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Abstract  
 

This study investigates the prediction of demand in an Automotive Diagnostic Centre (ADC) in Bucaramanga, Colombia, applying advanced 

neural network techniques to three services: technical inspections for motorcycles, private cars, and public service vehicles. Utilising daily 

data from December 2019 to December 2021 (628 observations), the squared coefficient of variation of demand (CV²) and the average 

demand interval (ADI) are employed to classify demand, following the methodology of Syntetos & Boylan (2005b). Five Deep Learning 

models were evaluated: RNN, Bidirectional LSTM, CNN, GRU, and MLP, adopting a recursive approach for prediction. The findings reveal 

that despite the promises of forecasting algorithms and their success in other sectors, their performance in the context of ADCs is limited. 

Evaluation metrics, including RMSE, MSE, MAE, r2_score, and MAPE, reveal that although the LSTM model exhibits the best overall 

performance, no model achieves precise and reliable prediction due to the complexity and irregularity of demand. This finding underscores 

the need for continued research in demand forecasting and suggests exploring hybrid approaches or more specialised models. The variability 

in performance across models and services reflects the importance of tailoring predictive approaches to the specific characteristics of each 

demand segment. The principal contribution of this study is the innovative approach in applying neural networks to irregular demand in 

ADCs, an area hitherto little explored. It highlights the need to integrate external variables and develop adaptive management practices. 

Future research should focus on the integration of external factors and the development of hybrid models and mitigation strategies for efficient 

management of demand uncertainty. 
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1. Introduction  
  

In the era of digitalization and automation, Automotive 

Diagnostic Centres (CDAs) face unique challenges in the 

efficient management of their operations, one of the most 

critical being the accurate prediction of service demand. 

The inherently irregular nature of this demand, influenced 

by factors such as market trends, vehicle maintenance 

policies, and technological advancements, significantly 

complicates resource planning and inventory management 

(Steuer et al., 2018). Accurate demand estimation is vital 

to optimize resource allocation, minimize wait times, and 

maximize customer satisfaction (Zenchenko & Grigoriev, 

2020). Intermittent demand forecasts are challenging, 

considering their irregular and random nature. This type of 

demand is distinguished by having zero demand periods 

mixed with variable and non-zero demand periods 

(Amirkolaii et al., 2017). This contrasts with the forecast 

of non-intermittent demand, in which the only uncertainty 

lies in the magnitude of demand(Hoffmann et al., 2022). In 

the case of intermittent demand, the uncertainty lies both in 

the timing of the positive demand and in its magnitude. 

Thus, those who are dedicated to forecasting this type of 

demand are faced with the challenge of determining not 

only the amount of demand, but also the time at which it 

will manifest itself (Zhang et al., 2023). 

The irregularity of the demand in the CDAs has a direct 

impact on the operability and efficiency of these centres. 

Fluctuations in demand can lead to under- or over-

utilization of resources, affecting the profitability and 

quality of the service offered. Traditional forecasting 

methods, based on statistical models or qualitative 

approaches, often fail to capture the inherent volatility and 

complexity of demand in the automotive sector, resulting 

in inaccurate predictions and suboptimal decisions, which 

can have a negative impact on inventory planning and 

staffing (Bremen, s. f.). Despite the increasing 

globalization of supply chains and the increasing diversity 

of products and services, traditional forecasting methods 

have proven insufficient to address the complexities of 

intermittent demand, highlighting the need for more 

sophisticated and adaptive approaches(Zhang et al., 2023). 

In this context, neural networks emerge as a promising tool, 

offering the ability to learn and adapt to complex, non-

linear patterns in historical demand data (Eseye et al., 

2019). This study aims to explore the use of neural 

networks to improve the forecasting of irregular demand in 

CDAs. Neural networks, with their ability to learn and 

adapt to complex, non-linear patterns in data, offer a 

potentially more effective solution to address the 

peculiarities of demand in this sector. By applying these 

advanced machine learning techniques, we seek to provide 
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a more accurate and adaptable approach to forecasting 

demand in CDAs, overcoming the limitations of 

conventional methods. 

The main contribution of this study lies in its innovative 

approach, the application of neural networks in the specific 

context of irregular demand in CDAs, an area that until 

now has been little explored, likewise, this research 

demonstrates that, despite the promising applications of 

different algorithms for demand forecasting, as 

demonstrated in studies such as those by Hoffmann et al. 

