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Abstract 

In this paper we present the problem of designing a three level hub center network. In our network, the top level consists of a complete 
network where a direct link is between all central hubs.  The second and third levels consist of star networks that connect the hubs to 
central hubs and the demand nodes to hubs and thus to central hubs, respectively. We model this problem in an incomplete network 
environment. In this case, the top level is an incomplete network where the direct link between all central hubs is not necessary and may 
lead to lower transportation costs. We propose mixed integer programming model for these problems and conduct a computational study 
for these two developed models by using the CAB data. 
Keywords: Hub Location, Hub Center, Hierarchical, Complete and Incomplete Network.  

1. Introduction 

Hubs are facilities  used to consolidate and disseminate 
flow and serve as points for switching, transshipment and 
sorting flows in many-to-many distribution systems. In 
practice, the use of hubs can result in lower network costs, 
but it can be shifting to determine where hubs should be 
located or how demands should be allocated to them. 
In a particular hub location problem the objective is to 
determine locations of hubs and also assigning other 
nodes to these hubs with minimum distribution costs. Hub 
location problems have many applications, including 
telecommunications, airlines, delivery services, postal, 
emergency services and many others. The hub location 
problem deals with finding the location of hub facilities 
and the allocation of the non-hub nodes to them. 
Consolidation is a major privilege of using hubs since 
flows with same source and different destinations can be 
combined on their route to hub nodes and also flows with 
different sources and same destination can be combined 
from hub nodes to their destination which yields a 
significant reduction of transportation costs. 
There are two types of hub networks problems. Single 
allocation is the first type in which every demand node is 
connected to only one hub and all the incoming or 
outgoing flow is routed through that single hub. Multi 
allocation is the second type which allows demand nodes 
to be connected to a set of hub nodes and send or receive 
traffic flows from this set. 
 

 
 
 
 
The hub location problems have been introduced by 
O’Kelly (1986, 1987). The hub problems discussed in the 
literature are typically p-hub median and p-hub center and 
p-hub covering problems. The p-hub center problem is to 
locate p hubs in a network and to allocate non-hub nodes 
to hub nodes so that the maximum travel distance (or 
time) between any source–destination pair is minimized. 
P-hub center problem with single assignment was 
introduced by Campbell (1994). Campbell defined three 
different types of p-hub center problems. The first type : 
the maximum cost for any source–destination pair is 
minimized. The second type: the maximum cost of 
movement between a hub and an origin-destination is 
minimized  
The third type: the maximum cost for move on any single 
link (source to hub, hub to hub and hub to destination) is 
minimized.  
The p-hub center problem is important for guaranteed 
time or time-sensitive distribution systems, such as 
emergency services and express mail services. 
Applications of the three types are as follows: 
The first type of hub center problem is significant for a 
hub system involving perishable or time sensitive items in 
which cost refers to time. The second and third types are 
significant for the vehicle drivers that are subject to a time 
limit on continuous service or a hub system requires some 
preserving-processing such as cooling or heating which is 
available at the hub locations.  * Corresponding author E-mail: Alireza.arshadikhamseh@gmail.com 
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The p-hub center location problem is NP-complete, for 
this reason many algorithms for the p-hub center location 
problem iteratively select hubs, and then solve the 
resulting allocation problem. Thus, beneficial methods for 
solving the allocation problem can be useful as part of 
solving the p-hub center location problem. Since 
Campbell’s pioneering work, a lot of researchers 
developed the idea to many other structures and 
applications. Kara and Tansel (2000) developed various 
linear formulations for the single allocation p-hub center 
problem. They also provided a combinatorial formulation 
of the single allocation p-hub center problem. Ernst et al. 
(2002) considered a new formulation for the single 
allocation p-hub center problem. Baumgartner (2003) 
inquired the polyhedral properties of the formulation and 
identified some facet-defining inequalities and defined 

separation procedures and finally proposed a branch-and-
cut algorithm. Hamacher and Meyer (2006) proposed 
solving hub covering problems with binary search for the 
solution of the p-hub center problem. Pamuk and Sepil 
(2001) proposed first heuristic for the single allocation p-
hub center problem. Ernst et al. (2002) studied the 
allocation sub problem of the single allocation p-hub 
center problem when hub locations are fixed. Campbell et 
al. (2007) presented various complexity results and 
provided integer programming formulations for both 
incapacitated and capacitated cases. Gavriliouk and 
Hamacher (2006) applied aggregation to various hub 
location models and proposed some error measurements 
and developed error bounds for these models. 
Additional information was introduced by Alumur et al. 
(2008).

 

 
Fig. 1. A three level complete network on 25 nodes with 7 hubs and 4 central hubs 

 

Elmastas (2006) considered a three-level network. The 
top level that connects hub airports is a star, the second 
level that connects hubs among themselves and to hub 
airports has a mesh structure and the third level 
connecting demand points to hubs is composed of star 
networks. Yaman (2009) presented formulation for the 
hierarchical hub median problem with single assignment.  

