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Abstract 

Convergent product is an assembly shape concept integrating functions and sub-functions to form a final product. To conceptualize the 
convergent product problem, a web-based network is considered in which a collection of base functions and sub-functions configure the 
nodes and each arc in the network is considered to be a link between two nodes. The aim is to find an optimal tree of functionalities in the 
network adding value to the product in the web environment. First, an algorithm is proposed to assign the links among bases and sub-
functions. Then, numerical values as benefits and costs are determined for arcs and nodes, respectively, using a mathematical approach. 
Also, customer’s value corresponding to the benefits is considered. Finally, the Steiner tree methodology is adapted to a multi-objective 
model optimized by an ant colony optimization method. The approach is applicable for all digital products, such as mobile, tablet, laptop, 
etc. An example is worked out to illustrate the proposed approach. 
Keywords: Convergent product, Web-based (digital) network, Multi-objective programming, Steiner tree, Ant colony optimization. 

1. Introduction 

Convergence in electronics and communication sectors 
has enabled the addition of disparate new functionalities 
to existing base functions (e.g., adding mobile television 
to a cell phone or Internet access to a personal digital 
assistant, PDA). An important managerial issue for such 
convergent products (CPs) is determination of new 
functionalities adding more value to a given base. For 
example, a manufacturer of PDAs may wonder whether it 
would be a good idea to add satellite radio to it (i.e., a 
new functionality incongruent with the base), or whether 
it would be better to add electronic Yellow Pages (i.e., a 
new functionality congruent with the functions of a PDA). 
In addition, determining the significance of the base being 
primarily associated with utilitarian consumption goals 
(e.g., a PDA), or with hedonic ones (e.g., an MP3 music 
player) is important.  
Convergent product is similar to product assembly where 
different parts of a product get together to configure a 
final product. Thus, a designer (modeler) for assembly, as 
a convergent product, should be able to specify important 
features affecting the final product. These features may in 
turn help optimize the manufacturing process. 
The paradigms of digital convergence place more 
emphasis on strategic gravity of convergent products that  
 
 

 
 
 
 
are formed by adding new functions to an existing base 
product (Yoffie, 1997); multiple functions are integrated 
together in one device to work better rather than they 
would be delivered separately. Representative examples 
of this shifting trend are the cases of Apple’s iPhone and 
Microsoft’s Xbox. Such convergent products have created 
new business opportunities for companies to gain or 
maintain a competitive edge, bringing about immense 
changes in a wide array of industries (Gill, 2008). 
Consequently, design of convergent product concepts 
(CPCs) has likewise become an integral part of business 
concerns (Gill and Lei, 2009). This is of particular 
importance in the recent business environments where 
markets shift rapidly, technologies proliferate 
unceasingly, thus making business life cycles ever shorter. 
Systematic design of CPCs needs to address the following 
analytic issues. The first issue is concerned with the types 
of data to be employed. The concept design aims to 
incorporate customer needs into design specs (Callahan 
and Lasry, 2004). A deeper understanding of the fuzzy 
front end could help firms to be more successful in their 
efforts to develop new products (Verworn et al., 2008). 
Lee et al. (2012) proposed a systematic approach to 
design of CPCs based on online community information 
using data mining techniques. 
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For instance, the ability of the assembly modeler to 
furnish information on interferences and clearances 
between mating parts is particularly useful. Such 
information would enable the designer to eliminate 
interference between two mating parts where it is 
impractical to provide for an interference based on 
physical assembly requirements. This activity can be 
accomplished within the modeling program, thereby 
averting any loss of productivity that might occur due to 
interferences on the shop floor. Also, knowledge of mass 
properties for the entire assembly, particularly the center 
of gravity, may permit the designer to redesign the 
assembly based on equilibrium and stability 
considerations. In the absence of such information, the 
presence of an elevated center of gravity and the attendant 
instability would only be detected after physical assembly 
on the shop floor. Three-dimensional exploded views 
generated by the assembly modeler can help designers 
verify whether obvious violations of common design for 
assembly (DFA) guidelines are present, such as absence 
of chamfers on mating parts.  
Corresponding analyses can be achieved within the 
framework of the assembly modeler. Additionally, the 
assembly model may be imported into third-party 
programs that can perform kinematic, dynamic, or 
tolerance analysis. Tolerance analysis is quite relevant to 
the physical assembly process. With the input of the 
assembly model and other user-supplied information such 
as individual part tolerances, tolerance analysis programs 
can check the assembly for the presence of tolerance 
stacks. Tolerance stacks are undesirable elements in the 
sense that acceptable tolerances on individual parts are 
combined to produce an unacceptable dimensional 
relationship, thereby resulting in a malfunctioning or 
nonfunctioning assembly. Stacks are usually discovered 
during physical assembly, at which point any remedial 
procedure becomes expensive in terms of time and cost. 
Tolerance analysis programs can help the user eliminate 
or significantly reduce the likelihood of stacks being 
present.  
Based on the results of the tolerance analysis, assembly 
designs may be optimized by modifying individual part 
tolerances. Note, however, that tolerance modifications 
have cost implications; in general, tighter tolerances 
increase production costs. Engineering handbooks contain 
tolerance charts indicating the range of tolerances 
achieved by manufacturing processes such as turning, 
milling, and grinding. Designers use these tables as guides 
for rationally assigning part tolerances and selecting 
manufacturing processes. 
A more effective methodology for optimizing product 
assembly and convergent product is the tree model, 
whereas the optimization decision is based on a decision 
tree. One useful tree for assembly modeling as a multiple 
optimization tool is the Steiner tree.  
The Steiner tree problem (STP) is a much actively 
investigated problem in graph theory and combinatorial 
optimization. This core problem poses significant 

