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Abstract 

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean 
parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior 
distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using various loss functions. 
We assumed uniform, Jeffreys, exponential, gamma and chi square distributions as prior distributions. The squared error loss function 
(SELF), entropy loss function (ELF), linex loss function (LLF) and precautionary loss function (PLF), are used as loss functions. We 
attempt to find out the best estimator for shift point under various priors and loss functions. The proposed Bayesian approach can be 
adapted to any similar problem for shift point detection. Simulation studies were done to investigate the performance of different loss 
functions. The results of simulation study denote that the Jeffrey prior distribution under PLF has the most accurate estimation of shift point 
for sample size of 20, and the gamma prior distribution under SELF has the most accurate estimation of shift point for sample size of 50. 
Key words:  Bayes estimators, shift point, inverse Gaussian distribution, loss function. 

1.  Introduction 

When the data set of individual observations is available, 
a control chart can be used to detect a shift in the 
parameters. A likelihood ratio test approach is used to 
determine changes in parameters. The likelihood ratio 
statistic is plotted for all possible shift point values, and 
an appropriate Upper Control Limit (UCL) is chosen. The 
location of the maximum test statistic value corresponds 
to the maximum likelihood location of one shift point 
(Sullivan & Woodall, 2000). 
Another approach for shift point detection is the Bayesian 
inference. Srivastava (2012) estimated shift point which 
occurs in any sequences of independent observations in 
Poisson model about statistical process control and 
computed the Bayes estimators under Asymmetric Loss 
Functions (ALF), Squared Error Loss Functions (SELF), 
Linex Loss Function (LLF), Precautionary Loss Function 
(PLF) and General Entropy Loss Function (GELF). He 
found that the asymmetric loss function was more 
appropriate.  Some of the loss functions like linex loss 
function (LLF) suggested and studied by Varian (1975) 
and Basu and Ebrahimi (1991), general entropy loss 
functions (GELF) proposed by Calabria and Pulcini 
(1996) and precautionary loss function (PLE) studied by 
Norstrom (1996), are employed in this article.  
 

 
 
 
 In this paper we estimated the shift point in shape 
parameter of inverse Gaussian distribution. The Bayesian 
approach is employed for change point estimation. 
Fallahnezhad, Rasti, and Abooie (2014) successfully 
applied Bayesian method for change point estimation in a 
sequence of exponential distribution. Kadilar and Karasoy 
(2007) presented another Bayes method for change point 
estimation. Marcos D’Angelo (2011) proposed a fault 
detection method in induction machine using a fuzzy-
Bayesian change point estimation approach. Other 
approaches of change point estimation are investigated by 
Keramatpour, Niaki, Khedmati, and Soleymanian (2012) 
and Khedmati and Niaki (2013). 
The definitions of various loss functions are given in 
Section 2. We present Likelihood, prior and posterior 
distributions for 1,2 under the assumption of different 
priors in Section 3.  The Bayes estimation of change point 
using different Priors under different loss functions is 
obtained in Section 4. The results of simulation studies 
are presented in Section 5. A summary of results comes in 
Section 6. Finally we conclude the paper in Section 7. 
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2. Loss Functions 

A loss function represents losses incurred when we 
estimate the parameter   by   (Naz Sindhu & Aslam, 
2013). A number of asymmetric loss functions are 
proposed for different applications. We use the following 
loss functions for the change point detection. 

2.1.   The squared error in loss function (SELF) 
In decision theory the loss criterion is specified in order to 
obtain a good estimator. The simplest form of the loss 
function is the squared error loss function (SELF) that 
assigns equal magnitudes to both positive and negative 
errors. The squared error loss function (SELF) is one of 
the most widely used loss functions in decision theory. 
The wide application of this symmetric loss function is 
due to its mathematical convenience. However, as this 
loss function is symmetric, it fails to consider the 
differences between overestimation and underestimation 
of any parameter, thus this loss function may be 
inappropriate in most of the estimation problems. 
Sometimes overestimation leads to many serious 
consequences. The introduction of the asymmetric linex 
loss function (LLF) by Varian (1975) has led to an 
increased discussion against the appropriateness of the 
SELF.  
The symmetric square-error loss is widely employed in 
inference and it is defined as follows (Schroeder, 2011).  