 

 

She introduced a three-level network (hierarchical 
network) and added central hub nodes to classical models 
in order to relax the complete connections between hubs. 
In hierarchical networks, the traffic between two nodes 
may pass four hubs or less in its path. If two nodes are 
assigned to hubs which are assigned to two different 
central hubs then the traffic passes all the four hubs. In 
any other combinations of assignment the number of 
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passed hubs may be less than four. Fig 1 shows a 
hierarchical network with 25 demand nodes, 7 hubs and 
four central hubs. Alumur et al. (2009) introduced 
incomplete hub networks. In incomplete hub network a 
direct route between two hubs is not necessary but in the 
hub network every hub is accessible from another through 
the network. They use a parameter called hub links to 
control the number of routes between hubs.   
The incomplete hub network concept is more realistic 
than the previous studies. Our model’s hub network is 
based on incomplete networks in the hierarchical 
structure. Since establishing links between every central 
hub is expensive, the complete network may lead to non-
optimal solutions. By introducing incomplete network 
between central hubs we design a hierarchical network in 
which a direct link between central hubs is not necessary. 

Therefore, the model can decide which links to be 
established. The selection of links can lead to a network 
with total costs lower than a complete central hub 
network. 
Figure 2 shows an incomplete hierarchical network with 
25 demand nodes, 7 hubs, four central hubs and four 
links.  Contreras et al. (2010) presented the tree of hubs 
location problem that the hubs are connected through a 
tree. Yaman (2011) presented allocation strategies and 
their effects on total routing costs in hub networks. This 
problem has two versions in single allocation problems 
and multiple allocation problems. Yaman and Elloumi 
(2012) considered Star p-hub center problem and star p-
hub median problem with bounded path lengths. Alumur 
et al. (2012) introduced the multimodal hub location and 
hub network design problem. They also

 

 
Fig. 2. A three level incomplete network on 25 nodes with 7 hubs, 4 central hubs and 4 links 

studied on how the hub networks with different possible 
transportation modes must be designed. 
Our model determines which hub and central hub must be 
opened and finalize their links; it also assigns nodes to 
both hub types which is similar to classical hub network 
problem, so we name this design a hierarchical hub center 

network problem with single assignment as SA-HHCN 
and an incomplete hierarchical hub center network 
problem with single assignment  as SA-IHHCN.  
The rest of the paper is organized as follows: in section 2, 
we present a mixed integer programming formulation for 
SA-HHCN and SA-IHHCN problem. In section 3, we 
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present our computational results for cab data test 
problems and section 4 includes our conclusion as well as 
ideas for future developments. 

2. MIP formulation for SA-HHCN and SA-IHHCN 

problem 

In this section, we first review the formulations for the 
classical p-hub center problem with single assignment. 
Campbell (1994) presented formulations for both single 
and multiple allocation versions for all three types of p-
hub center problem. Kara and Tansel (2000) provided 
various linear formulations for the single allocation p-hub 
center problem.  
Ernst et al. (2002) defined a new variable rk as the 
maximum collection-distribution cost between hub k and 
the nodes that are allocated to hub k and developed a new 
formulation for the single allocation p-hub center 
problem.  
We propose two mixed integer programming models for 
hierarchical hub center network problem with single 
assignment in complete and incomplete network 
environment. In our first model, between all central hubs 
should have a direct connection; we used the idea 
developed in Yaman (2009) for our model structure. In 
our second model, it is allowed to have no direct 
connection between some central hubs; we used the idea 
developed in Alumur et al. (2009) for our model’s 
structure. The set of nodes is denoted by I, H  I is the set 
of possible alternatives for locations of hubs, and C  H 
is the set of possible alternatives for locations of central 
hubs. We denote the number of hubs by p and the number 
of central hubs to be opened by p0. Let dij be the cost of 
routing a unit traffic from node i  I to node j  I. We 
also assume that dij = dji for all pair of nodes i and j and dii 
= 0 for all i. Let H denote the discount factor in routing 
costs between hubs and central hubs and Let C denote 
the discount factor in routing cost among central hubs. 
The variable yijl is 1, if node i I is assigned to hub j  H 
and hub j is assigned to central hub l  C and is 0 
otherwise. Let Z denote the maximum travel distance 
between any origin–destination pair and rl denote the 
radius of central hub l  C, we require that    dij + djk ≥ dik 
for all nodes i; j; k in I.  
We propose the following model for SA-HHCN. 