algorithmic challenges and arises in several applications 
where it serves as a building block for many complex 
network design problems. Given a connected undirected 
graph G=(V,E), where V denotes the set of nodes and E is 
the set of edges, along with a weight Ce associated with 
each edge Ee , the Steiner tree problem seeks a 
minimum-weight subtree of G that spans a specified 
subset VN   of terminal nodes, optionally using the 
subset N=V-N of Steiner nodes. The Steiner tree problem 
is NP-hard for most relevant classes of graphs (Johnson, 
1985). Thus, clearly the Steiner tree problem with more 
objectives is also NP-hard. 
The Steiner problem in graphs was originally formulated 
by Hakimi (1971). Since then, the problem has received 
considerable attention in the literature. Several exact 
algorithms and heuristics have been proposed and 
discussed. Hakimi (1971) remarked that an Steiner 
minimal tree (SMT) for X in a network G=(V,E) can be 
found by enumerating minimum spanning trees of 
subgraphs of G induced by supersets of X. Lawler (1976) 
suggested a modification of this algorithm, using the fact 
that the number of Steiner points is bounded by ,2X  
showing that not all subsets of V need to be considered. 
Restricting NP-hard algorithmic problems regarding 
arbitrary graphs to a smaller class of graphs will 
sometimes, yet not always, result in polynomially 
solvable problems. 
Two special cases of the problem, N = V and N = 2, can 
be solved by polynomial time algorithms. When N = V, 
the optimal solution of STP is obviously the spanning tree 
of G and thus the problem can be solved by polynomial 
time algorithms such as Prim’s algorithm. When N = 2 , 
the shortest path between two terminal nodes, which can 
be found by Dijkstra’s algorithm, is exactly the Steiner 
minimum tree. 
A survey of Steiner tree problem was given by Hwang 
and Richards (1992). Several exact algorithms have been 
proposed such as dynamic programming technique given 
by Dreyfuss and Wagner (1971), Lagrangean relaxation 
approach presented by Beasley (1989), brand-and-cut 
algorithm used by Koch and Martin (1998). Duin and 
Volgenant (1989) presented some techniques to reduce 
the size of the graphs for the GSP. Another approach for 
the GSP is using approximation algorithms to find a near-
optimal solution in a reasonable time. 
Some heuristic algorithms have been developed such as 
Shortest Path Heuristic (SPH) given by Takahashi and 
Matsuyama (1980), Distance Network Heuristic (DNH) 
presented by Kou et al. (1981), Average Distance 
Heuristic (ADH) proposed by Rayward-Smith and Clare 
(1986) and Path-Distance Heuristic (PDH) presented by 
Winter and MacGregor Smith (1992). Mehlhorn (1988) 
modified the DNH to make the algorithm faster. Robins 
and Zelikovsky (2000, 2005) proposed algorithms 
improving the performance ratio. 
Recently, metaheuristics have been considered to arrive at 
better methods for finding solutions closer to the 
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optimum. Examples are Genetic Algorithm (GA) 
(Esbensen, 1995; Kapsalis, et al., 1993), GRASP (Martins 
et al., 1999) and Tabu search (Ribeiro and Souza, 2000). 
Although these algorithms have polynomial time 
complexities, in general, but they cost enormously on 
large input sets. To deal with the cost issue, some parallel 
metaheuristic algorithms have been proposed such as 
parallel GRASP (Martins et al., 1998), parallel GRASP 
using hybrid local search (Martins et al., 2000) and 
parallel GA (Fatta et al., 2003).  
Some recent researches have been developed in two 
categories. The first category is related to the theoretical 
extension of Steiner tree in the field of algorithmic 
behavior and convergence status (Chakrabarty et al., 
2010; Chimani et al., 2012; Gamzu and Segev, 2010; 
Müller-Hannemann, and Tazari, 2010). The second 
category is concerned with application of Steiner tree in 
different aspects of engineering problems (Lu et al., 2011; 
Zych, and Bilò, 2011). 
To produce a new product or to promote an existing one 
with the idea of using convergent products and 
development of a mathematical model, keeping base 
functions and adding sub-functions in satisfying the 
objectives has not been considered in the literature. In our 
work here, by applying the Steiner tree, a multi-objective 
mathematical model is developed to consider promotion 
of convergent products to satisfy three objectives of cost, 
benefit and customers’ value. The results are some new 
products with more utility for both the buyer and the 
producer. Also, to solve the multiobjective Steiner tree 
model an MOACO is developed. 

Here, making use of the Steiner tree, a multi-objective 
mathematical model is developed for the convergent 
product. The remainder of our work is organized as 
follows. In Section 2, the proposed model is described and 
some useful network algorithms are given. Section 3 
presents the mathematical model and an Ant Colony 
Optimization (ACO) algorithm. Section 4 works out an 
experimental study to illustrate the proposed algorithm. 
To evaluate the performance of the proposed MOACO, 
we develop some medium and large size problems in 
Section 5. We conclude the study in Section 6. 

2. The Proposed Model  

In our proposed product digital network, a group of 
functionalities are considered for a product. Customers 
view their opinions for classifying the functionalities into 
base functions and sub-functions. We make use of this 
classification in developing our model. The classification 
procedure is as follows. First, the customer chooses a 
product in a list of products being produced in a company. 
The functionalities of the product are viewed in a web 
page. Then, the customer clicks either function or sub-
function for any of the functionalities. Consequently, 
customer clicks the “classify” button and observes the 
classified functionalities in a separate web page. This 
process is shown in Fig. 1. 
Here, we weigh all functionalities (both base functions 
and sub-functions) considering different significant 
attributes affecting the value of a product. Therefore, we 
consider the following mathematical notations. 