2( , ) ( )    L                                                           (1) 
 The SELF is also often used because it does not lead to 
extensive numerical computation (Rao & Pandey, 2009). 
Pandey and Roa (2009) estimated the shape parameter of 
a generalized Pareto distribution under asymmetric loss 
function. The Bayes estimator of   under SELF is: 

Self ( )  E                                                                     (2) 

2.2.   The general entropy loss function (GELF) 
The Entropy Loss Function has been applied in estimation 
of parameters but its standard Mean Square Error of 
estimation is large (Schroeder, 2011). The entropy loss 
was first introduced in James and Stein (1961) for 
estimation of the multinomial variance-covariance matrix 
(Parsian & Nematollahi, 1996). Pulcini and Calabria 
(1996) suggested the general entropy loss function 
(GELF) for estimation of parameters which can be 
defined as: 

( , ) {( ) ln( ) 1}, 0
 

 
 

   
GELF

pL p p                         (3) 

This loss function has a minimum at point  . This 
loss is a general form of the entropy loss function that has 
been used by several authors choosing the shape 
parameter 1p  . This general version allows different 
shapes of loss function 0p   for example when an 
overestimation causes worse consequences than an 

underestimation (Parsian & Nematollahi, 1996). The 
Bayes estimator of   under the general entropy loss is:  

( )

1

[ ( )]


 


GELF
x

p pE                                                         (4) 

2.3.   The Linex loss function (LLF) 
The linex loss function is suitable for the estimation of the 
location parameter but not for the estimation of the scale 
parameter and other parametric functions (Dey, 2012). A 
number of asymmetric loss functions have been proposed 
for applications but one of the most popular one is the 
linex (linear-exponential) loss function (LLF). This loss 
function which was introduced by Varian (1975), and 
several others including Basu and Ebrahimi (1991), Rojo 
(1987), Sultan, Ellah, and Soliman (2006) and Soliman 
(2002), have applied this method in different estimations 
and prediction problems (Dey, 2012). 
This loss function is convex and its shape is determined 
by the value of its shape parameter. The positive 
(negative) values of the shape parameter, gives more 
weight to underestimation (overestimation) (Prakash, 
2013). Srivastava and Tanna (2001), Xu and Shi (2004), 
Prakash and Singh (2006), Singh, Prakash, and Singh 
(2007), Prakash and Singh (2008) and others have 
recently discussed the estimation procedures under LLF 
(Prakash, 2013). Under the assumption in which the 
minimal loss occurs at  , the Linex loss function for 

( , )LinexL   can be expressed as 
* * *( , ) {exp( ( )) ( ) 1}, 0          LinexL c c c              (5) 

Under the Linex loss function, the Bayes estimator is 
defined as (Prakash, 2013): 

*
Linex

*

1
ln{ (exp( ))} 


 E c

c
                                         (6) 

Basu and Ebrahimi (1991) considered the linex (linear-
exponential) loss function and studied Bayesian 
estimation under this asymmetric loss function for an 
exponential lifetime distribution. This loss function is 
suitable for situations where overestimation of    is 
worse than its underestimation (Pandey& Rao, 2009). 
Here *c  represents the shape parameter of the loss 
function. The behavior of the LINEX loss function 
changes with the choice of *c .  

2.4. The precautionary loss function (PLF) 
Norstrom (1996) introduced an alternative asymmetric 
precautionary loss function, and also presented a general 
class of precautionary loss functions as a special case 
(Norstrom, 1996). These loss functions prevent 
underestimation. These estimators are very useful when 
underestimation may lead to the worst consequences. 
Precautionary loss function is defined as follows (Pandey 
& Rao, 2009): 
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2( )
( , )

 
 




L                                                          (7) 

The Bayes estimator of   under the precautionary loss 
function is:  

( )

1
2 2[ ( )]xPLF E                                                      (8)  

It should be also noted that estimation with PLF is equal 
to the Bayes estimator under the general entropy loss 
function (GELF) when the GELF (shape) parameter p  is 
equal to -2.                                                                        

3. Likelihood Function, Posterior Distributions for 

21 ,   under the Assumption of Different Priors 

Let 1 2, ,..., , ( 3)nx x x n   be a sequence of observation 
that comes from an inverse Gaussian distribution with 
probability density function defined as follows: 

   
1 2
2

3 2; exp
2 2

x
f x

x x
 


 

      
    

             (9) 

Where 0    is the mean and 0  is the shape 
parameter. As   tends to infinity, the inverse Gaussian 
distribution becomes more similar to a normal (Gaussian) 
distribution.  
Let m be the change point in shape parameter of the 
inverse Gaussian distribution that leads to the event that 
two sequences 1 2, ,..., mx x x  and  1 2, ,...,m m nx x x