(Note that , j H \ { i } means j∊H and j≠i) 

MIN   ܼ                                                                           (1) 

s.t.					∑ ∑௟∈஼௝∈ு yijl = 1            iI                            (2) 
yijl  ≤ yjjl                     iI, j H \ { i } , L C              (3) 
∑ 	௠∈ு yjml≤ylll                       jH, lC \ { j }              (4) 
∑ ∑ 	௅∈஼௝∈ு yjjl = P                                                            (5) 
∑ 	௅∈஼ ylll= p0                                                                    (6) 

rl + rk + αc dlk ≤ Z             kC, lC \ { k }                 (7) 
∑ 	௝∈ு (dij + αH djl)yijl +∑ 	௛∈ு (dmh+αHdhl)ymhl ≤ Z                  
 lC, iI, mI\{ i }                                                     (8) 
rl ≥  (dij + αH djl) yijl               iI, j H, l C               (9) 
∑ ∑ 	୪∈ୡ\	{୨	}	୨∈ୌ  yljl = 0                                                    (10)  
rl ≥ 0                                  l C                                  (11) 
Z  ≥ 0                                                                             (12) 
yijl {0, 1 }                    iI, j H, l C                    (13) 
The objective function (1) minimizes the value of Z. 
Constraint (2); assign each demand node to a hub and 
ultimately a central hub. 
If a node i is assigned to hub j and central hub l, then hub 
j should be assigned to central hub l and this is obtained 
via constraint (3).Constraint (4) ensures that if node j is 
assigned to central hub l, then l must be a central hub. The 
number of hubs and central hubs to be opened is fixed to 
p and p0, respectively, with constraints (5) and (6). 
Due to constraint (7), the minimum value of Z is the 
maximum distance between any two nodes if the two 
nodes belongs to two different central hubs .Constraint (8) 
ensures that the minimum value of  Z is the Maximum 
distance between any two nodes that belongs to a central 
hub. Constraint (9) determines radius of central hub 
values for any central hub. Constraint (10) is helpful to 
cut non-feasible solutions. The rest of the constraints of 
the model (11) – (13) represent non-negativity and binary 
requirements of variables.                                                                                                                                   
Now, we present a mixed integer programming 
formulation for SA-IHHCN. We used the ideas developed 
in Alumur et al. (2009) for our model structure. We need 
to know which central hub links are used on the path from 
any source to destination to calculate the travel distance. 
For each established central hub, we would like to find a 
spanning tree rooted at this central hub that visits every 
other central hub in the central hub network using only 
the established hub links. We use these spanning trees to 
calculate the travel distance between all pairs of central 
hubs. Let q denote the number of central hub links to be 
established and in addition to the previously defined 
decision variables y, r and z, the new decision variables of 
the mathematical model are:  xij , it is 1 if a central hub 
link is established between central hubs iC and j C and 
is 0 otherwise. Let Vijl denote 1 if the spanning tree rooted 
at central hub l  C uses the central hub link i; j from 
central hub i  C to central hub j  C; otherwise,  zero. 
Let bij denote travel distance from central hub i  C to 
central hub j  C in the central hub network. In general, 
in our model by changing the parameters we have both 
incomplete and complete versions. We propose the 
following model for SA-IHHCN. 
MIN   ܼ                                                                         (14) 

s.t.  (2) – (6), (8) – (13) 
rl + rk + αc blk ≤ Z                                                                 
 kC, lC \ { k }                                                       (15) 
xij  ≤yiii                         i , j  C :   i < j                      (16) 

xij  ≤yjjj                                      i , j  C :   i < j                      (17) 
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∑ 	୧∈େ\	{	୨	} vijl ≥ ylll  + yjjj  -1                                                   
 j , lC:   j\ { l }                                                          (19) 
∑ 	୧∈େ\	{	୨	} vijl ≤ ylll                j , lC:   j\ { l }                (20) 
vijl  + vjil ≤ xij                                                                          
 i , j , lC:   i < j                                                         (21) 
blj ≥ bli  + dij * vijl – M*(1- vijl)                                             
i , j , lC:   i\ { j }   and  j\ { l }                                  (22) 
bij     = bji                       i , j  C:   i\ { j }                    (23) 
bii  = 0                    i  C                                             (24) 
viji  + vjij ≥ 2* xij                      i , jC:   i < j               (25) 
αc dij ≤ Z                                    i , j  I                      (26) 
vijl {0, 1}          i, j, l C :   i\ { j } and j\ { l }         (27) 
bij    ≥ 0                i , j  C :   i\ { j }                            (28) 
xij {0, 1 }                 i , j  C :   i < j                        (29) 