(2022a), Zohdi et al. (2022), Zhang et al (2023), and others, 

seeks to present a discussion that refutes or questions 

previous results in the specific context of CDAs. Previous 

research has shown how certain neural network 

configurations outperform traditional statistical methods in 

predicting irregular demand, especially in sectors such as 

spare parts (Lolli et al., 2017; Muhaimin et al., 2021; 

Svetunkov & Boylan, 2023) & Maintenance (Zohdi et al., 

2022). However, our study reveals that, in the case of 

CDAs, although neural network models have considerable 

potential, their effectiveness is limited in highly variable 

and unpredictable demand scenarios. This finding 

highlights the need for continued research and the 

development of hybrid approaches or more specialized 

models to manage variability and intermittency in demand.  

Finally, this article is structured in the following sections: 

methodology, where the algorithms and techniques used 

are detailed; results and discussion, where the performance 

of the models in the context of the CDAs is analyzed; and 

finally, the conclusions, where key findings are 

summarized and future directions for research in this field 

are proposed. 

2. Review Literature 

Intermittent data forecasting has been a key area of 

research since the 1970s. Intermittent demand time series 

are distinguished from traditional series by the frequent 

presence of periods of no demand, a concept initially 

introduced by Croston (1972), in his research, highlighted 

the inadequacy of conventional time-series methods, such 

as exponential smoothing, for this type of demand and 

proposed an alternative forecasting method specially 

designed for intermittent demand time series (Croston, 

1972). Later research, such as the work of Willemain et al. 

(2004), confirmed the adequacy of Croston's method for 

these series, showing improvements over traditional 

methods. However, Syntetos and Boylan (2001) They 

identified a bias in Croston's original method and proposed 

a modified version to correct it, achieving greater accuracy 

in their predictions. Hyndman and Shenstone's analysis 

(2005) They suggest that although Croston's method is 

useful in practice and outperforms conventional methods, 

it has certain limitations. They argue that their basis in 

exponential smoothing implies an assumption of 

continuous data, including negative values, which does not 

align with the reality of intermittent demand that is 

inherently integer and not negative. In addition, although 

Croston claimed that their method assumes independence 

between demand size and demand intervals, Willemain et 

al. (2004) They questioned this assumption. Nikolopoulos 

et al. in 2011 explored data aggregation to reduce zeros in 

time series, but found that this approach can miss useful 

information (Nikolopoulos et al., 2011). 

The literature has also treated intermittent and global 

demand in a similar way, using methods such as 

bootstrapping and neural networks. Mukhopadhyay et 

al.,(2012) They suggested that non-traditional methods 

could outperform traditional ones in certain contexts. 

Nikolopoulos (2021) He noted that the focus on demand 

for spare parts is too narrow, as intermittent demand occurs 

in various sectors. As a different perspective, Sarlo et 

al.(2023) They developed score-based models that address 

the absence of complete predictive distributions and the 

handling of excess zeros, proving to be competitive and a 

viable option for professionals in the retail sector. 

Given the specific nature of intermittent demand, neural 

networks have evolved as a crucial tool in demand 

forecasting, notable for their ability to model nonlinear 

complexities and adapt to irregular patterns. Several 

studies have addressed the comparison between artificial 

neural networks (ANNs) and conventional forecasting 

methods, as well as the incorporation of improvements in 

ANNs to optimize their performance. Gutierrez et al. 

(2008) They proposed an RNA methodology for time 

series of variable demand, surpassing Croston's method 

and Syntetos' and Boylan's modification in their 

experiments (Syntetos & Boylan, 2005a). Nasiri Pour et al. 

(2008) They compared several ANNs to the SBA in 30 time 

series, finding that their new hybrid network was more 

effective. Mukhopadhyay et al. (2012) modified the 

architecture proposed by Gutiérrez et al. (2008), achieving 

promising results. Kourentzes (2013) developed two ANN 

models, called NN-Dual and NN-Rate, which allow for the 

interaction between demand and demand intervals. 

Studies such as those by Hoffmann et al. (2022a) and Lolli 

et al. (2017) They have demonstrated the effectiveness of 

neural networks, especially in irregular and intermittent 

demands. Architectures range from multilayer networks to 

Transformer models, as evidenced in Zhang et al. (2023), 

each adapting to different needs and demand contexts. 