 
 

have different shape parameters. The probability density 
function of the sequence 1 2, ,..., mx x x  is obtained as 
follows: 

   1

1

1 2
2 11

1 3 2; exp
2 2

x
f x

x x









      
    

        (10)  

where 1 0  , 1 0  , 0x  . Also the probability 

density function of the sequence 1 2, ,...,m m nx x x
 

 is as 
follows: 

   2

2

1 2
2 22

2 3 2; exp
2 2

x
f x

x x









      
    

 ;

2 0  , 2 0  , 0x                                               (11) 

The likelihood functions of the sequences are obtained as 
follows: 

 

 1

1

2
1

1 3
1 2

2

1 2
1

1
,

2

exp
2





















 
   
      

 
 
 
  





m
m

i
i

m
i

i i

L m x
x

x
x

; 

 1 2, ,..., mx x x x                                                      (12) 

 

 2

2

2

2 2
1

2
2

2 3
1 2

exp
2

1,
2

n
i

i m i

n m
n

i m
i

x
x

L m x
x









 



 

 
   
      

 
 
 
  






;  

1,...,m nx x x                                                          (13) 
We note that the means 1  and 2  are known (and 
possibly different). The posterior distributions under the 
assumption of uniform, Jeffreys, exponential, gamma and 
chi-square priors are presented in the next sections.  

3.1. The uniform prior 
The uniform prior is assumed to be: 

 1 1p                                                                      (14) 

 2 1p                                                                     (15) 
The posterior distribution under the assumption of the 
uniform prior is: 

   2
12 11 1 2

1 1

exp
2

m m
i

i i

x
p x

x


  


 
  

  
   

1 0                                                          (16) 

   2

2

2

2
2 2 2 2

1

exp
2

n m n
i

i m i

x
p x

x



  



 

 
  

  
 ; 

2 0                                                                           (17)  

3.2. The Jeffreys prior  
 
The Jeffreys prior is defined as: 

   1 1
1

1p I 


                                             (18) 

   2 2
2

1p I 


                                           (19) 

 
The posterior distribution under the Jeffreys prior is: 
 

Journal of Optimization in Industrial Engineering 18 (2015) 1-12

3



 
 

   2
1 1

21 1 1 2
11

exp
2

m m
i

i i

x
p x

x


  






 
  

  
 ;   

1 0                                                                           (20) 

   2

2

2
1

22 2 2 2
1

exp
2

n m n
i

i m i

x
p x

x



  




 

 
  

  
 ;   

2 0                                                                           (21)  
 

3.3. The exponential prior  
The exponential prior is assumed to be: 
  

 1 1 1exp( )p k     1, 0  , 1 0k             (22)
   

 2 2 2exp( )p k      2, 0  , 2 0k              (23) 
   
Where 1 2,k k are considered as the parameters of the 
exponential distribution. The posterior distribution under 
the assumption of exponential prior is: 
 

   1

1

2

2 11 1 1 2
1

exp
2

m m
i

i i

x
p x k

x



  



       
    

 ;  

1 0                                                                            (24)   

   2

2

2

2 22 2 2 2
1

exp
2




  



 


  

   
  

    


n m n
i

i m i

x
p x k

x
;

2 0                                                                          (25) 
 

3.4. The gamma prior  
The gamma prior is assumed to be: 

  1 1 11
1 1

a bp e     ; 1 0  , 1 1, 0a b                     (26) 

  2 2 21
2 2

a bp e     ; 2 0  , 2 2, 0a b 
 
              (27) 

Where 1 1 2 2,, ,a b a b and are parameters of gamma 
distribution. The posterior distribution under the 
assumption of the gamma prior is: 
 

   1 1

1

1

2
1

2
1 1 1 2

1

exp
2




  

 




  

   
  

    


m ma
i

i i

x
p x b

x
; 

1 0                                                                            (28) 

   2 2

2

2

2
1

2
2 2 2 2

1

exp
2




  


 
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
  

   
  

    


n m na
i

i m i

x
p x b

x

; 2 0                                                                          (29) 
 

3.5. The chi-square prior  
The general chi-square prior is assumed to be: 

   
1 11

2 2
1 1

h

p e


 
 

 ; 1 0  ; 1 0h                         (30) 
 

 
2 21
2 2

2 2

h

p e


 
 

 ; 2 0  ; 2 0h                        (31) 

Where 1 2,h h are taken as the parameters of chi-square 
distribution. The posterior distribution under the chi-
square prior is: 
 

   1
1

1

2
1

2 2
1 1 1 2

1

1exp
2 2

m h m
i

i i

x
p x

x



  