The objective function (14) minimizes the value of Z. 
Constraint (15) determine that the minimum value for Z 
that is Maximum distance between any two nodes if two 
nodes belong to two different central hubs. Constraints 
(16) and (17) ensure that central hub links are established 
between nodes that are central hubs. We defined xij 
variables only for i < j. Due to constraint (18), the number 
of central hub links to be established is fixed to q. 
Constraint (19) ensures that the degree for each central 
hub node is at least one; so every central hub node is an 
end node for at least one central hub link. Through this 
constraint, the model guarantees that the tree rooted at 
central hub l will have an entering arc into every other 
central hub j. 
Constraint (20) determines that each spanning tree rooted 
at central hub l can have at most one entering arc into 
another central hub node j and forces the spanning tree 
arcs associated with a non-central hub node to take zero 
values. Constraint (21) causes the spanning tree arcs to be 
central hub arcs. Constraint (22) calculates the distance 
travel from one central hub node to another using the 
established spanning tree arcs in the central hub network. 
Constraint (23), ensures that b variable will be symmetric 
and Constraint (24) ensures that the distance from a node 
to itself will be zero. Constraint (25) is a Conceptual 
Constraint that reduces solving time. This Constraint 
ensures that when a central hub link is established 
between central hubs iC and j C, V variables must be 
one. Constraint (26) ensures that value of Z is greater than 
Maximum distance between any pair of nodes i and j.  
The rest of the constraints of the model (27)–(29) 
represent binary and non-negativity requirements of 
variables. 

3. Run the Proposed Models 

For evaluation the performance of our proposed models, 
we use CAB data set. The Civil Aeronautics Board (CAB) 

data set introduced by O’Kelly (1997) is based on the 
airline passenger traffic between 25 US cities. The data 
contains the traffic demands and distances. We take all 25 
cities as candidates for hubs and central hubs, H = C = I. 
All instances are solved using optimization software 
GAMS version 23.4 and CPLEX version 12.0.0. We took 
our runs on a system with a 2.40 GHz Intel Core™2 Quad 
Processor and 2GB of RAM. 

3.1. SA-HHCN problem 

We tested the performance of our SA-HHCN model on 
CAB data with 25 cities.  
For all states, p0 and p are varying from 2 to 9 and 3 to 9, 
respectively. As mentioned in the previous works, we 
assumed αC and αH values 0.9, 0.8, and 0.7, respectively 
to evaluate the effect of some parameters on the 
transportation cost and the locations of central hubs and to 
see the computation times. 
Now we consider the effect of the number of central hubs 
and discount factors on the transportation cost. In our first 
experiment, we investigate how the transportation cost is 
affected by changing the number of central hubs. To see 
the effect of the number of central hubs on the 
transportation cost, we use instances from the CAB data 
with n=25 and p=7, 8, 9. 
In Figs. 3, 4 and 5, we plot the transportation cost for 
different values of p0 and discount factors for the CAB 
data. 
In Fig. 3 and Fig. 4, when (αC,αH) is equal to  (0.7, 0.8) 
and (0.8, 0.9), the transportation cost decrease as we 
increase p0, respectively. We observe that in all cases, for 
a fixed choice of (αC,αH), the transportation cost does not 
increase as we increase p0. We see that substantial cost 
improvements are possible when we move from a star hub 
network (p0 = 1) towards a complete hub network  (p0 = 
p).We report our results on the CAB data set with 25 
cities in Table 1. For each instance, 
Table reports the required CPU time in seconds, 
transportation costs and increasing (%) in transportation 
costs. Research has addressed how the computation times 
are affected by the parameters of the problem. 
 
For instances with (αC ,αH) equal to (0.8, 0.9), when p 
values is 6, percent increase in transportation cost for 
p0=5 was 2.8%. When p value is 7, increasing percent in 
transportation costs for p0=5, 6 and 7 was 2.3%, 0% and 
0%, respectively.   
For instances with (αC ,αH) equal to (0.7, 0.8), when p 
values is 6, percent increase in transportation cost for 
p0=5 was 2.6%. When p values is 7, percent increase in 
transportation costs for p0=5, 6 and 7 was 3%, 1.2% and 
0%, respectively. By considering results of our several 
numerical examples (Table 1), we can conclude that the 
percentage of increase in the transportation costs is higher 
for instances with lower values of discount factors                                                                                                   
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Fig. 3. The transportation cost for the CAB data with 25 nodes and 7 hubs 

 

Fig. 4. The transportation cost for the CAB data with 25 nodes and 8 hubs 

 

Fig. 5. The transportation cost for the CAB data with 25 nodes and 9 hubs 
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Table 1 
The results on the CAB data set with 25 cities for SA-HHCN problem 

 

 

