & Zuo, 2009).

Table 5
Components data for sub-system 1
Version i i i
Ch g i Mo A Ho,
1 18 30 60 0.04 0.05 0.4 0.6
2 25 50 100 0.08 0.09 0.4 0.5
3 40 60 120 0.05 0.06 0.4 0.7
Table 6
Costs and effects of actions on version 1 components in sub-system 1
/ Ti Ti Ti
Action k Chio (cho) S| W0 | Haa | Froa | Fan
1 0.1 1.0 1 0.9 1 1
2 0.4 1.5 1 0.8 1 1
3 0.8 3.1 0.9 0.8 1 1
4 0.0 4.0 0.8 0.7 1 1
5 2.0 0.4 1 1 1.5 1
6 6.4 0.0 1 1 1.2 1.5
7 8.0 0.0 1 1 1.5 1.5
8 10.6 0.0 1 1 2.0 3.0
Table 7
Costs and effects of actions on version 2 components in sub-system 1
| Ti Ti Ti
Action k Chio (cho ) Con o Hon Hon Fo
1 0.1 1.0 1 1 1 1
2 0.5 1.5 1 1 1 1
3 0.9 3.1 1 0.8 1 1
4 0.0 4.0 0.9 0.7 1 1
5 2.0 0.4 1 1 1.6 1
6 6.4 0.0 1 1 1.2 1
7 8.0 0.0 1 1 1.6 1.2
8 10.6 0.0 1 1 2.5 2.0

20



Journal of Optimization in Industrial Engineering 14 (2014) 13-26

Table 8
Costs and effects of actions on version 3 components in sub-system 1
1 Ti Ti Ti
Action k Ciho (cho) Con  Dao Gon Fon Wi
1 0.1 1.0 1 1 1 1
2 0.4 1.5 1 1 1 1
3 1 3.1 1 1 1 1
4 0.0 4.2 0.9 1 1 1
5 2.0 0.5 1 1 1.4 1
6 6.4 0.0 1 1 1.2 1.2
7 8.0 0.0 1 1 1.4 1.4
8 10.6 0.0 1 1 2.0 3.2
Table 9
Components data for sub-system 2
/ i i
Version h c g, Ao Mo,
1 30 80 0.05 0.30
2 35 100 0.06 0.35
3 60 150 0.03 0.45
4 80 180 0.02 0.40
Table 10
Costs and effects of actions on version 1 components in sub-system 2
1 Ti Ti Ti
Actionk ¢, (cho ) Crn 0 0.1
1 0.4 0.8 0.9 1
2 0.0 3.2 0.6 1
3 1.8 2.4 1 2.2
4 30 0.0 0.9 2.4
Table 11
Costs and effects of actions on version 2 components in sub-system 2
1 Ti Ti Ti
Actionk ¢, (cho ) Crn 10 0.1
1 0.4 0.8 0.9 1
2 0.0 3.2 0.6 1
3 1.8 2.8 1 2.1
4 30 0.0 1 2.2
Table 12
Costs and effects of actions on version 3 components in sub-system 2
1 Ti Ti Ti
Actionk ¢y, (cho ) Chn 0 %01
1 0.4 1 1 1
2 0.0 3.2 0.6 1
3 1.8 2.6 1 1.6
4 30 0.0 1 1.8
Table 13
Costs and effects of actions on version 4 components in sub-system 2
: Ti Ti Ti
Action K Chho (cho ) Crn 0 0.
1 0.4 1 1 1
2 0.0 3.2 1 1
3 1.8 2.6 1 2.2
4 30 0.0 1 1.6
Example 1 Example 2
In this example, w=500 and 4,=0.9. Table 14 In this example, w =500 and A, =0.95. The results
present the results of genetic, SA-Parallel, and VDO- of genetic, SA-Parallel, and VDO-Parallel algorisms
Parallel algorisms and the fitness convergence graphs of arepresented in Table 15. Figures 7show the fitness
the SA-Parallel and VDO-Parallel are depicted in Figures convergence graphs of the SA-Parallel and VDO-Parallel.