 



       
    



; 1 0                                                                         (32) 

   2

2

2

2
1

2 2
2 2 2 2

1

1
exp

2 2



  


 

 


  

   
  

    


n m h n
i

i m i

x
p x

x

 ; 2 0 

                                               

                       (33)

 

 

4. Estimation of change point with Bayesian Inference 

4.1. Uniform prior 
We take the marginal prior distribution of m  discrete 
uniform over the set {1,  2,  3 &  ( -1)}. n Therefore, the 

Joint probability distribution function of 1 2, , m  for 
uniform prior is obtained as equation (34). 
The marginal distribution function of m  is denoted by 

( )P m x  that is obtained as equation (35). 
Therefore, the equation (36) is obtained: 

 

               1 2 1 2 1 2 1 2 1 2

2 2
/2 1 22

1 1 2 22 2
1 11 2

( , , ) ( , , ) , ,

( ) ( )exp( ) exp( )
2 2

         

    
 



  

 

    
n mm n

m i i

i i mi i

f m x L m x p p p m L m x L m x p p p m

x x
x x

    (34) 

1 2 1 2( ) ( , , )P m x f m d d                                                                                                                                       (35) 
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1 11 2

2 21 11 1 22 2
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1 11 2

( 1) ( 1)
2 2.

( ) ( )( ) ( )
2 2( )

( 1) ( 1)
2 2( . )
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m n mm n
i i

i i mi i

n

k n kk n
k i i

i i ki i

m n m

x x
x xP m x k n k

x x
x x

 
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 
 


 

  


 

  


   

 




   

 

 


 

                                                                                 (36) 

Srivastava (2012) estimated the shift point under different 
loss functions in sequences of Poisson distribution. The 
Bayes estimate of m under SELF is given as: 

1
*

1
( ) ( )

n

m
m E m mP m x





                                   (37) 

And the Bayes estimation of m under PLF is given as:  

11
* 2 2

1
( ( ))

n

i
m m P m x





                                            (38) 

Also the Bayes estimation of m under GELF is given as: 
  

11
*

1
( ( ))

n
p p

m
m m P m x

 




                                       (39) 

Where p is the shape parameter that is assumed to be 
equal one. The Bayes estimation of m under LLF is 
given as  

1
*

1

1 ( ( ))
n

cm

m
m Ln e P m x

c






                                (40) 

Where c is the shape parameter that is assumed to be 
equal one. 

4.2. Jeffrey prior 

The Joint probability distribution function of 1 2,  , m  
for Jeffrey prior is given as: 

1
2

1 2 1

2 1
1 2

1 22
1 1

2
2

2 2
1 2

( , , )

( )exp( )
2

( )exp( )
2

  
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










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











m

n mm
i

i i

n
i

i m i

f m

x
x

x
x

                             (41) 

The marginal distribution function of shift point m  is 
obtained as: 

1 2 1 2( ) ( , , )P m x f m d d                            (42) 

 Therefore equation (43) is as following. 

Now the estimation of the shift point under different loss 
functions can be obtained. 

4.3. Exponential prior 

The Joint probability distribution function of 1 2,  , m  
for exponential prior is given as: 
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The marginal distribution function of shift point m  is: 

1 2 1 2( ) ( , , )P m x f m d d                                                                                                                                       (45) 
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Now the estimation of the shift point under different loss functions can be obtained. 

4.4. Gamma prior  

The Joint probability distribution function of 1 2,  , m for gamma prior is given as: 
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The marginal distribution function of shift point m  is: 

1 2 1 2( ) ( , , )P m x f m d d                                                                                                                                     (48) 
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                                                                (49) 

Now the estimation of the shift point under different loss functions can be obtained. 
 

4.5. Chi-square prior  

The Joint probability distribution function of 1 2,  , m  for gamma prior is given as: 
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The marginal distribution function of shift point m  is: 

1 2 1 2( ) ( , , )P m x f m d d                                                                                                                                       (51) 

 Hence, 
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                                                                 (52) 

Now the estimation of the shift point under different loss 
functions can be obtained. 

5. Simulation Study      

In this section, we present simulation studies of change 
point estimation under different priors and different loss 
functions. To find out the optimum estimator, we test 
various values for parameters of prior distribution and 
also different sample size. Data generation for simulation 
is performed in 'Matlab' software. A sensitivity analysis is 
performed on the parameters of priors. The simulation 
results for 100 runs are presented in the following Tables. 
The numbers in parenthesis are MSE of estimations. As it 
can be seen in the following Tables, the standard 

deviation of estimations is equal to
10

MSE MSE
n

 and 

its value is sufficiently small thus gathering data from 100 
runs is sufficient. 