 
According to the triangle inequality theorem, traveling 
directly cannot be higher than traveling between these two 
hubs or nodes by passing through a central hub. Also, the 
distances between two hubs and a central hub are reduced 
by the factor αH and the distances between two central 
hubs are reduced by the factor αC.  
Now we consider effect of the number of central hubs and 
discount factors on the locations of central hubs and the 
locations of hubs .We  use the CAB data with n = 25; p = 
{3,4,5,6,7,8,9} ; p0 = {2,3,4,5,6,7,8,9} and different 
discount factors.  
In Table 2, we report the locations of hubs and central 
hubs in the optimal solutions for these instances. Looking 
at the locations of the hub nodes in Table 2, we observe 
that San Francisco (22) and Seattle (23) are usually 

selected as a central hub node or hub node. To see the 
effect of decreasing the value of the discount factor for 
the transportation cost among central hubs, we compare 
the results for the instances with (αC ,αH) equal to (0.9, 
0.9), (0.8, 0.9), and (0.7, 0.8). 
When p=6 and more, for (αC ,αH) equal to (0.9, 0.9),  
Miami (14) is always selected as a central hub node. For 
(αC ,αH) equal to (0.8, 0.9), Boston (3) is always selected 
as a central hub node. 
In Table 2, when (αC ,αH) equal to (0.9, 0.9) and p0=7, for 
located eight and nine hub nodes, Boston (3), Chicago (4), 
Kansas City (11), Los Angeles (12), Miami (14), San 
Francisco (22),  and Seattle (23) are always selected as 
central hub nodes. For located seven hub nodes, Phoenix 
(19) and St. Louis (21) instead of Chicago (4) and Kansas 

(αC,αH) p P0 CPU Time (s) Transportation Costs % Increase in Transportation Costs 
)0.9,0.9( 3 2 45 2703.231 1 
)0.9,0.9( 3 3 1  2675.309 0 
)0.9,0.9( 4 3 29 2606.545 0 
)0.9,0.9( 4 4 1 2606.545 0 
)0.9,0.9( 5 4 62 2543.677 0 
)0.9,0.9( 5 5 1 2543.677 0 
)0.9,0.9( 6 5 30 2453.211 0 
)0.9,0.9( 6 6 1 2453.211 0 
)0.9,0.9( 7 5 41 2453.211 0 
)0.9,0.9( 7 6 39 2453.211 0 
)0.9,0.9( 7 7 1 2453.211 0 
)0.9,0.9( 8 6 19 2453.211 0 
)0.9,0.9( 8 7 21 2453.211 0 
)0.9,0.9( 8 8 1 2453.211 0 
)0.9,0.9( 9 7 32 2453.211 0 
)0.9,0.9( 9 8 86 2453.211 0 
)0.9,0.9( 9 9 1 2453.211 0 
)0.8, 0.9( 3 2 177 2563.374 0. 4 
)0.8, 0.9( 3 3 1 2554.131 0 
)0.8, 0.9( 4 3 29 2456.123 0. 1 
)0.8, 0.9( 4 4 1 2454.349 0 
)0.8, 0.9( 5 4 29 2389.787 0. 8 
)0.8, 0.9( 5 5 1 2371.189 0 
)0.8, 0.9( 6 5 35 2317.734 2.8 
)0.8, 0.9( 6 6 1 2253.700 0 
)0.8, 0.9( 7 5 50 2270.583 2.3 
)0.8, 0.9( 7 6 57 2220.585 0 
)0.8, 0.9( 7 7 1 2220.585 0 
)0.8, 0.9( 8 6 20 2206.872 1.2 
)0.8, 0.9( 8 7 25 2180.632 0 
)0.8, 0.9( 8 8 1 2180.632 0 
)0.8, 0.9( 9 7 17 2180.632 0 
)0.8, 0.9( 9 8 29 2180.632 0 
)0.8, 0.9( 9 9 1 2180.632 0 
)0.7, 0.8( 4 4 1 2305.478 0 
)0.7, 0.8( 5 4 53 2263.969 3.3 
)0.7, 0.8( 5 5 1 2190.960 0 
)0.7, 0.8( 6 5 61 2103.055 2.6 
)0.7, 0.8( 6 6 1 2049.187 0 
)0.7, 0.8( 7 5 45 2026.969 3 
)0.7, 0.8( 7 6 125 1992.173 1.2 
)0.7, 0.8( 7 7 1 1967.977 0 
)0.7, 0.8( 8 6 27 1967.737 0 
)0.7, 0.8( 8 7 37 1967.737 0 
)0.7, 0.8( 8 8 1 1967.737 0 
)0.7, 0.8( 9 7 17 1908.053 0 
)0.7, 0.8( 9 8 20 1908.053 0 
)0.7, 0.8( 9 9 1 1908.053 0 
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City (11) selected as central hub nodes, respectively. In 
Fig. 6, we give the United States map with the 25 cities 
and illustrate a sample of solutions on the CAB data set. 
In order to analyze the flow behavior of the designed 

network links, we use green color to represent the central 
hubs and yellow color to represent the hubs. We explored 
the flow data with (αC ,αH) equal to (0.9, 0.9), p=5 and 
p0=4 corresponding to instances (a) in Fig. 6. 

