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Abstract 

In this paper, we study different methods of solving joint redundancy-availability optimization for series-parallel systems with multi-state 
components. We analyzed various effective factors on system availability in order to determine the optimum number and version of 
components in each sub-system and consider the effects of improving failure rates of each component in each sub-system and improving 
reliability of each sub-system. The target is to determine optimum values of all variables for improving the availability level and decreasing 
the total cost of the system. At first, the exact values of variables are determined using a mathematical model; then, the results of SA-
Parallel, VDO-Parallel and genetic algorithms are compared with the exact solution.  
Keywords: SA; VDO; Parallel; Availability; Multi-state; Redundancy. 

1. Introduction 

The effective factors in system availability in general 
include component types in each sub-system, the number 
of components in each sub-system and the level of 
improving failure rates for each component in each sub-
system, as well as improving reliability of each sub-
system. The third factor concerns decreasing the failure 
rate of each component and increasing the reliability of 
subsystems by spending money. For example, if we 
consider more skilled workers in each subsystem, the 
reliability of the sub-system and in turn its availability 
will increase.  
In traditional models, the components and subsystems 
have only two states: working, not working (failed). But it 
is obvious that they may be in the states between the two 
above states. These states are caused by slight failures and 
operational defects. These systems are called multi-state 
systems (MSS) (Barlow & Wu, 1987; Boedigheimer et al, 
1994; Lisianaski et al, 2003; Zuo et al, 2006; Zuo et al, 
2007).  
In this regard, efforts have been made to optimize the 
level of redundancy in the various subsystems of a 
system. Levitin et al (1998) developed a model to 
determine the optimal version of subsystem components  
 

 
 
 
 

in a multi-state series-parallel system. Coit and Ramirez 
Marquez (2004) introduced a heuristic method for multi-
state Redundancy Allocation Problem (RAP), and Tian 
and Zuo (2006) provided a method based on physical 
programming and genetic algorithm for multi-state RAP. 
In both models, RAP was the only factor in the 
improvement of system operation, but Tian et al (2009) 
introduced a modern method for optimizing series-parallel 
systems. In doing so, they provided two options for 
improving system reliability and availability: optimal 
redundancy allocation in various subsystems and 
improving the reliability of components through affecting 
functional rates. Furthermore, Tian et al (2005) presented 
a joint reliability-redundancy optimization method for 
multi-state series-parallel systems inspired by the method 
described above. In their method, transition rates affect 
component state distributions and redundancy is 
considered as a variable of the problem. After Chern 
(1972) proved that RAP belongs to NP hard problems, 
Mehta heuristic algorithms are used increasingly in the 
area. In this regard, Gen and Kim (1999) used a hybrid 
genetic algorithm to optimize reliability problems and 
Konak et al (2003) took advantage of using the tabu 
search for RAP. Liang et al (2004) solved RAP using the * Corresponding author E-mail: mani.sharifi@yahoo.com 
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ant colony algorithm while Chen and Liang (2007) solved 
series-parallel RAP by VNS. Moreover, Lisnianski et al. 
(2008) described Universal Generating Function (UGF) 
for RAP in fuzzy and crisp situations. 
In the same vein, in the present paper we use Simulated 
Annealing (SA) -parallel, Vibrating Damp Optimization 
(VDO) -parallel and genetic algorithms for solving series-
parallel RAP as we calculate system availability by UGF. 
Comparing the results with other algorithms, it seems that 
the presented algorithms are effective. 

Nomenclature 

Number of sub-systems :n  

Number of component(s) in sub-systems i  :in
 

Number of versions in sub-systems i  :iH
 

Number of components for version h  in sub-system i  :hin
 

Maximum of components variety in sub-system i  :iM
 

Maximum states in subsystem i  :isM
 
Maximum states for series-parallel system :M  

Failure rate from state j  to state i  :ij  

Repair rate from state j  to state i  :ij
 

The probability that component is in i  in time T    :tpi  
Number of technical and organizational activities in sub-

system i  
:ik

 
Number of available organizational activities in sub-

system i  
:isk

 
A binary variable which equals 1 when technical activity 
k  in sub-system i  for version h  is done  

:i
hkTk

 
A binary variable which equals 1 when organizational  

activity k  in sub-system i  is done 
:i

kTk
 

Vector for component version i  in sub-system i   :hiX
 
Variables vector :X  

Represented factor for effects of activity k  on transition 

rate from state j  to state i  
:,, ljka

 