5.1. Uniform prior distribution 
The results for uniform prior distribution are presented in 
Table 1. As it can be seen in the results, the performance 
of different loss functions is not similar to each other, 
where PLF has the best performance in determining the 
shift point for sample size of 20 and SELF has the best 

performance in determining the shift point for sample size 
of 50. 

5.2. Jeffrey prior distribution 
The results for Jeffrey prior distribution are presented in 
Table 2. It is concluded that PLF has the best performance 
in determining the shift point for sample size of 20 and 
SELF has the best performance in determining the shift 
point for sample size of 50.   

5.3. Exponential prior distribution 
We performed the sensitivity analysis on parameters of 
prior exponential distribution for determining the best set 
of the parameters. Table 3 shows the Bayes estimation 
under exponential prior with parameters k1=k2= 0.1 using 
different loss functions. As it can be seen in Table3, PLF 
has the best performance in determining the shift point for 
sample size of 20 and SELF has the best performance in 
determining the shift point for sample size of 50. 
We changed the parameters of exponential prior 
distribution to investigate their effects. Table 5.3.2 shows 
Bayes estimation under exponential prior with parameters 
k1=k2= 0.5 using different loss functions. As it can be 
seen in Table 4, PLF has the best performance in 
determining the shift point for sample size of 20 and 
SELF has the best performance in determining the shift 
point for sample size of 50. 
 

 
Table 1 
 Bayes estimation under uniform prior using different loss functions 

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 7.8740 (5.2258) 10.6135 (3.6594) 6.7312 (39.7182) 2.0819 (8.9509) 
50 23 18.5296 (11.1499) 27.5037 (11.1433) 4.9607 (32.5563) 1.7851 (21.2273) 

 
Table 2 
Bayes estimation under Jeffrey prior using different loss functions 

Sample size Shift point Shift point Estimation(λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 7.9208 (4.5403) 11.0745 (3.3585) 2.1376 (8.9472) 1.7648 (9.2439) 
50 23 18.7110 (10.1495) 28.0427 (10.8908) 1.9617 (21.0606) 1.6294 (21.3743) 

 
Table 3 
Bayes estimation under exponential prior using different loss function (k1=k2= 0.1) 

Sample size Shift point Shift point Estimation(λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 8.0289 (4.9402) 10.8367 (3.3874) 2.9364 (8.6081) 2.0424 (8.9760) 
50 23 18.6585 (10.9333) 27.7050 (11.0221) 3.3549 (22.6877) 1.7757 (21.2344) 
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In this case, we increased the parameters of exponential 
prior distribution. Table 5 shows Bayes estimation under 
exponential prior with parameters k1=k2=1 using different 
loss functions. It can be seen that PLF has the best 
performance in determining the shift point for sample size 
of 20 and SELF has the best performance in determining 
the shift point for sample size of 50. 
Table 6 shows Bayes estimation under exponential prior 
with parameters k1=k2=2 using different loss functions. 
As it can be seen in Table6, PLF has the best performance 
in determining the shift point for sample size of 20 and 
SELF has the best performance in determining the shift 
point for sample size of 50. 
With changing the parameters of exponential prior 
distribution, it is concluded that the performance of 
different prior exponential distributions are relatively 
similar to each other. Table 7 shows the total results for 
Bayes estimation of the change point under exponential 
prior with different parameters using different loss 
functions. It is observed from Table 7 that when 
k1=k2=0.1 then the PLF has the best estimation of shift 

point in sample size of 20 and the SELF has the best 
estimation of shift point in sample size of 50 when 
parameters of exponential prior distribution are k1=k2=2. 

5.4. Gamma prior distribution 
The results for gamma prior distribution are presented in 
the following Tables. The values of 
(a1,b1)=(a2,b2)=(0.1,0.1) are assumed as the parameters of 
gamma prior distribution .As it  can be seen in Table 
5.4.1, PLF has the best performance in determining the 
shift point for sample size of 20, SELF has best 
performance in determining the shift point for sample size 
of 50.  
Table 9 shows the Bayes estimation for gamma prior 
distribution with parameters (a1,b1)=(a2,b2)=(0.1,0.5). As 
you can see, PLF has the best performance in determining 
the shift point for sample size of 20 and SELF has the best 
performance in determining the shift point for sample size 
of 50.  
 