 
Table 2 
The results on the CAB data set with 25 cities for SA-HHCN problem 

(αC,αH) p P0 Hub locations Central Hub locations 
(0.9,0.9) 3 2 8,11,23 8,11 
(0.9,0.9) 3 3 8,9,16 8,9,16 
(0.9,0.9) 4 3 8,9,16,23 8,9,16 
(0.9,0.9) 4 4 8,9,16,23 8,9,16,23 
(0.9,0.9) 5 4 8,13,20,22,23 8,13,20,23 
(0.9,0.9) 5 5 4,8,13,22,23 4,8,13,22,23 
(0.9,0.9) 6 5 3,8,14,21,22,23 3,8,14,21,23 
(0.9,0.9) 6 6 3,14,19,21,22,23 3,14,19,21,22,23 
(0.9,0.9) 7 5 3,4,8,14,21,22,23 3,8,14,21,23 
(0.9,0.9) 7 6 3,4,11,12,14,22,23 4,11,12,14,22,23 
(0.9,0.9) 7 7 3,12,14,19,21,22,23 3,12,14,19,21,22,23 
(0.9,0.9) 8 6 3,4,7,14,19,21,22,23 4,7,14,19,22,23 
(0.9,0.9) 8 7 3,4,11,12,14,17,22,23 3,4,11,12,14,22,23 
(0.9,0.9) 8 8 3,12,14,19,21,22,23,24 3,12,14,19,21,22,23,24 
(0.9,0.9) 9 7 3,4,5,11,12,14,19,22,23 3,4,11,12,14,22,23 
(0.9,0.9) 9 8 3,4,7,11,14,16,19,22,23 3,4,11,14,16,19,22,23 
(0.9,0.9) 9 9 3,12,14,17,18,19,21,22,23 3,12,14,17,18,19,21,22,23 
(0.8,0.9) 3 2 11,22,23 11,23 
(0.8,0.9) 3 3 6,8,16 6,8,16 
(0.8,0.9) 4 3 11,12,22,23 11,22,23 
(0.8,0.9) 4 4 19,21,22,23 19,21,22,23 
(0.8,0.9) 5 4 6,8,16,22,23 6,8,16,23 
(0.8,0.9) 5 5 6,8,16,22,23 6,8,16,22,23 
(0.8,0.9) 6 5 3,11,12,14,22,23 3,11,12,22,23 
(0.8,0.9) 6 6 11,12,17,22,23,24 11,12,17,22,23,24 
(0.8,0.9) 7 5 8,12,13,14,17,22,23 8,13,17,22,23 
(0.8,0.9) 7 6 3,17,19,21,22,23,24 3,19,21,22,23,24 
(0.8,0.9) 7 7 3,11,18,19,22,23,24 3,11,18,19,22,23,24 
(0.8,0.9) 8 6 3,14,17,19,21,22,23,24 3,19,21,22,23,24 
(0.8,0.9) 8 7 3,6,8,12,13,14,22,23 3,6,8,13,14,22,23 
(0.8,0.9) 8 8 3,8,12,13,14,20,22,23 3,8,12,13,14,20,22,23 
(0.8,0.9) 9 7 3,12,14,19,21,22,23,24,25 3,14,19,21,22,23,25 
(0.8,0.9) 9 8 3,12,14,17,19,21,22,23,24 3,12,14,17,19,21,22,23 
(0.8,0.9) 9 9 3,12,14,17,19,21,22,23,24 3,12,14,17,19,21,22,23,24 
(0.7,0.8) 3 2 11,22,23 11,23 
(0.7,0.8) 3 3 11,22,23 11,22,23 
(0.7,0.8) 4 4 11,12,22,23 11,12,22,23 
(0.7,0.8) 5 4 8,16,20,22,23 8,16,20,22 
(0.7,0.8) 5 5 9,13,19,22,23 9,13,19,22,23 
(0.7,0.8) 6 5 11,12,17,22,23,24 11,12,17,22,23 
(0.7,0.8) 6 6 17,19,21,22,23,24 17,19,21,22,23,24 
(0.7,0.8) 7 5 8,12,13,14,17,22,23 8,13,17,22,23 
(0.7,0.8) 7 6 11,12,14,17,22,23,24 11,12,17,22,23,24 
(0.7,0.8) 7 7 2,3,11,19,22,23,24 2,3,11,19,22,23,24 
(0.7,0.8) 8 6 3,6,11,12,19,22,23,24 6,11,12,22,23,24 
(0.7,0.8) 8 7 3,6,8,11,12,22,23,24 3,6,8,11,22,23,24 
(0.7,0.8) 8 8 3,8,12,20,21,22,23,24 3,8,12,20,21,22,23,24 
(0.7,0.8) 9 7 2,3,11,12,14,19,22,23,24 2,3,11,14,19,22,23 
(0.7,0.8) 9 8 2,3,8,11,12,14,22,23,24 2,3,8,11,12,14,22,23 
(0.7,0.8) 9 9 3,8,12,14,20,21,22,23,24 3,8,12,14,20,21,22,23,24 
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Fig. 6. CAB data set results with 25 cities for SA-HHMN problem 

As we observe in Fig. 6, the cities Denver (8), Memphis 
(13), New York (17), Pittsburgh (20), San Francisco (22) 
and Seattle (23) are good locations for central hubs. 