Operation rate according to state i  for component 

version j  in sub-system i  
:i

ihg
 

U  function for sub-system i    :ZU i
 
U  function for series-parallel system   :ZU  
UGF  operator :  
System availability :A  
System availability constraint :0A

 
Demand level :D  

Unit cost for organizational activity on component 

version h  for sub-system i  
:i

hC
 

Unit cost for technical activity k  on component version 
h  for sub-system i  

:Ti
khC

 

Total cost for technical activity k  on component version 
h  for sub-system i  

:0
Ti
khC

 

Cost of sub-system i  components :i
comC

 

Cost of sub-system i  activities :i
actC

 
Cost of subsystem i  :iC  
System cost   :XC  
Universal generation function :UGF  
Genetic algorithm :GA  

 
The remainder of this paper is organized as follows. 
Section 2 describes the system definition under study 
along with the related mathematical model. Section 3 
presents the mathematical model. Section 4 presents the 
proposed solution procedures. The experimental design 
and the numerical example appear in this Section. Finally, 
the paper is concluded in Section 5. 

2. System Definition 

2.1. Assumptions 

The assumptions of this paper regarding multi-state 
systems are as follows: 

 Components are independent, 
 In different states, components have different 

operational rates, 
 Operation rate of a parallel sub-system is equal 

to the sum of operation rates of all components,  
 Operation rate of a series-parallel system is equal 

to minimum operation rates of sub-systems. 

2.2. State diagram and Marcovian model: 

In multi-state systems, the first thing to calculate is the 
state probability distribution that depends on failure and 
repair rates of components. The transition rates can be 
estimated by the historical data obtained from past failure 
and repair times. In this paper, we concentrate on the 
differential equation obtained from Marcovian model. 
Random process models such as Marcov and semi 
Marcov models can be used to illustrate a multi-state 
component as shown in Figure1. 
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Fig.1. The state space diagram for a repairable system. 

Assume that each component has  1M  state(s) and 
transitions are possible between two adjacent states. So a 
system of differential equation must be solved to 
determine the state probability distributions at the time t . 
The systems of differential equations are as follows: 
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 

  (1) 

 
And the initial conditions are: 

 
  10

1,,2,1;00




M

i

p
Mip 

                                   (2) 

Now it is necessary to discuss the effects of technical and 
organizational activities on the system reliability. When 
technical or organizational activities are done, the 
transition rate changes in order to improve the system 
availability. Generally, with these activities, the failure 
rate decreases and the repair rate increases. Assume that 

kTK  is a binary variable showing whether activity k  is 
done or not. Now to determine the new values of 
transition rate, we have: 












jiijkji

ijjikij
k a

a
TKif





,,

,,:1                                 (3) 

In this paper two different kinds of activities are 
considered: 
 Activities at the component level called technical 

activities, 
 Activities at the sub-system level called 

organizational activities. 

i
hkTK  is the technical activity that presents activity k  on 

component version h  on sub-system i  . The cost of this 
type of activities depends on the number of affected 
components. i

kTK  is the organizational activity that 
presents activity h  on sub-system i  and affects all 
components in sub-system i . The cost of this kind of 
activity is independent of the number of sub-system 
components. 

2.3. System variables 

For each sub-system, different versions of components are 
available. We consider that for a specific sub-system, 
different versions of components have the same available 
states. Each version of components is defined and 
categorized by operation rates of different states, 
transition rates and unit costs. 
Each sub-system can have different kinds of components. 
In addition to the number of components, the type of 
components in sub-systems must be determined. The 
maximum variety of component types and component 
versions in sub-system i  is iH . The number of 

component version h  on sub-system i  is hin . So for 

sub-system  , 1i i N   the variables 

 
iHiii nnn ,21 ,,,   must be determined. 

In addition, vector  i
kh

i
h

i
h i

TKTKTK ,,, 21   is used to 
illustrate the set of technical activities done on 
components version h . i

khTK  is a binary variable. If 

activity k  for sub-system i  is performed for components 
version h  then 1i

khTK , otherwise 0i
khTK . 

 i
kh

i
h

i
hhihi i

TKTKTKnX ,,,, 21   
The system design variables vector related to components 
version h  in sub-system  , 1 ,1i i N h H     

shown as hiX  is as follows: 

 i
kh

i
h

i
hhihi i

TKTKTKnX ,,,, 21                          (4) 
To illustrate the set of technical activities on sub-
system i , we use  i

k
i
k

i
k is

TKTKTK ,,,
21
 . In this vector, 
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 sii
i
hk kkkNiTK  1,1,  is a binary 

variable. If activity i  is performed on the sub-system, 
then 1i

kTK , otherwise 0i
kTK . 