Table 4 
Bayes estimation under exponential prior using different loss functions (k1=k2= 0.5) 

Sample size Shift point Shift point Estimation(λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 8.9500 (3.7844) 11.8696 (2.5104) 2.8373 (8.3953) 2.0756 (8.9371) 
50 23 20.8482 (9.0507) 30.3078 (10.6490) 2.4079 (20.6445) 1.8353 (21.1694) 

Table 5 
Bayes estimation under exponential prior using different loss functions (k1=k2=1 ) 

Sample size Shift point Shift point Estimation(λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 9.1875 (3.1130) 12.1584 (2.1712) 2.6231 (8.4389) 2.0633 (8.9435) 
50 23 21.1736(7.8341) 30.8171 (10.2883) 2.2481 (20.7696) 1.8093 (21.1938) 

Table 6 
Bayes estimation under exponential prior using different loss functions (k1=k2=2) 

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 9.2407 (2.6626) 12.2459 (1.9424) 2.4956 (8.5260) 2.0421 (8.9618) 
50 23 21.8979 (6.7887) 31.5718 (10.3479) 0.0022 (0.0021) 1.8142 (21.1880) 

Table 7 
The loss functions with the best performances for exponential prior 

No. of Table Sample size Loss function Parameters of prior distribution 
 20 50 For sample size=20 For sample size=50  

6.3.1 10.8367 18.6585 PLF SELF k1=k2=0.1 
6.3.2 11.8696 20.8482 PLF SELF k1=k2=0.5 
6.3.3 12.1584 21.1736 PLF SELF k1=k2=1 
6.3.4 12.2459 21.8979 PLF SELF k1=k2=2 

 
Table 8 
Bayes estimation under gamma prior using different loss functions ((a1,b1)=(a2,b2)=(0.1,0.1)) 

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 8.0494 (4.3626) 11.2081 (3.1512) 2.1104 (8.9181) 1.7871 (8.9760) 
50 23 18.8050 (10.0230) 28.1687 (10.7884) 1.9850 (21.0370) 1.6439 (21.2344) 

Table 9 
Bayes estimation under gamma prior using different loss functions ((a1,b1)=(a2,b2)=(0.1,0.5)) 

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 8.9091 (2.9830) 12.2130 (2.1373) 2.1675 (8.8521) 1.8390 (8.9371) 
50 23 21.0094 (7.9488) 30.7143 (10.4827) 2.0679 (20.9528) 1.7101 (21.1694) 
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Table 10 shows the Bayes estimation for gamma prior 
distribution with parameters (a1,b1)=(a2,b2)=(0.1,1). As it 
is shown, PLF has the best performance in determining 
the shift point for sample size 20 and SELF has the best 
performance in determining the shift point for sample size 
of 50. 
Table 11 shows the Bayes estimation for gamma prior 
distribution with parameters (a1,b1)=(a2,b2)=(0.1,2). PLF 
has the best performance in determining the shift point for 
sample size of 20 and SELF has the best performance in 
determining the shift point for sample size of 50.  
Table 12 shows the summarized results for Bayes 
estimation of the change points under gamma prior using 
different loss functions. It is seen that when 
(a1,b1)=(a2,b2)=(0.1,0.1) then PLF has the best 
performance to estimate the change points based on the 
sample size of 20 and the SELF is the best estimator for 
shift point in sample size of 50 when parameters 
(a1,b1)=(a2,b2)=(0.1,2) are assumed for gamma prior 
distribution. 

5.5. Chi-square prior distribution 
The results for chi-square prior distribution are presented 
in the following Tables. The values of h1=h2=0.1 are 
assumed as the parameters of chi-square prior 
distribution.  As it comes in Table 13, PLF has the best 
performance in determining the shift point for sample size 
of 20; also PLF has the best performance in determining 
the shift point for sample size of 50.  
We changed the parameters of chi-square prior 
distribution to determine the best estimator. Table 14 
shows Bayes estimation under chi-square prior with 
parameters h1=h2=0.5 using different loss functions. As 
you can see in Table14, PLF has the best performance in 
determining the shift point for sample size of 20 and the 
sample size of 50. 
 