3.2.   SA-IHHCN problem 

We tested the performance of our SA-IHHCN model on 
CAB data with 20 cities. 
For the CAB data set with 20 cities, p varies from 5 to 8 
and p0 increases from 3 to 5 .We tested differing q values 
for our incomplete hierarchical p-hub center network 
design formulation. We took αC and αH values to be 0.9, 
0.8 and 0.7.  
In all the instances of tables, if the number of established 
central hub links is equal to p0 (p0 -1)/2, then these 
instances are complete network. Also if the number of 
established central hub links is less than p0 (p0 -1)/2, then 
these instances are incomplete network. 
We report our results on the CAB data set with 20 cities 
in Table 3. For each instance, Table 3 reports the required 
CPU time in seconds, the locations of the hub nodes, the 
locations of the central hub nodes, gap, transportation cost 
and increase in transportation costs. The time was limited 
to 2000 sec (about 33min). 
In Table 3, we observe that at the instances where we 
located four central hub nodes, for instance with (αC ,αH) 
equal to (0.9, 0.9), two cities Cincinnati (5) and Los 
Angeles (12) are always selected as hub nodes or central 
hub nodes. For instance, with (αC ,αH) equal to (0.8, 0.9), 
two cities Cincinnati (5) and Denver (8) are always 

selected as hub nodes or central hub nodes. For instance 
with (αC ,αH)  equal to (0.7, 0.8), two cities Detroit (9) and 
Los Angeles (12) are always selected as hub nodes or 
central hub nodes. In all instances where we located seven 
hub nodes and five central hub nodes, for instance with 
(αC ,αH)  equal to (0.9, 0.9), two cities Dallas (7) and 
Pittsburgh (20) are always selected as central hub nodes. 
For instance with (αC ,αH) equal to (0.7, 0.8),  Denver (٨) 
are always selected as hub nodes or central hub nodes.  
The percentage of increasing in transportation costs is 
reported as zero for the instances with complete central 
hub networks. We also observed from Table 3 that the 
percentage of increase in the transportation costs is higher 
for instances with lowest number of established central 
hub links (q).  
In Fig. 7 and Fig. 8, we observe the transportation costs 
with respect to the number of established central hub 
links; we decided to draw three trades off curve.  
We analyzed the instance with different values of 
discount factors, p = 7, 8, p0=5 and different values of 
central hub links. Fig. 7 and Fig. 8 depict the trades off 
curve. In Fig. 7, when we forced the model to establish 
with seven central hub links the transportation costs was 
about 2188 - 2518 and when the model is established with 
six central hub links the transportation costs was about 
2250 – 2636. In Fig. 8, when we forced the model to 
establish with nine central hub links the transportation 
costs was about 2152 - 2410 and when the model to 
establish with eight central hub links the transportation 
costs was about 2176 – 2654. 
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Table 3 
The results on the CAB data set with 20 cities for SA-IHHCN problem 

(αC,αH) p P0 q CPU 
Time (s) Hub Locations Central Hub 

Locations GAP Transportation 
Costs 

% Increase in 
Transportation Costs 

(0.9,0.9) 6 4 5 2000 3,5,11,12,14,20  3,5,11,12 0.00 2340.0720 0.00 
(0.9,0.9) 7 5 6 >2000 6,7,11,12,13,14,20 6,7,11,13,20 7.00 2636.9090 4.69 
(0.9,0.9) 7 5 7 >2000 2,3,6,7,11,17,20 2,3,7,17,20  11.25 2518.7420 0.00 
(0.9,0.9) 8 5 8 >2000 1,4,5,10,12,13,15,19 5,10,12,15,19 11.80 2654.5260 10.11 
(0.9,0.9) 8 5 9 >2000 3,7,8,10,11,12,14,16 3,7,10,11,14 2.90 2410.7730 0.00 
(0.8,0.9) 5 3 2 >2000 3,11,12,14,17 11,14,17 8.40 2271.0450 0.00 
(0.8,0.9) 6 4 5 >2000 3,5,7,8,10,12 3,5,7,10 11.77 2357.8050 0.00 
(0.8,0.9) 7 5 6 >2000 9,12,13,15,17,18,19 9,13,15,17,19 7.50 2250.4970 2.83 
(0.8,0.9) 7 5 7 >2000 1,3,4,7,11,12,16 3,4,11,12,16 4.70 2188.5590 0.00 
(0.8,0.9) 8 5 8 >2000 1,5,8,9,10,14,19,20 1,5,9,19,20 17.30 2515.4740 7.73 
(0.8,0.9) 8 5 9 >2000 2,5,6,7,11,12,14,19 2,5,6,7,11 10.91 2334.9650 0.00 
(0.7,0.8) 8 5 9 >2000 4,8,11,12,14,15,17,19 8,12,14,15,19 11.35 2152.4140 0.00 

 

 

Fig. 7. The transportation costs for CAB data with 20 nodes, 7 hubs and 5 central hubs 

 

Fig. 8. The transportation costs for CAB data with 20 nodes, 8 hubs and 5 central hubs 

In Fig. 9, we give the United States map with the 20 cities 
and illustrate a sample of solutions on the CAB data set in 
order to analyze the flow behavior of the designed 
network links. 
We use green color to represent the central hubs and 
yellow ones to represent the hubs.  