So, for a series-parallel multi-state system with N  sub-
system and iH  version of component of sub-system i , 
the system design vector is as follows: 

1 1

1 2 2 21 2

1
11 1 1

1 2 2
21 2 1

1 1
1 1

, , , , ,

, , , , , , ,

, , , , , ,
s s

N N N sN

H k

k k H k k k

N N H k k k

X X TK
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
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 

 
 
 
 
 
 

 

 

  

  (5) 

 
In a vector of variables, we can identify the availability of 
a multi-state system as follows: 
 For each version of components in a sub-system, 

identify the transition rate based on technical and 
organizational activities, 

 For each version of components in a sub-system, 
identify state distributions based on transition rates 
using Marcov model, 

 Identify the system operation distribution based on the 
state distribution using UGF.  

2.4. System cost: 
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H

h
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i
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i

cTKcncTKC

cnCC

CCC

1
0

1
0

1
0

      (6) 

The total cost of the system is equal to the sum of sub-

system costs as follows: 

  



N

i

iCXC
1

                                                             (7) 

2.5. UGF method 

In 1986, Ushakov (1987) presented the general concepts 
of universal generation function used for the system 
reliability evaluation. Taking it a step further, Levitin and 
Lisnianski made some studies of using UGF for analyzing 
series-parallel and parallel-series multi-state systems 
(Levitin and Lisnianski et al.1996).  
With regard to multi-state systems, it should be pointed 
out that when we study a multi-state component, for each 
performance mode of component a probability is 
considered. This increases the system performance state, 
but the classic method cannot be used to calculate the 
system reliability. Therefore, to calculate the system 
reliability and availability, there was a tendency for using 
mathematical methods. Using the UGF method for 
analyzing a multi-state system decreases the system state 

very much [17]. We use the UGF method to calculate the 
system availability as follows: 
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3. Multi-State Series-Parallel System Optimization 
Model 

In this section, the multi-state series-parallel system 
optimization model with n  series subsystem with parallel 
components is presented. The objective function is to 
minimize the system cost in order to satisfy the system 
availability. 

 
0. :

0 ;1 ,1

0 1 ;1 ,1 ,1

0 1 ;1 , 1

i h i

i
hk i i

i
k i i si

Min C X

s t A A
n i N h H

TK or i N h H k k

TK or i N K k k K



    

      

      

      (9) 

4. Solving Approach 

4.1. SA-Parallel algorithm 

In 1983, Kirkpatrick et al. (1983) developed simulated 
annealing (SA) algorithm which is a single point Meta-
heuristic algorithm. In this algorithm, first, we obtain a 
random solution and introduce it to a predefined 
neighborhood and get another solution as the neighbor of 
the present solution. Then, if the new solution has a better 
objective function than the old solution, it replaces the old 
solution. But if the new solution does not have a better 
objective function than the old solution, it still has the 
opportunity to replace the old solution under a probability. 
This probability defined under an acceptance function is 
as follows: 

   itteUniform


1,0                                          (10) 
In equation number (10), the temperature in each repeat of 
algorithm is  itt , and   is defined as follows: 

12 ff                                                             (11) 

In equation number (11), 2f  is the new solution and 1f  
is the old solution. We can normalize the   as follows: 
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1

12

f
ff 

                                                          (12) 

Clearly, this acceptance function which depends on the 
temperature is each repeat  itt  of the SA algorithm. 
After this stage, the old solution remains or is replaced by 
the new solution. In both situations, the result is again 
sent to the neighborhood function to get a new solution 
and this procedure repeats till the algorithm satisfies the 
stop conditions. 
Now we present an improved version of the SA present 
that is called SA-Parallel. In the SA-Parallel the algorithm 
starts with generating more than one point (random 
solution) and these solutions are sent to the neighborhood 
function to generate new solutions. The number of these 
points is npop .  Also to produce more improvement, we 
can generate more than one new solution from each old 
solution. We show the number of new solutions obtained 
from an old solution as nmove . So, in each iteration of 
the algorithm, the number of new solutions 
is nmovenpop . Then we rank all new solutions and 
select the first npop  solutions. These new best solutions 
are again sent to the neighborhood function to generate 
nmove  new solutions. This procedure repeats until the 
algorithm satisfies the stop conditions. To compare the 
new solutions with the old ones, each new solution is 
compared with the same rank old solution. 
The structures of the solutions if the algorithm is Meta-
heuristic are as follows: 
 Structure related to redundancy: 

ndundancyPosition .Re. , 
 Structure related to technical activities: 

tkhPosition. , 
 Structure related to organizational 

activities: tkPosition. . 