 
 

 
Table 10 
Bayes estimation under gamma prior using different loss functions ((a1,b1)=(a2,b2)=(0.1,1)) 

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 9.1603 (2.4919) 12.4642 (1.9924) 2.1450 (8.8650) 1.8455 (8.9435) 
50 23 21.3193 (6.9787) 31.1537 (10.2412) 1.9973 (21.0089) 1.6998 (21.1938) 

 
Table 11 
Bayes estimation under gamma prior using different loss functions ((a1,b1)=(a2,b2)=(0.1,2)) 

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 9.2024 (2.3488) 12.5068 (1.9506) 2.1160 (8.8898) 1.8386 (8.9618) 
50 23 22.0313 (5.9906) 31.8620 (10.3783) 0.0020 (0.0021) 1.7125 (21.1880) 

 
Table 12 
The loss functions with the best performances for gamma prior 

No.  of Table Sample size Loss function Parameters of prior distribution 
 20 50 For sample size=20 For sample size=50  

6.41 11.2081 18.8050 PLF SELF (a1,b1)=(a2,b2)=(0.1,0.1) 
6.4.2 12.2130 20.8482 PLF SELF (a1,b1)=(a2,b2)=(0.1,0.5) 
6.4.3 12.4642 21.3193 PLF SELF (a1,b1)=(a2,b2)=(0.1, 1) 
6.4.4 12.5068 22.0313 PLF SELF (a1,b1)=(a2,b2)=(0.1,2) 

 
Table 13 
Bayes estimation under chi-square prior using different loss functions (h1=h2=0.1) 

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 6.7320 (4.9917) 10.3960 (2.6122) 2.6178 (8.4071) 2.0200 (8.9847) 
50 23 11.1175 (12.9614) 21.8358 (6.9127) 3.3991 ()19.6396 2.1976 (20.8057) 

 
Table 14 
 Bayes estimation under chi-square prior using different loss functions (h1=h2=0.5)    

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 7.8749 (3.8935) 11.3940 (1.9534) 2.6090 (8.4398) 2.0163 (8.9902) 
50 23 15.7367 (9.6295) 26.4884 (7.3439) 2.8427 (20.1939) 2.0286 (20.9744) 
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Table 15 shows Bayes estimation under chi-square prior 
with parameters h1=h2=1 using different loss functions. 
As you can see in Table15, PLF has the best performance 
in determining the shift point for sample size of 20 and 
SELF has the best performance in determining the shift 
point for sample size of 50. 
Table 16 shows Bayes estimation under chi-square prior 
with parameters of h1=h2=2 using different loss functions. 
As it can be seen in this Table, SELF has the best 
performance in determining the shift point for sample size 
of 20 and 50. 
Table 17 shows the summarized results for Bayes 
estimation of the change point under chi-square prior 
using different loss functions. It can be concluded that 
when h1=h2=2 the SELF comes up with the best 
estimation for shift point in sample size of 20 and the PLF 
has best performance to estimate the shift point in sample 
size of 50 when parameter h1=h2=0.1 are assumed for the 
chi-square prior distribution. 

6. Results 

The summarized results of simulation studies for all prior 
distributions and loss functions SELF, PLF, GELF and 
LLF have been shown in Table18, based on which, the 
following conclusions are made:  

1. For sample size of 20, the Jeffrey prior distribution 
under PLF is the most accurate shift point estimator. 

2. For sample size of 50, the gamma prior distribution 
under SELF is the most accurate shift point estimator 
when the parameters of prior distribution are 
(a1,b1)=(a2,b2)=(0.1,2). 

3. Also it is shown that the loss function GELF and LLF 
do not estimate the shift point accurately therefore 
they are not useful to be applied in the problem of 
change point detection for shape parameter of the 
Inverse Gaussian distribution. 

 
 

Table 15 
Bayes estimation under chi-square prior using different loss functions (h1=h2=1) 

Sample size Shift point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 
  SELF PLF GELF LLF 

20 11 8.9189 (3.2913) 12.0543 (2.2497) 2.4295 (8.6289) 1.9500 (9.0575) 
50 23 20.8036 (8.0622) 30.4853 (10.3188) 2.1401 (20.8753) 1.7519 (21.2510) 

 
Table 16 
Bayes estimation under chi-square prior using different loss functions (h1=h2=2) 

Sample 
size 

Shift 
point Shift point Estimation (λ1 =5 , λ2 = 20, µ1= µ2=1) 

  SELF PLF GELF LLF 
20 11 11.2311 (3.7655) 13.2292 (3.4885) 2.0139 (9.0239) 1.7652 (9.2461) 
50 23 37.7769 (20.7037) 40.8602 (20.5257) 0.0014 (0.0022) 1.2198 (21.7852) 

 
Table 17 
The loss functions with the best performances for the chi-square prior 

No. of tables Sample size Loss function Parameters of prior distribution 
 20 50 For sample size=20 For sample size=50  