These advances reflect a continued evolution in the 

application of neural networks, moving beyond single-

layer configurations to more complex and specialized 

structures. In the work of Tian et al. (Tian et al., 2021), 

Neural networks have outperformed traditional methods, 

highlighting the relevance of integrating expertise and 

inventory data into prediction models. Kourentzes (2013) 

reveal the effectiveness of neural networks, especially 

RNNs, in predicting intermittent demand patterns in the 

retail and aftermarket sector. The literature review 

demonstrates the effectiveness and versatility of neural 

networks in predicting demand in a variety of sectors. 
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However, it underlines the need for more focused studies 

in specific sectors such as CDAs. Existing studies have 

focused primarily on industries with similar demand 

characteristics, but do not directly address the unique 

challenges of CDAs. This gap in the literature highlights 

the originality and relevance of current research, which 

seeks to apply and adapt neural network techniques in a 

little-explored context, thus contributing to a better 

understanding and management of irregular demand in this 

specific sector. The integration of specialized knowledge 

and the adaptation of models to the particularities of each 

industry emerge as key elements for progress in this field. 

 

3. Material and Methods 

3.1. Data 

The data used in this research come from a CDA 

Automotive Diagnostic Centre located in the city of 

Bucaramanga, Santander, Colombia. The company 

provided daily demand data for three main services of the 

CDA: techno mechanical revisions of motorcycles, private 

cars, public service cars. The time series of data spanned 

from December 1, 2019 to December 12, 2021, totalling 

628 observations.  The behaviour of each of the services is 

presented below. 

 
Fig .1. Behaviour demand for techno mechanical  

review service for motorcycles 

 

 
Fig .2. Behaviour demand for techno mechanical  

review service for private vehicles 

 
Fig .3. Behaviour demand for techno mechanical  

review service for public service vehicles 

 

Table 1.  

Descriptive Statistics of the Demand for Services in the 

Automotive Diagnostic Centre 

 Motorcycle Particular Public 

Quantity 628 628 628 

Stocking 21.3 27.5 1.4 

Desv. 

Standard 
10.1 13.6 1.3 

Minimum 

Value 
0.0 0.0 0.0 

25% 15.0 19.0 0.0 

50% 21.0 28.0 1.0 

75% 27.0 36.0 2.0 

Maximum 

Value 
89.0 73.0 7.0 

 

Following the relevant literature, two key metrics were 

adopted to characterize and classify demand: the 

coefficient of variation of demand squared (CV²) and the 

average demand interval (ADI). These metrics make it 

possible to identify noise and intermittency levels in the 

data, thus facilitating a better understanding and prediction 

of demand patterns.  The CV² is an indicator of the relative 

dispersion of demand and is calculated as the variance over 

the square of the mean demand. Higher CV² values indicate 

greater relative variability, which may mean that demand 

is more difficult to predict. On the other hand, the ADI 

measures the frequency with which claims are recorded, 

calculated as the total number of periods divided by the 

number of periods with demand. A higher ADI suggests 

more intermittent demand, with more frequent periods of 

zero demand (Amirkolaii et al., 2017). 

Using the classification scheme proposed by Syntetos & 

Boylan.,(2005b) Experimental cut-off values of CV²=0.49 

and ADI=1.32 were established to classify demand into 

four categories: mild, erratic, intermittent and uneven. 

These cut-off values are representative of the variability in 

quantity and demand intervals, respectively (Table 2).  
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Table 2.  

Four Types of Demand Considered and Representation of 

Variability 

Type of Claim 
Intervals 

Between Demand 
Quantity 

Smooth  Low Low 

Erratic  Low High 

Intermittent  High Low 

Unequal  High High 

 

In our analysis, the following results were obtained for 

each type of service: 

Motorcycles: CV² of 0.229 and ADI of 1.002, classifying 

demand as mild, indicating consistent and predictable 

demand. 

Private Vehicles: CV² of 0.244 and ADI of 1.005, also 

indicating a soft demand. 

Public Service Vehicles: CV² of 0.966 and ADI of 1.444, 

classifying demand as uneven, reflecting a demand with 

high levels of variability and intermittency.  

 

 
Fig .4. Behaviour demand for techno mechanical 

review service of public service vehicles 

A detailed understanding of demand variability and 

intermittency, expressed through CV² and ADI metrics, not 

only informs the initial selection of forecasting models, but 

also provides an essential interpretive framework for the 

results obtained. 

3.2. Deep learning models 

The aim of the study is to test the applicability and 

performance of neural networks in a real context with data 

extracted from an automotive service centre. The following 

Deep Learning models were selected considering that they 

have been frequently used for time series prediction and 

have reported satisfactory results (da Silva & Meneses, 

2023; Jiang et al., 2021). 