 
Fig. 1. The classification process 
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Mathematical notations: 
i and j Index for functions and sub-

functions; 
 

i and 
j=1,…,n+m 

k Index for attributes; k=1,…,p 

Fijk The score of triplet comparison of functions (or 
sub-functions) with functions (or sub-
functions) considering different attributes. 

The three dimension comparison matrix F is shown in 
Fig. 2. Note that customers fill in this matrix using 
numerical values  1,0ijkF .  

ijkF

 
Fig. 2. The three dimensional comparison matrix 

 
This matrix is normalized to remove the scales. The 

normalized values are shown by 
norm

ijkF . A threshold value 

of   is considered in a way that the 



p

F
f

p

k

norm

ijk

ij
1  

are chosen to be assigned as links. The ijf  is a value that 

customer considers for arc ),( ji .These links configure a 
network called purified network as shown in Fig. 3.  
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Function Subfunction  
Fig. 3. A purified network 

Now, using the purified network, we characterize the arcs. 
To do this, two processes of leveling and clustering are 
performed. For leveling, we set the base functions at level 
zero, sub-functions with one outlet to the previous level at 
level 1, and so on. Thus, an l level network is configured.  
The proposed algorithm is given next. 
Algorithm 1: Leveling to configure a leveled network. 
Step 0: Set the base functions at level 0. Let l=0. 
Step 1: While sub-functions exist for processing do 

Find sub-functions with a link to a 
function (or sub-function) at level l and 
put them in level l+1. Let l=l+1; 

 End while. 
 {l is the number of levels.}  
Step 2: Stop. 
The nodes of leveled network are associated with given 
costs. We are looking for the benefit each link provides. 
Here, a clustering approach is considered. Clusters are 
formed as follows: at each level, all sub-functions linked 
to a single parent is grouped in a cluster. Therefore, 
clusters consisting different nodes are configured. These 
clusters are being configured as a new network. The 
leveling and clustering processes are shown schematically 
in Fig. 4. Later, we apply the Steiner tree methodology to 
optimize this network.  
The proposed algorithm for clustering is given next. 
Algorithm 2: Clustering of levels in a leveled network. 
Step 0: Set each node at level 0 to be a cluster. 
Step 1: For i=1 till l do 

 {Form clusters at level i} 
Cluster all sub-functions at level i 
linked to a single parent at level i-1; 
Solve a zero/one mathematical program 
for level i (we will discuss the 
corresponding mathematical program 
later on); 
Perform purification of benefits and 
costs at level i (as discussed later on); 

End for. 
Step 2: Stop. 
 
Here, the clustered network is used to configure a tree (the 
Steiner tree) keeping the base functions and optimizing 
three objectives of minimal cost, maximal profit and the 
maximum of total values that customers consider for 
existing arcs in the convergent product value adding 
process. In traditional Steiner tree approach, the aim is 
usually to find a tree having a minimal arc total cost. 
Here, we extend the approach by looking for a tree having 
the base functions and meanwhile minimize cost, 
maximize benefit and maximize customer’s total value. In 
fact, the model structure’s closeness to the Steiner tree 
model justifies modeling the problem with the proposed 
approach. Next, we formulate our adapted proposed 
Steiner tree model. In the proposed network, node i 
(function or sub-function i) have two costs: 
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Fig. 4. Leveling and clustering processes 

 
ci1: software cost, 
ci2: hardware cost. 
Each arc is accompanied with a benefit iip  , attained by 

nodes i  and i . Regarding the solution approach and 
using the Steiner tree in the proposed network and the 
NP-hardness of the problem, we used leveling and 
clustering processes to reduce the complexity of the 
problem. In clustering, it is not acceptable for any node to 
be included in more than one cluster at any level. To 
guarantee this, for each level l, a zero/one mathematical 
program is developed in order to properly appropriate 
nodes to clusters with the aim of minimizing the total 
cost.  
Next, we give the zero/one mathematical program and the 
purification procedure for each level. 
 
The zero/one mathematical program for level l: 
 


 


l lini mj

ijijijijij zccT )(min 21                   (1) 

 l
mj

ij niz
li

,...,1,1 


 






otherwise,,0

clusterinisnodeif,1 ji
z ij  

where, ,ij   jiij ,,1,0  , and 
mli   : set of indices of clusters at level l where node i is 
included,  
nl : set of indices of different nodes at level l,  
cij2: hardware cost of node i in cluster j (cij2= ci2, for all i 
and j), 
cij1: software cost of node i in cluster j (cij1= ci1, for all i 
and j), 
αij : the software reduction cost coefficient of node i in 
cluster j,  
βij :  the hardware reduction cost coefficient of node i in 
cluster j.  
Purifying benefits, costs and customers total value at 
level l: 
To determine the cost for each cluster at level l, we use 
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






ii

ii
ni

ijijijijjl pccc
l ,

21 ,)(                       (2) 

with cij1, cij2 and nl as defined above, 
,ij   jiij ,,1,0  , and 

cjl : cost of cluster j at level l,  
αij : the software reduction cost coefficient of node i in 
cluster j,  
βij :  the hardware reduction cost coefficient of node i in 
cluster j,  

iip  :  the benefit of an arc connecting node i in cluster j 

to node i  in cluster j . 
Also, to adjust the combined arc benefits in clusters, the 
following equation is used: 

,)1(
,



 

ii
iijjjj pp                                              (3) 

where, ,,,, jjii  and 

jjp  : the adjusted arc benefit connecting cluster j to 

cluster j , 

iip  : the benefit of an arc connecting node i in cluster j to 

node i  in cluster j ,  
jj  : the added value configured from nodes in clusters j 

and j .  
Also, to adjust the combined arc customers total value in 
clusters, the following equation is used: 

,)1(
,



 

ii
iijjjj ff                                               (4) 

where, ,,,, jjii  and 

jjf  : the adjusted arc customers total value connecting 

cluster j to cluster j , 

iif  : the customers total value of an arc connecting node i 

in cluster j to node i  in cluster j ,  
jj  : the added value configured from nodes in clusters j 

and j . 
Algorithms 1 and 2 are transformed into Algorithm 3 
using the aforementioned considerations. Also, each node 
should be in only one cluster at level l. The node having a 
minimal cost is chosen for the level l. Then, instead of 
using the zero/one mathematical program for level l, we 
can use step 3 of Algorithm 3. This leads a reduction of 
computations by avoiding the need for using the zero/one 
programs. 
Algorithm 3: leveling and clustering in the network. 
 