6.

21



Mani Sharifi et al./ Comparing Parallel Simulated Annealing ...

Table 14
The results of the algorithms in example 1
Subsystem Version Redundancy Actions Availability Cost Algorithm

1 0

1 2 6 8

1 3 0

2 1 4 1,3 0.9231 531 GA

2 2 3 23

2 3 0

2 4 0

1 1 4 5

1 2 2 124

! 3 ! 1.23 0.9134 486.7 SA-Parallel

2 1 0

2 2 2

2 3 2

2 4 0

1 1 4 5

1 2 2 1,2,4

; ? (]) 1.2.3 0.9134 486.7 VDO-Parallel

2 2 2

2 3 2

2 4 0

VDO-Parallel

SA-Parallel

hedtivefudtionvaie

450 L L L L L
o} 10 20 30 40 50 60

Iteration

Fig. 6. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 1

Table 15
The results of the algorithms in example 2
Subsystem Version Redundancy Actions Availability Cost Algorithm

1 0

1 2 6 8

1 3 0

2 1 3 3 0.9510 559.2 GA

2 2 0

2 3 3 3

2 4 0

1 1 0 8

1 2 6 8

; ? (5) 7 0.9514 538.8 SA-Parallel

2 2 2 4

2 3 0

2 4 0

1 1 1

1 2 4

1 3 3

) 1 1 0.9500 475.7 VDO-Parallel

2 2 0

2 3 4

2 4 0

22



Journal of Optimization in Industrial Engineering 14 (2014) 13-26

750 T T T

450 ! ! !

T
VDO-Parallel
SA-Parallel

10 20 30

.
40

50
Iteration

60 70 80 90 100

Fig. 7. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 2

Example 3
In this example, w=500and 4, = 0.99 . The results of

genetic, SA-Parallel, and VDO-Parallel algorisms are
reported in Table 16 and the fitness convergence graphs
of the SA-Parallel and VDO-Parallel are shown in Figures
8.

Example 4

In this example, w=1000 and A, =0.9. The results

of genetic, SA-Parallel, and VDO-Parallel algorisms are
shown in Table 17 and the fitness convergence graphs of
the SA-Parallel and VDO-Parallel are shown in Figures 9.

Table 16
The results of the algorithms in example 3
Subsystem version Redundancy Actions availability Cost Algorithm

1 1 0
1 2 8
1 3 0
2 1 8 2,34 0.9906 627.1 GA
2 2 0
2 3 0
2 4 0
1 1 1
1 2 4
! 3 ! 0.99714 493 SA-Parallel
2 1 2 ’
2 2 3
2 3 1
2 4 0
1 1 4
1 2 2
1 3 1
2 ] 0 0.99512 497 VDO-Parallel
2 2 3
2 3 2
2 4 0

T
VDO-Parallel
SA-Parallel

[ I [ I

15

Fig. 8.

20 25 30 35
Iteration

40

Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 3

23



Mani Sharifi et al./ Comparing Parallel Simulated Annealing ...

Table 17
The results of the algorithms in example 4
Subsystem version Redundancy Actions availability Cost Algorithm
1 6 1
1 2 6 3
1 3 2
2 1 2 4 09038 940 GA
2 2 9 4
2 3 1 14
2 4 0
1 1 7 8
1 2 7 8
! 3 0 0.9020 905.8 SA-Parallel
2 1 0 ’ ’
2 2 8 3
2 3 3
2 4 0
1 1 3 1,68
1 2 8 1,6,8
; ? : 6.8 0.90 294.9379 VDO-Parallel
2 2 8
2 3 1
2 4 2
1000 T T T T T
b\ VDO-Parallel
B SA-Parallel
900~
800 =
]
g
§ 700 B
g
2 600 1
3
8
500~ -
400(~ B
300 L L L L |
0 10 20 30 40 50 60 70 80
Iteration
Fig. 9. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 4
Example 5 Example 6
In this example, w=1000 and A4, =0.95. The results In this example, w=1000 and 4, =0.99. Table 19
of genetic, SA-Parallel, and VDO-Parallel algorisms are show the results of genetic, SA-Parallel, and VDO-

Parallel algorisms, and the fitness convergence graphs of

ted in Table 18 and the fitn h
prescrivd 71 g0 e -8 aNC e Wess convetgence Sraphs SA and VDO algorisms are illustrated in Figures 11.

of the SA-Parallel and VDO-Parallel are shown in Figures
10.