Recurrent Neural Networks (RNNs): It focuses on 

modelling the sequentially of data, being especially 

valuable for time series where the relationship between 

consecutive events is significant. This model helps to 

understand the evolution of demand over time (Fierro, 

2020). Our simple recurrent neural network (RNN) model 

consists of three RNN layers with 100 units each, using the 

hyperbolic tangent activation function and a uniform kernel 

initializer. The first two RNN layers return complete 

sequences, while the third delivers a single output. The 

output layer is a dense layer with linear activation. 

Bidirectional LSTM Neural Networks: This model is 

characterized by its ability to learn dependencies in both 

temporal directions of the data, which is crucial for 

capturing the full dynamics of the time series in irregular 

demand forecasting(da Silva & Meneses, 2023). This 

architecture leverages information from both the past and 

the future to improve the accuracy of 

predictions.(Guerrero, 2020). In our study, we 

implemented a Bidirectional LSTM model to capture 

dependence on both future and past directions of the time 

series. The architecture consists of a bidirectional LSTM 

input layer with 50 units, designed to process sequences in 

both forward and reverse order. The output layer employs 

a TimeDistributed layer with linear activation, suitable for 

time series prediction. 

Convolutional Neural Networks (CNN): This model It is 

known for its efficiency in processing sequential data, 

especially useful in identifying temporal and spatial 

patterns in automotive diagnostic demand. Its structure is 

ideal for extracting and learning relevant features of the 

time series. This type of neural network was originally 

designed to process image data, but the same properties 

that make convolutional neural networks conducive to 

computer vision problems make them highly relevant for 

signal processing. Time can be treated as a spatial 

dimension, like the height or width of a 2D image. These 

are the 1D convolutional networks. 1D convolution layers 

obtain new convoluted sequences through filters that 

interpret certain characteristics of the original sequences 

that allow local patterns to be recognized in the same 

(Fierro, 2020). In this study, the convolutional neural 

network (CNN) model was constructed with an input layer 

followed by two sets of convolutional and maxpooling 

layers. Each convolutional layer contains 220 filters with a 

core size of 2 and a hyperbolic tangent activation function. 

Dropout layers are included to improve the generalizability 

of the model. The output layer is a dense layer with a single 

unit. 
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Gated recurrent unit (GRU) neural networks): This 

model, with its simplified structure compared to LSTM, 

provides an efficient alternative for modelling temporal 

dependencies. It is particularly effective in handling shorter 

time series, avoiding the fading gradient problem by being 

computationally lighter (Cea Morán, 2020). The 

implemented recurrent gate unit (GRU) model follows a 

similar structure to the RNN model, with three GRU layers 

of 100 units each. As in the RNN model, the first two GRU 

layers return complete sequences and the third provides a 

single output. The output layer is a dense layer with linear 

activation. 

Multilayer Perceptron Model (MLP): This model is a 

direct-fed neural network that is used to capture linear and 

nonlinear relationships in data. Its multi-layered structure 

allows a detailed and in-depth approach to the demand 

forecasting process, being useful for understanding 

complex relationships in the data (Amirkolaii et al., 2017). 

The implemented model was composed of a flattening 

layer and seven dense layers, each with 70 units and 

hyperbolic tangent activation. The output layer is a dense 

layer with a single unit. This model is compiled with an 

Adam optimizer and a mean square error (MSE) loss 

function. 

3.3. Hyper parameter Optimization 

The hyper parameters were fine-tuned with the 

RandomizedSerachCV algorithm from the Sklearn Python 

library. Since the models used require a lot of 

computational power, due to the large number of 

parameters to test. Using the RandomizedSerachCV 

function, it is possible to perform a random search that tries 

to identify the best structure for the model; Not all possible 

combinations of values, but only a certain number of them. 

In this way, even if the total number of possible 

combinations is high, it is possible to limit the training 

time. 

3.4. Prediction horizon 

There are three alternative ways to produce multi-period 

predictions with machine learning models (31). The 

recursive strategy involves adding the last prediction of the 

last timestep as input to the next prediction; In this way, a 

single-output model and a recursive prediction system up 

to the defined limit are established. The direct strategy, 

where a model is trained for each time step to be predicted 

(32). A combination of the previous two, where several 

models and a recursive system are used between the models 

themselves.  In the present research, the recursive 

prediction approach was used, considering that one of its 

main advantages is its simplicity and reduced 

computational load. The disadvantage is that, as the 

predictive horizon increases, the accuracy of new 

predictions tends to deteriorate. 