Step 0: Set the base functions at level 0. Let l=0. 
Step 1: While sub-functions exist for processing do 

Find sub-functions with a link to a 
function (or sub-function) at level l and 
place them at level l+1; Let l=l+1; 

 End while. 
 {l is the number of levels}  
Step 2: Set each node at level 0 to be a cluster. 
Step 3: For i=1 till l do 

{Form clusters at level i} 
Cluster all sub-functions at level i linked to a 
single parent at level i-1; 
While 0in  do 

Select  ink   such that 

 2121 min kjkjkjkjmjkpkpkpkp cccc
ik

 


. 

Set  1kpz  

and pjmjz ikkj  ,,0 ; 

 .knn ii   
End while; 
For j=1 till iq  do { iq  is the number of clusters 
in the level i} 
     







ii

ii
ni

ijijijijji pccc
l ,

21 )(  ; 

End for; 
For j=1 till iq  do  

      For j =1 till iq  do  

                


 
ii

iijjjj pp
,

)1(  ; 

                


 
ii

iijjjj ff
,

)1(  ; 

      End for; 
                        End for; 
             End for. 
Step 4: Stop. 

3. Mathematical Formulation and the Extended 
MOACO Approach 

Here, we first propose the mathematical model for the 
considered problem and then state the solution approach.  

3.1. Mathematical formulation 

We first recall the undirected Dantzig–Fulkerson–Johnson 
model for the convergent product Steiner tree problem 
(CPSTP) presented in (Costa et al., 2006). Let  xij and  yi 
be binary variables associated with links Eji ),(  and 
clusters Vi , respectively. Variable yi is 1 if cluster i 
belongs to the solution, and is 0 otherwise. Similarly, 
variable xij is 1 if link (i, j) belongs to the solution, and is 
0 otherwise. For VS  , define E(S) as the set of links 
with both end nodes in S. Assume that terminals are the 
set N. The mathematical model can then be written as: 
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Maximize     
Eji

ijij xp
),(

. ,                    (5) 

Maximize 
Eji

ijij xf
),(

. ,                                                   (6) 

Minimize      
Vi

ii yc . ,                                              (7) 

Such that 





Vi

i
Eji

ij yx 1
),(

,                                              (8) 

 




kSi

i
SEji

ij yx
)(),(

 

,   2:,  SSVSk ,                                (9)  
 

Nhyh  ,1 ,                  10) 
 

  Ejixij  ,,1,0 ,                              (11) 
 

  Viyi  ,1,0 .                               (12)       
The objectives are to maximize the aggregated benefits, 
minimize the aggregated costs and maximize the 
aggregated customers total value. Constraint (8) 
guarantees that the number of clusters in a solution is 
equal to the number of links minus one, and constraints 
(9) are the connectivity constraints. The number of 

constraints in (9) equals 12  VV . As a result, the 
number of variables and constraints are increased 
exponentially with respect to the number of clusters. 
Constraints (10) impose the terminal clusters to exist in 
the tree. Relations (11) and (12) show the variable types.  
Assume that two products A and B have respective costs 

Ac  and Bc , respective benefits Ap and Bp , and 

respective customers’ total value Av  and Bv . If 

, andA B A B A Bc c p p v v    , then product A 
dominates product B, but if 

, andA B A B A Bc c p p v v   or 

, andA B A B A Bc c p p v v     or …, then neither A 
dominates B nor B dominates A. Since neither is a 
dominant solution, A and B are Pareto solutions for the 
problem.  
The two objectives, benefit and customers’ total value, are 
to maximize and it is possible to aggregate them as a 
single objective. But, aggregating these two objectives 
leads to underestimation of customers’ total value due to 
differences in the coefficients. This is a cause for missing 
some Pareto optimal solutions.    

3.2. The extended MOACO approach 

Ant colony optimization (ACO) was first introduced by 
Dorigo et al. (1991) for solving the traveling salesman 