4.1.1. Neighborhood function: 

One of the most important bases in the SA algorithm is 
neighborhood function. Regarding this function, all 
solutions are categorized into two categories. The first 
category contains the solutions under SWAP or 
REVERSION. The second category contains the solutions 
under MUTATION. 

4.1.1.1. First category  

SWAP 
In the SWAP condition, for each old solution in the 
neighborhood function, two elements of solution are 
selected randomly and then replaced by each other as 
follows: 

 
REVERSE 
In this condition in each old solution, two random 
elements are selected and then the places of the elements 
between these two points are reversed as follows: 

  
Thus in the operators of the first category, entering new 
variables is impossible and only the places of the 
variables changed. But in the second category, it is 
possible to enter a new variable into a solution. 
4.1.1.2. Second category 
MUTATION 
In this category, a new matrix named M  is generated 
with the same rank of the solution matrix. In the new 
matrix, each array is filled with a random variable 
between 0 and 1. Then in the solution matrix, the 
variables with a correspondence amount less than  2.0  in 
matrix M  are replaced with a random new variable as 
follows: 
 

  
In each new set of solutions in the SA algorithm, some of 
the results are obtained from the first category and the 
other results from the second category. So we have a wide 
range of results in each iteration. In Figure 2, the pseudo 
code of the neighborhood function is presented. 
The flowchart of the SA-Parallel algorithm is as follows 
in Figure 3:  

( 0 , 1 )
0 . 5

R e

.

e U n i f o rm e
i f e

S w a p
v e r s e

E l s e
M u t a t i o n

E n d





 

Fig. 2. The pseudo code of neighborhood function  
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Fig. 3. The flowchart of the SA-Parallel algorithm 

4.2. VDO-Parallel algorithm 

The VDO algorithm developed by Mahdizade and 
Tavakoli-Moghadam (2009) is a single point Meta-
heuristic algorithm which is very similar to SA. In this 
paper the performance of this algorithm is evaluated in 
reliability problems. The main difference between SA and 
VDO is their acceptance function. This function in the 
VDO algorithm is as follows: 














2

2

21 
A

eP                                                           (13) 
The parameter A  in each iteration of the algorithm is 
updated as: 









 2
0

t

eAA


                                                             (14) 

0A ,   and   must be predetermined. The steps of the 
VDO-Parallel algorism are similar to the SA-Parallel. 

4.3. Parameter tuning 

We use the RSM methodology for tuning the SA and 
VDO parameters. It is similar to problem 1 used by 
Levitin et al. (2009) in 2009. The results are presented in 
Figures 4 and 5 along with the information in Tables 1 
and 2. Also stop condition in both algorithms is 30 
generation without improve 
                                   
Table 1 
SA-Parallel parameters 

Upper value Lower value   

5  3  npop 

20  10  nmove  

10000  1000  0t  

0t  is the starting temperature. 
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Fig. 4. ANOVA for SA 

 

Table 2 
             VDO-Parallel parameters 

Optimal value  Parameter  
5  Npop 
20  Nmove  

1000  t0  
 

  Table 3 
  VDO-Parallel parameters 

Upper value Lower value   
5 3 npop 
20 10 nmove 

10000 1000 A0 
0.001 0.01   

10 4   
 

 
  

Fig. 5. ANOVA for VDO
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Table 4 
VDO-Parallel parameters 