3.5. Evaluation metrics 

RMSE. The mean square error or mean square deviation 

is one of the most commonly used measures to assess the 

quality of predictions. Formally it is defined as follows: 

𝑅𝑀𝑆𝐸 =  √∑
(𝑦´𝑖 − 𝑦𝑖  )2

𝑛

𝑛

𝑖=1

 

MSE. The mean square error evaluates the average squared 

difference between the observed and predicted values. It is 

defined as: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦´𝑖)

2

𝑛

𝑖=1

 

MAE. The mean absolute error corresponds to the average 

of the absolute differences between the actual values and 

the predictions. It is calculated using the following 

equation:  

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦𝑖 −  𝑦𝑖

´|

𝑛

𝑖=1

 

 

MAPE. The Mean Absolute Percentage Error measures the 

size of the (absolute) error in percentage terms. It is 

calculated using the following equation:  

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑦𝑖 − 𝑦𝑖
´

𝑦𝑖

|

𝑛

𝑖=1

 

Coefficient of determination (R2). It is the proportion of 

the total variance of the variable explained by the 

regression. It serves to reflect the goodness of fit of a model 

to the variable it is intended to explain. It is defined as 

follows: 

𝑅2 =
∑ (�̂�𝑡 −  �̅�)

2𝑇
𝑡=1

∑ (𝑌𝑡 −  �̅�)2𝑇
𝑡=1

 (5) 

 

4. Results and discussion 

The following section details the results obtained from the 

models evaluated across multiple metrics which provide a 

comprehensive assessment of the models' performance, but 

also shed light on their ability to capture and predict 

fluctuations in demand for the various CDA services. 

Through this study, we seek to contribute significantly to 

the field of artificial intelligence applied in operations and 

service management, providing valuable insights for 

academics and practitioners alike. The results obtained are 

then broken down and analysed. 

 

 

(1) 

(2) 

(3) 

(4) 
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4.1. Demand Forecast Results Techno Mechanical 

Revision Motorcycles 

Table 3.  

Results of the evaluation metrics of the Forecasts Demand 

Techno Mechanical Review Motorcycles 
Model RMSE MSE DUDE ASM r2_score 

LSTM 

Motorcycles 
6.453 41.648 5.135 0.362 0.018 

CNN 

Motorcycles 
7.033 49.473 5.435 0.420 -0.165 

RNN 

Motorcycles 
6.467 41.822 5.128 0.363 0.014 

GRU 

Motorcycles 
6.488 42.098 5.126 0.372 0.008 

MLP 

Motorcycles 
6.561 43.053 5.206 0.379 -0.014 

 

Based on the demand behaviour of the techno mechanical 

revision of motorcycles classified as smooth, with a 

Coefficient of Variation (CV²) of 0.229 and an Aggregate 

Demand Index (ADI) of 1.002. These metrics indicate 

consistency and predictability in demand, which is a 

favourable factor for forecasting models. However, the 

results obtained from the different neural network models 

indicate an underlying complexity in the data that affects 

the effectiveness of the forecast. The Bidirectional LSTM 

model, with an RMSE of 6.453, reflects an average 

prediction error of about 30% of the mean demand, which 

is a reasonable but not optimal accuracy, given that the 

mean is 21.32 and the standard deviation is 10.20. This 

level of error suggests that although the model captures the 

overall trend, there is a significant margin of inaccuracy. In 

addition, its r2_score of 0.018, while low, indicates some 

ability to capture variability in the data, although it 

suggests that demand dynamics are not being fully 

explained. This phenomenon may be attributable to the 

nature of the time series which, despite its apparent 

smoothness, could present complex patterns not fully 

captured by the model. 

 

 
 

 

 
Fig .5. Results evaluation metrics Forecasts Demand Techno Mechanical Review Motorcycles 

In the case of the CNN model, with an RMSE of 7.033 and 

a r2_score of -0.166, they indicate that this model is not 

only less accurate, but also has difficulty adjusting to the 

variability of the data. This could be due to the nature of 

CNNs, which are better suited for capturing spatial features 

and may not be as effective for time series where temporal 

relationships are more critical. The RNN and GRU models 

exhibit similar performance to LSTM in terms of RMSE, 

but their low r2_scores suggest a limited ability to capture 

variability in the data. The MAE for these models, around 

5, indicates that the predictions deviate on average 5 units 

from the actual values, which is a moderate error compared 

to the average demand. The conceptually simpler MLP 

model features the highest RMSE of 6.562 and a negative 
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r2_score of -0.014, indicating poor ability to predict 

demand compared to the other models. This may be 

because the linear and nonlinear relationships in the data 

are more complex than the MLP can efficiently handle. 