problem. This method of optimization is inspired by the 
behavior of various ants as they are searching for the 
shortest path among the possible paths in finding the food 
sources. To solve a problem with an ACO algorithm, the 
problem is usually defined and represented by a graph. 
As ants start the production of solutions in the graph, they 
are guided by pheromone trails and heuristic information. 
The heuristic information is the measure of preference to 
move from state Si to Sj (in the graph, from node I to node 
j) and the pheromone trails are the amount of pheromone 
deposited by ants in the previous stages showing the 
learning desirability of moving from state Si to Sj. 
Considering the solution found. While ants update the 
amount of pheromone trails, the nodes with more amounts 
of pheromone trails are more likely to be selected by the 
artificial ants.  
In recent years, many researchers have developed various 
ACO algorithms for combinatorial problems such as 
vehicle routing, traveling sales man, production 
scheduling, sequential ordering, telecommunication 
routing, etc. Various ACO algorithms are different in the 
procedures for updating pheromone trails, evaporation 
and transition rules. Ant System (AS) was first developed 
by Dorigo et al. (1991) and applied to solve the classical 
traveling salesman problem. Six years later, Dorigo and 
Gambardella (1997) introduced another algorithm which 
performed better than AS and was called ant colony 
system (ACS). ACS uses different procedures in local and 
global pdating of the pheromone trails as well as the 
transition rules. There are different versions of ACO 
algorithms such as Elitist Ant System (Stützle and Dorigo, 
1999), rank-based AS (Stützle and Dorigo (1999; Dorigo 
et al., 1999) and Min–Max AS (Stützle and Dorigo, 1999; 
Socha et al., 2003). Ant colony algorithms have 
successfully been used to solve single objective 
combinatorial problems (see, for example, Dorigo and 
Gambardella, 1997; Colorni and Dorigo, 1994; 
Gambardella and Dorigo, 2000). In recent years, to 
elevate the performance level, studies on hybrid ACO 
algorithm with other meta-heuristics such as genetic and 
other evolutionary algorithms (Jangam and Chakraborti, 
2007) have been made. 
Regarding the success of ACO in the single objective 
case, researchers have been interested to employ ACO for 
solving multi-objective problems. They designed various 
kinds of algorithms by modification of both AS and ACS. 
Because of the excellent speed of ACO in constructing 
feasible solutions, it was employed as an alternative tool 
in place of an exact method for solving multi-objective 
problems. ACO appears to be proper for solving multi-
objective problems due to its high speed in generating 
solutions leading to detection of more non-dominated 
solutions. Iredi et al. (2001) developed a multi-objective 
ACO algorithm on the basis of AS for bi-criteria vehicle 
routing problem. They used two pheromone trails, one for 
each objective. They also combined the information of 
pheromone trails to calculate the probability distribution 
of the transition rule. In order to force the ants to search in 
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different regions of the solution space, they defined a 
specific parameter and used it as a weighting factor in the 
transition rule. Doerner et al. (2004) designed a multi-
objective ACO algorithm on the basis of ACS for multi-
objective portfolio selection problem. They considered 
several pheromone matrices, one for each objective. The 
ants used the maximum selection method in selecting the 
next node combining the pheromone trails information of 
different objectives to calculate the probability 
distribution of the transition rule. At the end of each 
iterations, best ants and second-best ants generated in the 
current iteration updated the pheromone proposed trails. 
Multiple ant colony system proposed by Baran and 
Schaerer (2003) was devised for vehicle routing problem 
with time windows based on ACS algorithm using only 
one pheromone trail matrix and several heuristic 
parameters, one parameter corresponding to each 
objective. The transition rule by Baran and Schaerer 
(2003) uses the information of pheromone trail matrix and 
some heuristic parameters. Also, having parameters 
specific to the indices of the ants, accommodates for the 
ants to search in different regions of the solution space. 
Doerner et al. (2003) proposed the COMPET ants 
algorithm for bi-objective transportation problem. Their 
formula works on the basis of rank-based AS and uses 
two colonies of ants, two pheromone trail matrices and 
two heuristic parameters, one for each objective. The 
distinction in this algorithm is that the number of ants in 
each colony is determined using the solutions constructed 
by the ants of the colonies. Colonies constructing better 
solutions get more ants for the next iteration. In this 
algorithm, some ants in colonies called spy ants mix the 
pheromone trails and heuristic information of all the 
colonies to search in central areas of the Pareto frontier. 
Garcia-Martinez et al. (2007) recently presented a 
taxonomy and review of existing multi-objective ant 
colony optimization algorithms as well as an empirical 
analysis of performance of these algorithms in 
comparison with multi-objective genetic algorithms.   
Considering the literature reviewed, the multi-objective 
ACO algorithms can be classified in 3 classes: 
• Algorithms that employ several colonies, one for each 
objective. 
• Algorithms that employ several pheromone trail 
matrices, one for each objective. 
• Algorithms that employ several heuristic information, 
one for each objective. 
Here, our proposed ACO algorithm for solving MOSTP 
problems makes use of the second approach being and 
adaptive modified ant colony system algorithm to solve 
the multi-objective problem.  
Ant colony functions 
The suggested ant colony algorithm is composed of some 
main elements such as pheromone matrix, initializations 
and heuristic parameters, transition rule, storage of non-
dominated solutions, local and global updates. We 
described these elements in this section. The algorithm is 
designed based on the classical ACS proposed by Dorigo 

and Gambardella (1997) with maximum selection in the 
transition rule as well as local and global updates.  
Pheromone matrix: In the algorithm, three pheromone 
matrices are defined, one for each objective. At the end of 
each iteration, the pheromone matrices are updated 
separately considering the solutions generated up to the 
current iteration. The ideas of using two or more 
pheromone trail matrices is have been promoted by some 
researchers such as Iredi et al. (2001) for the bi-criteria 
vehicle routing problem, Cardoso et al. (2003) for the 
network traffic optimization and Doerner et al. (2003) for 
the bi-objective transportation problem.  
Initialization and heuristic parameter: In the Proposed 
Initialization and heuristic parameter are used from the 
approach developed by Gosavi (2003).The extended 
algorithm consists of several trials, where each trial 
results in a generated candidate Steiner tree. The situation 
is much like the original ant colony systems approach, 
where in each iteration an ant traces out a cyclic tour for 
the traveling salesperson problem (Dorigo and Maniezzo, 
1996; Dorigo and Gambardella,1997). However, in order 
to generate a Steiner tree, we have to make use of 
multiple ants. This is because a Steiner tree, unlike a 
single cyclic path solution that the traveling sales man 
problem warrants, consists of a tree having more than a 
single path. We reason that a good way to generate a tree 
in a given graph is to make use of several ants that 
cooperatively generate a tree, whose separate branches are 
defined by the paths traveled by each ant. 
One ant is placed initially at every one of the given 
terminal vertices that are to be connected. In each 
iteration, an ant is moved to a new location via an edge. 
The new location is determined stochastically, but is 
biased in such a manner that the ants get drawn to the 
paths traced out by one another. Each ant maintains its 
own separate list of vertices already visited. In 
conforming to the parlance used in the original work 
(Dorigo and Maniezzo, 1996), we call this list the ant’s 
tabu list. This list is maintained to prevent it from entering 
such a vertex again, which would otherwise produce a 
cycle. When any ant collides with another ant, or even 
with the path of another, it merges into the latter. This is 
because paths followed by the two joining ants become 
connected into one single sub-tree. This complex 
interaction between the ants amounts to the Steiner tree 
being defined in each trial by their paths, when all ants 
merge into a single entity.  
An ant m, currently at a vertex I, selects a vertex j not in 
its tabu list T(m), to move to, only if Eji ),( . We 
define two potentials for each vertex j in V with respect to 
an ant m as follows: 