Optimal value  Parameter  
5  Npop 
20  Nmove  

100  A0  
0.001 Gamma 

10 Sigma 

4.4. Numerical examples 

To illustrate the method introduced above, 6 numeric 
examples are provided in this section. Assume a system 
with two series sub-systems. In sub-system one, three 
different versions of components are available and in the 
second sub-system, four different components are 
available. The components in the first sub-system have 
three working states of 0, 1 and 2 while the components in 
the second sub-system have two working states of 
0 and1. Transitions are only available in the adjacent 
states.  
The operation rates, transition rates, component costs in 
each version of subsystem 1 are presented in Table 5. 
Assume that in the first sub-system, 8 different activities 
are available numbered from 1 to 8. The actions 

numbered 1 to 5 are technical activities while the 
activities numbered 6, 7 and 8 are organizational 
activities. The effects of technical activities in the three 
versions of components on the first subsystem are 
presented in Tables 6, 7 and 8. The pre cost of 
components in the first sub-system is fixed on 50. 
For subsystem 2, the operation rates, transition rates, and 
component costs of all versions are reported in Table 9. 
Assuming that in the second sub-system 4 different 
activities are available, the actions numbered 1 to 3 are 
technical activities and activity number 4 is an 
organizational activity. The effects of technical activities 
in the four versions of components on the second 
subsystem are presented in Tables 10, 11, 12 and 13. The 
pre cost of components in the second sub-system is fixed 
on 60. 
In this example, we assume that the operation rate of each 
sub-system is equal to the sum of the components 
operation rates and the operation rate of the system is 
equal to the minimum operation rates of the two sub-
systems. We calculate the availability and cost of the 
system and only a unique demand level w  is available 
(Tian & Zuo, 2009). 

 
         Table 5 
         Components data for sub-system 1 

 
1,0  1,2  0,1  i

hg 2  
i
hg 1  

i
hc  

Version   

0.6 0.4 0.05 0.04 60 30 18 1 

0.5 0.4 0.09 0.08 100 50 25 2 

0.7 0.4 0.06 0.05 120 60 40 3 
               

Table 6 
Costs and effects of actions on version 1 components in sub-system 1 

2,1,ka  1,0,ka  1,2,ka  0,1,ka  iT
khc   iT

ho
iT

kho cc  kAction  

1 1 0.9 1 1.0 0.1 1 
1 1 0.8 1 1.5 0.4 2 
1 1 0.8 0.9 3.1 0.8 3 
1 1 0.7 0.8 4.0 0.0 4 
1 1.5 1 1 0.4 2.0 5 

1.5 1.2 1 1 0.0 6.4 6 
1.5 1.5 1 1 0.0 8.0 7 
3.0 2.0 1 1 0.0 10.6 8 

 
Table 7 
Costs and effects of actions on version 2 components in sub-system 1  

2,1,ka  1,0,ka  1,2,ka  0,1,ka  iT
khc   iT

ho
iT

kho cc  kAction  

1 1 1 1 1.0 0.1 1 
1 1 1 1 1.5 0.5 2 
1 1 0.8 1 3.1 0.9 3 
1 1 0.7 0.9 4.0 0.0 4 
1 1.6 1 1 0.4 2.0 5 

1 1.2 1 1 0.0 6.4 6 
1.2 1.6 1 1 0.0 8.0 7 
2.0 2.5 1 1 0.0 10.6 8 
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Table 8 
Costs and effects of actions on version 3 components in sub-system 1 

2,1,ka  1,0,ka1,2,ka  0,1,ka  iT
khc   iT

ho
iT

kho cc  kAction  

1 1 1 1 1.0 0.1 1 
1 1 1 1 1.5 0.4 2 
1 1 1 1 3.1 1 3 
1 1 1 0.9 4.2 0.0 4 
1 1.4 1 1 0.5 2.0 5 