As we observe in Fig. 9, the allocations was for instances 
with gaps unequal zero. For this reason, allocation can be 
done better.  The cities Cincinnati (5), Dallas (7), Los 
Angeles (12), Memphis (13) and Pittsburgh (20) are good 
locations for central hubs. 
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Fig. 9. CAB data set results with 20 cities for SA-IHHMN problem 

4. Conclusion 

In this paper, we introduced hierarchical hub center 
network problem with single assignment for complete 
network environment and presented a mixed integer 
programming model to solve it. Also we introduced this 
problem for incomplete network environment and 
presented a mixed integer programming model to solve it. 
We presented computational analyses with these 
formulations on the CAB data set. All of the proposed test 
instances have been solved with our proposed models 
considering a reasonable CPU time. The problems were 
motivated from real-life observations of many central hub 
networks. In this study, when a direct link between all 
central hubs is not necessary, we observed effects on the 
central hub location selections. In general, the decision 
makers have to choose among more cases when using an 
incomplete setting for the network instead of complete 
setting. In real world considering a complete hub network 
problem must be very expensive and as we have shown in 
this paper, definition of some incomplete hierarchical 
hubs will be more real and economic. 
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Abstract 

In this paper, we study different methods of solving joint redundancy-availability optimization for series-parallel systems with multi-state 
components. We analyzed various effective factors on system availability in order to determine the optimum number and version of 
components in each sub-system and consider the effects of improving failure rates of each component in each sub-system and improving 
reliability of each sub-system. The target is to determine optimum values of all variables for improving the availability level and decreasing 
the total cost of the system. At first, the exact values of variables are determined using a mathematical model; then, the results of SA-
Parallel, VDO-Parallel and genetic algorithms are compared with the exact solution.  
Keywords: SA; VDO; Parallel; Availability; Multi-state; Redundancy. 

1. Introduction 

The effective factors in system availability in general 
include component types in each sub-system, the number 
of components in each sub-system and the level of 
improving failure rates for each component in each sub-
system, as well as improving reliability of each sub-
system. The third factor concerns decreasing the failure 
rate of each component and increasing the reliability of 
subsystems by spending money. For example, if we 
consider more skilled workers in each subsystem, the 
reliability of the sub-system and in turn its availability 
will increase.  
In traditional models, the components and subsystems 
have only two states: working, not working (failed). But it 
is obvious that they may be in the states between the two 
above states. These states are caused by slight failures and 
operational defects. These systems are called multi-state 
systems (MSS) (Barlow & Wu, 1987; Boedigheimer et al, 
1994; Lisianaski et al, 2003; Zuo et al, 2006; Zuo et al, 
2007).  
In this regard, efforts have been made to optimize the 
level of redundancy in the various subsystems of a 
system. Levitin et al (1998) developed a model to 
determine the optimal version of subsystem components  
 

 
 
 
 

in a multi-state series-parallel system. Coit and Ramirez 
Marquez (2004) introduced a heuristic method for multi-
state Redundancy Allocation Problem (RAP), and Tian 
and Zuo (2006) provided a method based on physical 
programming and genetic algorithm for multi-state RAP. 
In both models, RAP was the only factor in the 
improvement of system operation, but Tian et al (2009) 
introduced a modern method for optimizing series-parallel 
systems. In doing so, they provided two options for 
improving system reliability and availability: optimal 
redundancy allocation in various subsystems and 
improving the reliability of components through affecting 
functional rates. Furthermore, Tian et al (2005) presented 
a joint reliability-redundancy optimization method for 
multi-state series-parallel systems inspired by the method 
described above. In their method, transition rates affect 
component state distributions and redundancy is 
considered as a variable of the problem. After Chern 
(1972) proved that RAP belongs to NP hard problems, 
Mehta heuristic algorithms are used increasingly in the 
area. In this regard, Gen and Kim (1999) used a hybrid 
genetic algorithm to optimize reliability problems and 
Konak et al (2003) took advantage of using the tabu 
search for RAP. Liang et al (2004) solved RAP using the * Corresponding author E-mail: mani.sharifi@yahoo.com 

 

Journal of Optimization in Industrial Engineering 14 (2014) 13-26

13