),(max)(
jkk

m
j P                                                     (13) 

and 
),(max)(

jkk

m
j F                                                      (14) 

where, 
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
   

Here, m  is any other ant, jkP  (sum of all benefits) and 

jkF (sum of all customers values) are the longest distance 
from the two vertices j and k. These distances are 
computed as the sum of the weights of all the edges 
leading from j to k. The longest distances between the 
vertices can easily be computed using the well-known 
Floyd all-pair shortest path algorithm, a dynamic 
programming approach.  
We define the desirability of a vertex with respect to an 
ant m, currently in vertex I, as follows: 

,
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where, the quantities   and    are constant 
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biases the ants towards choosing edges with more 
desirability.  
Local update and global update: The trail updating are 
performed at the end of the trails. The trail updating 
follows the simple rules, 

,)1(

)1(
)1(

jjj

ijijij

ijijij













                                        (18) 

where   is a parameter between 0 and 1, called the trail 
evaporation rate, and measures how rapidly the trail 
evolves. The local update (evaporation) procedure 
prevents the algorithm to rapidly converge to a local 
optimal solution and forces the artificial ants to explore 
new areas of the search space by efficiently disregarding 
the previous information. The general form of the 
incremental updates ijij   ,  and j are given by  
                                   



 


otherwise,0

if,)(. S
ij

E(i,j)PwQ
  (19) 

 

where 
H

p
Pw ij)( such that ,SE(i,j)  

                   
. ( ) , if

0, otherwise
S

ij

Q w F (i, j) E



  


           (20) 

where 
K

f
Fw ij)( such that ,SE(i,j) and 

, if
( )

0, otherwise,

S
j

Q j V
w C
   


                       (21) 

where  jcCw )( such that .SVj   
We have carried out two forms of updating given in 
Dorigo and Gambardella (1997) as follows. In the local 
updating rule, the Steiner tree S, which is used to 
determine the incremental updates ijij   ,  

and j , is the one computed in the current trial. In other 
words, S, in equations (19), (20) and (21) are set 
to currentS . We maintain the quantity Q at a constant level. 
But, we also use a global updating of the trails also, 
where the incrementing operation is carried out only for 
those edges and nodes that are part of the non-dominate 
solutions obtained from the beginning of the iteration 
until the last trail.  
Transition rule: The following probability distribution 
shows how an ant moves from node i to its subsequent 
node: 
If  0qq   then 

let 
( )

1, if

( ) ( ) .
arg max

( ) ( ) .( ) ( )

0, otherwise,

m
ij ij

ij m mu w i
ij ij j j

p j
 

   

 

   
 




    
  

   



     

                             (22) 
Else 
 
let 

( )

( ) ( ) .( ) ( ) .( ) ( )
,

( ) ( ) .( ) ( ) .( ) ( )

if
0, otherwise,

m m m
ij ij ij ij j j

m m m
ij ij ij ij j j

u w i

ijp j w(i)
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
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
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
 

(23) 
where )()( m

m
Tiw


  is a set of outgoing nodes from 

node i not previously visited by the ants.  
Keeping non-dominated solutions procedure: In each 
iteration of the algorithm, each ant generates a solution. If 
the new generated solution is a non-dominated solution, 
the Pareto optimal set should be updated.  Fig. 5 presents 
a flowchart for the steps of the algorithm. 

(15)  
  

(16)  
 

(17) 

Journal of Optimization in Industrial Engineering 16 (2014) 1-19

9



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
                                                                                                                                    No        No  
 
 
 
                                                                                                                          
 
                                                                                                                         
 

                                                                                                 Yes                                                                              
 
 
 
 
 
 
                                                                              
                                                                              
 
 
 
 
   
 
                                                                                           Yes 
                                                                             
 
 
 
 

 
 
 
 

Fig. 5. Flow chart of the multi-objective ant colony algorithm 
4. Experimental Study 

Here, to illustrate the applicability and effectiveness of 
our proposed multiple optimization process, an 
experiment is worked out. Consider an undirected graph 
G=(i, j) with the cluster set   nV ,...,1  and the link 

set   jiVjijieE  ,,:, , non-negative 
profits, pe, associated with the links and non-negative 
costs, ci, associated with the clusters. In this Steiner tree 
problem, the aim is to find the tree maximizing the 
revenue, i.e., the sum of the profits of the links in  pe  
spanned by the solution, and minimizing the sum of the 
costs of the clusters in the solution. On the one hand, we 

Ants start 
moving from 

terminal nodes  

Moving to the 
next node using 
a transition rule 

Local update 

Has only one 
ant remained 
to be merged? 