B VDO-Parallel
1000 5 N—o—— ] e SA-Parallel

F ., i

Qiedtivefurdianvaue
N
Q
o
T
1

200 . . . . L L
o 10 20 30 40 50 60 70 80 20 100

Iteration

Fig. 10. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 5

24



Journal of Optimization in Industrial Engineering 14 (2014) 13-26

Table 18
The results of the algorithms in example 5
Subsystem version Redundancy Actions availability Cost Algorithm
1 1 5 8
1 8 8
1 3 1 8
2 1 4 4 09539 957.6 GA
2 2 2 4
2 3 2 34
2 4 2 4
1 1 0 1,6
1 2 10 5,6
1 3 2 6
5 1 1 3 0.95 883.9938 SA-Parallel
2 2 2 1
2 3 9
2 4 0 1
1 1 6 2
1 2 9
; ? é A]‘ 0.9599 215.1572 VDO-Parallel
2 2 8
2 3 1
2 4 0
Table 19
The results of the algorithms in example 6
Subsystem version Redundancy Actions availability Cost Algorithm
1 1 6 1,8
1 2 9 8
1 3 0
2 1 8 1,4 09925 987.3 GA
2 2 5 34
2 3 1 4
2 4 0
1 1 2 1,2,3,6,8
1 2 7 1,6,8
; ? 3 6.8 0.99 299.9471 SA-Parallel
2 2 8 4
2 3 3 4
2 4 1 2,34
1 1 0 2,5,6
1 2 0 1,2,3,5,6
1 3 10 1,3,4,5,6
2 ] 10 134 0.99 227.8364 VDO-Parallel
2 2 10 24
2 3 10 24
2 4 9 2,34

VDO-Parallel
- SA-Parallel

Qjedivefudiondie

n n n n .
o 10 20 30 40 50 60 70 80 920 100
Iteration

Fig. 11. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 6

25



Mani Sharifi et al./ Comparing Parallel Simulated Annealing ...

As mentioned above, in example 1, the results of SA-
Parallel and VDO-Parallel algorithms are the same and
both of them are better than the genetic algorithm. The
only difference between the two parallel algorithms is the
number of iterations. In the SA-Parallel, after 45 iterations
the algorithm reaches to convergence but the number of
iterations in the VDO-Parallel is 53. In the examples
number 2, 4, 5 and 8, the VDO-Parallel yields better
results than the SA-Parallel algorithm. Only in example
number 3, the results of the SA-Parallel are better than
those of the VDO-Parallel algorithm. Of course in all
examples, both of the proposed parallel algorithms have
better results than the genetic algorithm.

5. Conclusion and Further studies

All in all, in this paper we showed that parallel meta-
heuristic algorithms like SA-parallel and VDO-Parallel
have a better performance in the series-parallel multi-state
systems than the ordinary ones such as genetic.
Differences between the acceptance functions of SA and
VDO algorithms enable them to avoid local solutions.
Using this approach for the SA-parallel and VDO-Parallel
improves the ability of these two algorithms. Of course,
operation of these two algorithms depends on
neighborhood function structures. Using the approach,
one can improve the ability of other meta-heuristic
algorithms.

In this paper we determined these decision variables: 1)
Number of assigned components in each sub-system of
each system, 2) The version of assigned components in
each sub-system of each system, and 3) The type of
technical and organizational activities.