6.5.1 10.3960 21.8358 PLF PLF h1=h2=0.1 
6.5.2 11.3940 26.4884 PLF PLF h1=h2=0.5 
6.5.3 12.0543 20.8036 PLF SELF h1=h2=1 
6.5.4 11.2311 37.7769 SELF SELF h1=h2=2 

 
 

Table18 
The prior distribution functions with the best performances  

Prior 
distribution 

Sample size Loss function Parameters of prior distribution 

20 50 For sample 
size=20 

For sample 
size=50 For sample size=20 For sample size=50 

uniform 10.6135 18.5296 PLF SELF - - 
Jeffrey 11.0745 18.7110 PLF SELF - - 

exponential 10.8367 21.8979 PLF SELF k1=k2=0.1 k1=k2=2 
gamma 11.2081 22.0313 PLF SELF (a1,b1)=(a2,b2)=(0.1,0.1) (a1,b1)=(a2,b2)=(0.1,2) 

Chi-square 11.2311 21.8358 SELF PLF h1=h2=2 h1=h2=0.1 
 

6.1 Discussion 
In the Bayes estimation of an integer valued parameter, 
such as the shift point m  , the loss function must be 
defined only for integer values both for the possible point 
estimator and for the unknown value of the parameter: 

,   1, 2,..., -1m m n . Indeed, as written in the book of 
Martz and Waller (1982) “in the case of Bayesian point 
estimation, the action space A consists of the possible 
point estimates of the parameter and thus is a subset of the 
parameter space”. As a consequence, the posterior 
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expected loss  ( , )E L m m is not a continuous function 

and is not differentiable. For example, the SELF relative 
to m  is no longer a real valued function, but is given 

by: 2( , )  (  -  )  ,    , 1, 2,..., -1L m m m m m m n 
. Then, the Bayes estimator of m  under the SELF is no 
longer the posterior mean. Generally, the Bayes estimator 
of m  under any error loss function should be obtained by 
numerically minimizing the corresponding posterior 
expected loss which is, in its turn, defined only for integer 
values of the possible point estimator. As a consequence, 
all the Bayes estimates in Equations (4.1.4)-(4.1.7) seem 
to be not acceptable. A simple way to obtain the Bayes 
estimate of m  under a given (integer-valued) loss 
function is to treat initially m  as a continuous (real-
valued) parameter and to obtain the (real) value of m , 
say *m  , that minimizes the continuous expected loss. 
Then, the Bayes estimate of the shift point, m  is given 
by the integer part of *m  or of * 1m  , depending on 
which of them provides the smaller posterior expected 
loss. 

Also it is seen that the range of investigation in this paper 
is very limited and the parameters of the loss functions are 
not analyzed. It is necessary to mention that selection of 
optimal parameters for loss functions depends on the 
application, and optimality in general case is meaningless. 
We have shown that parameter of prior distribution 
affects the final results and also a method for determining 
the optimal prior along with optimal loss function has 
been proposed.  Moreover, comparing the statistical 
performances of the Bayes estimators of a quantity of 
interest under different loss functions has no sense. 
Indeed, the loss function should not be chosen on the 
basis of its statistical performances, but on the basis of 
costs considerations, that is, on the basis of the effect of 
over-estimating or under-estimating the quantity of 
interest. For example, if over-estimation produces more 
serious consequences than underestimation, the SELF 
should not be chosen, whereas the General Entropy loss 
function with positive shape parameter is a suitable 
choice. Likewise, the prior distribution should be selected 
depending on the prior information available to the 
analyst, and not on the basis of its statistical 
performances. 

7. Conclusion 

In this paper we estimated the shift point in sequences of 
inverse Gaussian distribution with Bayesian analysis 
under various loss functions. Presented Bayesian 
inference is based on the different prior distributions 
including uniform, Jeffrey, exponential, gamma and chi-
square under various loss functions including SELF, ELF, 
LLF, and PLF. First the posterior distribution of the shape 
parameter was obtained using Bayesian Inference. Then 

the Bayes estimators were derived along with mean 
standard error of estimations. Simulation studies were 
performed to investigate the performance of different loss 
functions. We tried to find out the best estimator for shift 
point when different sample sizes were available. The 
results showed that the sample size was important in 
superiority of each loss function. The results of simulation 
study denoted that the Jeffrey prior distribution under PLF 
was the most accurate change point estimator for sample 
size of 20, and the gamma prior distribution under SELF 
was the most accurate change point estimator for sample 
size of 50. 
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