Global update 

Is termination 
condition true? 

Printing non-
dominated 

set 

End 

Non-dominate 
set update  

Preparing a 
new colony 

Start 
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would like to have solution spanning all links avoiding the 
loss of profit; but this can be too expensive in terms of the 
cost of the tree-structured network providing service to all 
clusters. Thus, there is a trade-off between the cost of the 
clusters being in the solution and the profit of the links by 
the solution.  
The three dimensional matrix of functions, sub-functions, 
and attributes are shown in Table 1. Note that the tables 
related to all the three attributes are configured and their 
arithmetic means are shown as the final functions, sub-
functions, and attribute comparison matrix.  
Our threshold value is considered to be 0.561 which is the 
mean of the data given in Table 1. Therefore, the 
thresholded matrix is shown in Table 2, and the 
corresponding network is configured as Fig. 6. 
 
Table 1 
The three dimensional comparison matrix for all the attributes 

Attributes B1 B2 B3 S1 S2 S3 S4 S5 S6 S7 

B1 0 0.59 0.58 0.6 0.53 0.66 0.46 0.52 0.48 0.46 
B2 - 0 0.46 0.36 0.46 0.63 0.86 0.58 0.43 0.43 

B3 - - 0 0.59 0.56 0.53 0.9 0.63 0.33 0.53 
S1 - - - 0 0.58 0.59 0.6 0.53 0.6 0.6 
S2 - - - - 0 0.36 0.43 0.43 0.7 0.83 
S3 - - - - - 0 0.63 0.6 0.63 0.58 
S4 - - - - - - 0 0.46 0.6 0.43 
S5 - - - - - - - 0 0.65 0.63 
S6 - - - - - - - - 0 0.63 
S7 - - - - - - - - - 0 

 
Table 2 
The thresholded comparison matrix for all the attributes 

Attributes B1 B2 B3 S1 S2 S3 S4 S5 S6 S7 

B1 0 1 1 1 0 1 0 0 0 0 
B2 - 0 0 0 0 1 1 1 0 0 
B3 - - 0 1 0 0 1 1 0 0 
S1 - - - 0 1 1 1 0 1 1 
S2 - - - - 0 0 0 0 1 1 
S3 - - - - - 0 1 1 1 1 
S4 - - - - - - 0 0 1 0 
S5 - - - - - - - 0 1 1 
S6 - - - - - - - - 0 1 
S7 - - - - - - - - - 0 

 
Fig. 6. The configured thresholded network 

Then, the leveling process (the zero th and the first steps 
of Algorithm 3) is performed and the leveled network is 
configured as Fig. 7. The clustered network (the second 
and the third steps of Algorithm 3) is shown in Fig. 8. 

 
Fig. 7. The configured leveled network 

 

 
Fig. 8. The configured clustered network (the second and the third steps 

of Algorithm 3) 
The cost vectors, the benefit matrix, customers total value 
matrix and the matrices ][],[ ijij    are 
obtained to be: 
C1=(150, 210, 180, 20, 30, 30, 50, 10, 20, 20), 
C2=(300, 450, 600, 70, 80, 50, 40, 20, 20, 20). 
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For level 1, using iteration 1 of the while loop in step 3 of 
Algorithm 3, we obtain: 
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Therefore, 1,1,1 726241  zzz  and 183 z  with other 
variables equal to zero. The configured network up to 
level 1 is shown in Fig. 9. 

 
Fig. 9. The configured clustered network for level 1 

The next iteration of Algorithm 3 for clustering is 
performed, and the purified network is obtained as Fig. 
10.   

 
Fig. 10. The configured clustered network 

After purifying the benefits, costs and customers total 
value for level 2, the final cost, benefit and customers 
total value matrices are formed as follows: 
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With respect to these matrices, the Steiner tree model is: 
This model is performed using MOACO in 500 iterations 
each having 60 ants in MATLAB 9 software. The Pareto 
solutions are obtained and shown in Table 3. Some of the 
Pareto solutions are shown in figures 12-16. Fig. 11 
shows the Pareto solutions in three-dimensional (cubic) 
space resulted from the three objective functions.   
In Fig. 11, X-axis shows cost and axes Y and Z are 
symmetry of benefit and customers’ total value, 
respectively. 
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Table 3 
 The Pareto solutions resulted from the three objective functions 

The number of the Pareto solution cost benefit customers total value 
1 1957 3143 5.83 
2 1890 2800 1.17 
3 1987 3227 6.55 
4 2187 899 9.32 
5 2187 3515 9.17 
6 1987 2307 6.63 
7 2067 3273 7.82 
8 2097 2167 8.63 
9 2157 3405 8.54 
10 2097 3383 8.54 
11 2077 3385 7.18 
12 2047 3275 6.55 
13 1920 2910 1.80 
14 1953 1902 3.88 
15 1953 3118 3.74 
16 1923 3008 3.11 
17 2187 3489 9.26 
18 2187 2299 9.31 
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Fig. 11. The Pareto solutions in three-dimensional (cubic) space resulted from the three objective functions 

 
 

1) The first Pareto optimal solution is 1920Y , 2910X  and 8.1X , with the optimal network as shown in 
Fig. 12. 

 
Fig. 12. The first Pareto optimal solution 

 
2) The second Pareto optimal solution is 1923Y , 3008X  and 11.3X , with the optimal network as shown 

in Fig. 13. 

 
Fig. 13. The second Pareto optimal solution 

 
3) The third Pareto optimal solution is 1957Y , 3143X  and 83.5X , with the optimal network as shown 

in Fig. 14. 
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Fig. 14. The third Pareto optimal solution 

 
 
4) The forth Pareto optimal solution is 2067Y , 3273X  and 82.7X , with the optimal network as shown 

in Fig. 15. 