References

[1] Barlow RE, Wu AS., (1978), Coherent systems with multi-
state components. Mathematics of Operations Research;
3(4):275-81

[2] Boedigheimer RA, Kapur KC., (1994), Customer-driven
reliability models for multi- state coherent systems. IEEE
Transactions on Reliability; 43(1):46-50

[3] Chern, M.S. (1972) On the computational complexity of
reliability redundancy allocation in a series system.
Operations Research Letters,11, 309-315

[4] Coit, D.W. and Smith, AE. (1996) Reliability
optimization of series parallel systems using a genetic
algorithm. IEEE Transactions on Reliability, 45(2), 254
260

[5] Ding, Y. Lisnianski A., (2008), Fuzzy universal generating
functions for multi-state system reliability assessment
Fuzzy Sets and Systems 159, 307 —324 .

[6] Kim,J. Gen, M., Ga-based Reliability Design :state-of-the-
Art survey .computers & industrial engineering , 37,151-
155.

26

[10]

(11]

[12]

[13]

[14]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

Kirrkpatrick, S. Gelatt,C,D. Vecchi,JrM ,P.  (1983),
Optimization by Simulated Annealing. Science, 13 May
1983, Volume 220, Number 4598.

Konak, S. SMITH A and COIT D, (2003), Efficiently
solving the redundancy allocation problem using tabu
search. IIE Transactions, 35, 515-526.

Levitin G, Lisnianski A, Ben Haim H, Elmakis D. (1998),
Redundancy optimization for series—parallel multistate
systems. IEEE Transactions on Reliability; 47(2):165-72
Liang Y, Chen Y. (2007), Redundancy allocation of
series-parallel systems using a variable Neighborhood
search algorithm . Reliability Engineering and System
Safety 92, 323-331

Liang, Y., (2004), Associate Member, IEEE and Smith, A
Senior Member, IEEE An Ant Colony Optimization
Algorithm for the Redundancy Allocation Problem (RAP)
IEEE TRANSACTIONS ON RELIABILITY, VOL. 53,
NO. 3, SEPTEMBER, 417.

Lisnianski A, Levitin G, Ben-Haim H, Elmakis D. (1996),
Power system structure optimization subject to reliability
constraints. Electr Power Sys Res; 39(2):145-52.
Lisnianski A, Levitin G. (2003), Multi-state system
reliability: assessment, optimiza- tion and applications.
Singapore: World Scientific.

Mehdizadeh, E., Tavakkoli-Moghaddam., R., (1999),
VIBRATION DAMPING OPTIMIZATION
ALGORITHM FOR AN IDENTICAL
PARALLELMACHINES SCHEDULING PROBLEM.
The 2nd International Conference of Iranian Operations
Research SocietyMay 20-22, 2009 — Babolsar, Iran.
Ramirez-Marquez JE, Coit DW., (2004), A heuristic for
solving the redundancy allocation problem for multi-state
series—parallel systems. Reliability Engineering and
System Safety; 83(3):341-9.

Tian Z , Levitin G ,Zuo M A., (2009), joint reliability—
redundancy optimization approach for multi-state series—
parallel systems. Reliability Engineering and System
Safety 94 1568-1576.

Tian Z, Zuo MJ, Huang H. (2005), Reliability—redundancy
allocation for multi-state series—parallel systems. In:
Proceedings of the 2005 European safety and reliability
conference, Tri City, Poland,. p. 1925-30

Tian Z, Zuo MIJ. (2006), Redundancy allocation for multi-
state systems using physical programming and genetic
algorithms. Reliability Engineering and System Safety;
91(9):1049-56.

Ushakov 1. (1987), Optimal standby problem and a
universal generating function. Sov J Comput Sys Sci
1987;25(4):61-73.

ZuoM]J, TianZ, Huang H. (2007), An efficient method for
eliability evaluation of multi-state networks given all
minimal path vectors. IIE Transactions; 39(8):811-7

Zuo, MJ,, Tian, Z. (2006), Performance evaluation for
generalized multi-state  k-out-of-n  systems. IEEE
Transactions on Reliability; 55(2):319-27.