1.2 1.2 1 1 0.0 6.4 6 
1.4 1.4 1 1 0.0 8.0 7 
3.2 2.0 1 1 0.0 10.6 8 

     
Table 9 
Components data for sub-system 2 

1,0  0,1  i
hg 1  

i
hc  hVersion  

0.30 0.05 80 30 1 
0.35 0.06 100 35 2 
0.45 0.03 150 60 3 
0.40 0.02 180 80 4 

   
Table 10 
Costs and effects of actions on version 1 components in sub-system 2 

1,0,ka  0,1,ka  iT
khc   iT

ho
iT

kho cc  kAction  

1 0.9 0.8 0.4 1 
1 0.6 3.2 0.0 2 

2.2 1 2.4 1.8 3 
2.4 0.9 0.0 30 4 

   
Table 11 
  Costs and effects of actions on version 2 components in sub-system 2 

1,0,ka  0,1,ka  iT
khc   iT

ho
iT

kho cc  kAction  

1 0.9 0.8 0.4 1 
1 0.6 3.2 0.0 2 

2.1 1 2.8 1.8 3 
2.2 1 0.0 30 4 

   
Table 12 
  Costs and effects of actions on version 3 components in sub-system 2 

1,0,ka  0,1,ka  iT
khc   iT

ho
iT

kho cc  kAction  

1 1 1 0.4 1 

1 0.6 3.2 0.0 2 

1.6 1 2.6 1.8 3 

1.8 1 0.0 30 4 
   
Table 13 
 Costs and effects of actions on version 4 components in sub-system 2  

1,0,ka  0,1,ka  iT
khc   iT

ho
iT

kho cc  Action K 

1 1 1 0.4 1 
1 1 3.2 0.0 2 

2.2 1 2.6 1.8 3 
1.6 1 0.0 30 4 

 
Example 1 
In this example, 500w  and 9.00 A . Table 14 
present the results of genetic, SA-Parallel, and VDO-
Parallel algorisms and the fitness convergence graphs of  
the SA-Parallel and VDO-Parallel are depicted in Figures 
6.  

 
Example 2 
In this example, 500w  and 95.00 A . The results 
of genetic, SA-Parallel, and VDO-Parallel algorisms 
arepresented in Table 15. Figures 7show the fitness 
convergence graphs of the SA-Parallel and VDO-Parallel.
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Table 14 
 The results of the algorithms in example 1 

Algorithm Cost  Availability  Actions  Redundancy  Version Subsystem 

GA 531  0.9231  

  0  1  1  
8  6  2  1  

  0  3  1  
1,3  4  1  2  
2,3  3  2  2  
  0  3  2  
  0  4  2  

SA-Parallel  486.7  0.9134  

    
5  4  1  1  

1,2,4  2  2  1  
1,2,3  1  3  1  
  0  1  2  
  2  2  2  
  2  3  2  
  0  4  2  

VDO-Parallel  486.7  0.9134  

     
5  4  1  1  

1,2,4  2  2  1  
1,2,3  1  3  1  
  0  1  2  
  2  2  2  
  2  3  2  
  0  4  2  
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Fig. 6. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 1

Table 15 
The results of the algorithms in example 2 

Algorithm Cost  Availability  Actions  Redundancy  Version Subsystem 

GA 559.2  0.9510 

  0  1  1  
8  6  2  1  

  0  3  1  
3  3  1  2  

  0  2  2  
3  3  3  2  

  0  4  2  

SA-Parallel  538.8  0.9514  

    
8  0  1  1  
8  6  2  1  

  0  3  1  
4  5  1  2  
4 2  2  2  

 0  3  2  
 0  4  2  

VDO-Parallel  475.7  0.9500  

     
  1  1  1  
  4  2  1  
  3  3  1  
  1  1  2  
  0  2  2  
  4  3  2  
  0  4  2  

Mani Sharifi et al./ Comparing Parallel Simulated Annealing ...

22



0 10 20 30 40 50 60 70 80 90 100
450

500

550

600

650

700

750

Iteration

O
bj
ec

tiv
e 
fu
nc

tio
n 
va

lu
e

 

 
VDO-Parallel
SA-Parallel

 
Fig. 7. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 2 

Example 3 
In this example, 500w and 99.00 A . The results of 
genetic, SA-Parallel, and VDO-Parallel algorisms are 
reported in Table 16 and the fitness convergence graphs 
of the SA-Parallel and VDO-Parallel are shown in Figures 
8.  

Example 4 
In this example, 1000w  and 9.00 A . The results 
of genetic, SA-Parallel, and VDO-Parallel algorisms are 
shown in Table 17 and the fitness convergence graphs of 
the SA-Parallel and VDO-Parallel are shown in Figures 9.

 

Table 16 
The results of the algorithms in example 3 

Algorithm Cost  availability  Actions  Redundancy  version Subsystem 

GA 627.1  0.9906  

  0  1  1  
  8  2  1  
  0  3  1  

2,3,4  8  1  2  
  0  2  2  
  0  3  2  
  0  4  2  

SA-Parallel  493  0.99714  

    
  1  1  1  
  4  2  1  
  1  3  1  
  2  1  2  
 3  2  2  
 1  3  2  
 0  4  2  

VDO-Parallel  497  0.99512  

     
  4  1  1  
  2  2  1  
  1  3  1  
  0  1  2  
  3  2  2  
  2  3  2  
  0  4  2  
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Fig. 8. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 3
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Table 17 
The results of the algorithms in example 4 