 
Fig. 15. The forth Pareto optimal solution 

5) The final Pareto optimal solution is 2187Y , 899X  and 32.9X , with the optimal network as shown in 
Fig. 16. 

 
Fig. 16. The final Pareto optimal solution 

 
As shown in figures 12-16, the proposed method provides 
different products for producers and consumers having 
different benefits, costs and customers’ values. The 
numerical results imply the configuration of different 
products having various costs and customers’ values 
being based on customers’ views obtained from the web 
based system. The products themselves are the ones 
providing maximum benefits for the producers. The 
significant decision made in the proposed methodology is 
the trade off between the cost, benefit and customer’s 
value objectives which is based on customers’ views on 
adding features of products and producers’ views on 
configuration of beneficial features.     
  

5. Performance on Medium to Large Size Problems 

To evaluate the performance of the proposed MOACO, 
we developed 10 test problems in medium and large sizes 
with the number of nodes, edges and terminals as given in 
Table 4.  
To evaluate the performance of the proposed MOACO, 
two useful metrics in the literature were taken into 
account. These metrics are described below.  
• Quality Metric (QM): This metric was proposed by 
Schaffer (1985) and some other researchers.  It represents 
the number of Pareto-optimal solutions found by 
algorithm.  
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• Diversity Metric (DM): This  metric  was  applied  by  
Zitzler  et  al. (1999) and  was  used  to  measure  the  
spread  of  the  solutions  in  the final  obtained  Pareto  
solutions  set  found  by    algorithm.  This metric is 
calculated by 

1

max( , , ),
n

i i
i

D x y x y F


                                  (24) 

where  F  represents  the  set  of  obtained  Pareto  
solutions, x and y are  two  solution  vectors  of  Pareto  
frontier,  n  represents  the dimension  of  the  solution  
space  which  is  equal  to  the  number  of objective  
functions.  For  our  work  here,  n  is  equal  to  3. 

The computational results corresponding to these two 
performance metrics for medium to large size problems 
are presented in Tables 5-6. All test problems have 
executed 10 times and computational results are presented 
in Tables 5-6.  
Table 7 show that the computational time needed by 
MOACO. 
As shown in Tables 5 and 6, by increasing the problem 
sizes the number of Pareto solutions is also rises 
drastically showing the efficiency of the MOACO 
algorithm. Also, according to Table 7 the solutions are 
obtained in reasonable time.  

 
Table 4 
 Graph sizes 

 Test 1  Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 

V 8 12 15 17 18 20 23 30 35 40 

E 10 16 20 23 25 30 40 47 53 62 

N 3 4 5 6 7 8 9 14 15 15 

 
Table 5 
 Computational results for the quality metric 

Test performance Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

18 
18 
18 
18 
18 
18 
18 
18 
18 
18 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 

35  
33  
37  
35  
35  
34  
35  
36  
37  
35 

48 
45 
47 
46 
46 
47 
46 
45 
43 
48 

52  
52  
52  
50  
55  
52  
54  
52  
52  
53 

67 
69 
69 
68 
69 
67 
62 
59 
67 
62 

91  
84  
96  
87  
62  
93  
85  
74  
94  
72 

145  
132  
122  
149  
145  
118  
136  
134  
121  
116 

215 
195 
220 
203 
187 
211 
219 
220 
218 
184 

353  
310  
327  
278  
312  
351  
333  
275  
363 
298 

 
Table 6 
Computational results for the diversity metric 

Test performance Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

54.04 
54.04 
54.04 
54.04 
54.04 
54.04 
54.04 
54.04 
54.04 
54.04 

63.64 
63.64 
63.64 
63.64 
63.64 
63.64 
63.64 
63.64 
63.64 
63.64 

72.56 
72.56 
72.56 
72.56 
72.56 
72.56 
72.56 
72.56 
72.56 
72.56 

78.12 
78.12 
78.12 
78.12 
78.12 
78.12 
78.12 
78.12 
77.51 
78.12 

80.38 
80.38 
80.38 
80.38 
80.38 
80.38 
80.38 
80.38 
80.38 
80.38 

91.70 
91.70 
91.70 
91.70 
91.70 
91.70 
89.28 
89.28 
91.70 
89.28 

107.58 
105.90 
108.61 
107.58 
93.60 

107.58 
105.90 
99.36 

107.58 
105.90 

128.45 
128.45 
123.80 
128.45 
128.45 
120.62 
128.45 
128.45 
122.23 
123.80 

148.37 
145.60 
148.37 
148.37 
141.33 
147.41 
148.37 
148.37 
148.37 
146.50 

191.48 
184.71 
191.48 
184.71 
184.71 
191.48 
191.48 
188.39 
191.48 
185.26 

 
Table 7 
The mean values of computing times (seconds) for MOACO 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 

6 14 45 65 69 91 102 235 290 385 

 

6. Conclusions 

We proposed an ant colony optimization to determine 
value adding functionalities for convergent products. A 
collection of base functions and sub-functions configured 
the nodes of a web-based (digital) network representing  

 
 
 
functionalities. Each arc in the network was to be 
assigned as the link between two nodes. The aim was to 
find an optimal tree of functionalities in the network 
adding value to the product in the web environment. First, 
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a purification process was performed in the product 
network to assign the links among bases and sub-
functions. Then, numerical values as benefits and costs 
were determined for arcs and nodes, respectively, using 
leveling and clustering approaches. Finally, the Steiner 
tree methodology was adapted to a multi-objective model 
of the network to find the optimal tree determining the 
value adding sub-functions to bases in a convergent 
product. The numerical results can be used for the 
configuration of different products having various costs 
based on customer’s view obtained from the web based 
system.   
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