Algorithm Cost  availability  Actions  Redundancy  version Subsystem 

GA 940  09038  

1  6  1  1  
3  6  2  1  

  2  3  1  
4  2  1  2  
4  9  2  2  

1,4  1  3  2  
  0  4  2  

SA-Parallel  905.8  0.9020  

    
8  7  1  1  
8  7  2  1  

  0  3  1  
  0  1  2  
3 8  2  2  

 3  3  2  
 0  4  2  

VDO-Parallel  294.9379  0.90  

     
1,6,8  3  1  1  
1,6,8  8  2  1  
6,8  1  3  1  
  1  1  2  
  8  2  2  
  1  3  2  
  2  4  2  
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Fig. 9. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 4 
Example 5 
In this example, 1000w  and 95.00 A . The results 
of genetic, SA-Parallel, and VDO-Parallel algorisms are  
 

presented in Table 18 and the fitness convergence graphs 
of the SA-Parallel and VDO-Parallel are shown in Figures 
10.  

Example 6 
In this example, 1000w  and 99.00 A . Table 19 
show the results of genetic, SA-Parallel, and VDO-
Parallel algorisms, and the fitness convergence graphs of 
SA and VDO algorisms are illustrated in Figures 11.  
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Fig. 10. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 5 
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Table 18 
The results of the algorithms in example 5 

Algorithm Cost  availability  Actions  Redundancy  version Subsystem 

GA 957.6  09539  

8  5  1  1  
8  8  2  1  
8  1  3  1  
4  4  1  2  
4  2  2  2  

3,4  2  3  2  
4  2  4  2  

SA-Parallel  883.9938  0.95  

    
1,6  0  1  1  
5,6  10  2  1  
6  2  3  1  
3  1  1  2  
1 2  2  2  

 9  3  2  
1 0  4  2  

VDO-Parallel  215.1572  0.9599  

     
2  6  1  1  

  9  2  1  
4  1  3  1  
1  6  1  2  

  8  2  2  
  1  3  2  
  0  4  2  

 
Table 19 
The results of the algorithms in example 6 

Algorithm Cost  availability  Actions  Redundancy  version Subsystem 

GA 987.3  09925  

1,8  6  1  1  
8  9  2  1  

  0  3  1  
1,4  8  1  2  
3,4  5  2  2  
4  1  3  2  

  0  4  2  

SA-Parallel  299.9471  0.99  

    
1,2,3,6,8  2  1  1  

1,6,8  7  2  1  
6,8  3  3  1  
  0  1  2  
4 8  2  2  
4 3  3  2  

2,3,4 1  4  2  

VDO-Parallel  227.8364  0.99  

     
2,5,6  0  1  1  

1,2,3,5,6  0  2  1  
1,3,4,5,6  10  3  1  

1,3,4  10  1  2  
2,4  10  2  2  
2,4  10  3  2  

2,3,4  9  4  2  
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Fig. 11. Comparing the fitness convergence graph for the VDO-Parallel and SA-Parallel in example 6 
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As mentioned above, in example 1, the results of SA-
Parallel and VDO-Parallel algorithms are the same and 
both of them are better than the genetic algorithm. The 
only difference between the two parallel algorithms is the 
number of iterations. In the SA-Parallel, after 45 iterations 
the algorithm reaches to convergence but the number of 
iterations in the VDO-Parallel is 53. In the examples 
number 2, 4, 5 and 8, the VDO-Parallel yields better 
results than the SA-Parallel algorithm. Only in example 
number 3, the results of the SA-Parallel are better than 
those of the VDO-Parallel algorithm. Of course in all 
examples, both of the proposed parallel algorithms have 
better results than the genetic algorithm. 

5. Conclusion and Further studies 

All in all, in this paper we showed that parallel meta-
heuristic algorithms like SA-parallel and VDO-Parallel 
have a better performance in the series-parallel multi-state 
systems than the ordinary ones such as genetic. 
Differences between the acceptance functions of SA and 
VDO algorithms enable them to avoid local solutions. 
Using this approach for the SA-parallel and VDO-Parallel 
improves the ability of these two algorithms. Of course, 
operation of these two algorithms depends on 
neighborhood function structures. Using the approach, 
one can improve the ability of other meta-heuristic 
algorithms. 
In this paper we determined these decision variables: 1) 
Number of assigned components in each sub-system of 
each system, 2) The version of assigned components in 
each sub-system of each system, and 3) The type of 
technical and organizational activities. 
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