Despite the hyper parameter adjustment made, these results 

demonstrate the need for a more in-depth analysis of the 

nature of demand data. The choice of the model and the 

configuration of its parameters should consider not only the 

accuracy in terms of forecast error but also the ability of 

the model to generalize and capture the underlying 

dynamics of the data. These findings also highlight the 

importance of understanding the limitations and strengths 

of different neural network approaches in the specific 

context of demand forecasting in Automotive Diagnostic 

Centres. 

4.2. Demand forecast results techno mechanical revision 

of private vehicles 

 
 

Table 4.  
Results of the evaluation metrics of the Forecasts Demand 

Techno Mechanical Review Private Vehicles 

Model RMSE MSE MAE MAPE r2_score 

LSTM 

Private 

Vehicles 

9.984 99.686 7.798 0.333 0.203 

CNN 

Private 

Vehicles 

9.599 92.158 7.705 0.349 0.263 

RNN 

Private 

Vehicles 

9.820 96.439 7.803 0.354 0.229 

GRU 

Private 

Vehicles 

10.001 100.037 7.835 0.333 0.200 

MLP 

Private 

Vehicles 

9.844 96.916 7.767 0.343 0.225 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .6. Results evaluation metrics Forecasts Demand Techno Mechanical Review Private Vehicles 

 

In relation to the forecast of demand for techno mechanical 

revision for private vehicles, in which there is again a 

demand classified as mild, with a Coefficient of Variation 

(CV²) of 0.244 and an Aggregate Demand Index (ADI) of 

1.005, indicators similar to those of motorcycles, which 

show a consistent and predictable demand, being a 

generally favourable scenario for predictive models. 

However, the results of neural network models show 

significant variations in their performance, indicating the 

existence of inherent challenges in accurately predicting 

this specific demand. The LSTM model for private vehicles 

has an RMSE of 9.984, which, compared to a mean demand 

of 27.5 and a standard deviation of 13.6, indicates a 

substantial error in the predictions. This level of RMSE, 

which is above 35% of the average, points to considerable 

inaccuracies in the model. However, its r2_score of 0.203 

suggests a moderate ability of the model to explain the 

variability of the data, although not optimally. This 
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performance may be influenced by the increased 

complexity in particular vehicle demand trends, which 

might not be fully captured by the LSTM architecture. The 

CNN model shows an RMSE of 9.600 and a r2_score of 

0.263, indicating better performance compared to the 

LSTM model. This result can be attributed to the 

effectiveness of CNNs in extracting relevant features from 

data, especially in time series with more complex patterns. 

Although the RMSE remains high, the improvement in 

r2_score suggests better capture of data variability. 

The RNN and GRU models show similar performance, 

with RMSEs of 9.820 and 10.002, respectively, and 

r2_scores of 0.229 and 0.200. These results are consistent 

with the nature of these models, which are effective at 

capturing short-term dependencies in time series. 

However, the magnitude of the RMSE indicates that both 

models face challenges in accurately predicting demand for 

particular vehicles. the MLP model shows an RMSE of 

9.845, which is slightly lower than some of the other 

models, and a r2_score of 0.225. Although MLP models 

are generally considered less sophisticated for time series, 

this result could indicate that demand for particular 

vehicles fits well with the linear and nonlinear relationships 

that MLPs can efficiently model. 

In terms of error metrics such as MAE and ASM, all 

models exhibit similar values, suggesting that although 

there are differences in their RMSE and r2_scores, the 

magnitude of absolute errors is comparable between 

models. This indicates a consistency in the overall accuracy 

of the predictions, although none stand out for 

exceptionally high performance. 

In general, the models show an ability to predict demand, 

none of which stands out for exceptionally high 

performance. This may be due to the inherent complexity 

in particular vehicle demand patterns, which might require 

more advanced approaches or a combination of models to 

improve forecast accuracy. These results underline the 

importance of continuous evaluation and optimization of 

models in the field of demand prediction in Automotive 

Diagnostic Centres. 

4.3. Demand Forecast Results Techno Mechanical 

Revision of Public Service Vehicles 

Conventionally, in mathematical equations variables and 

anything that represents a value appear in italics, while 

chemical equations are displayed in roman, except for 

positional prefixes. The styles of this template reflect that 

general difference, but you can change that as required. 

You may choose to number equations for easy referencing. 

In that case the number should appear at the right margin. 

 
Table 5 

 Results of the evaluation metrics of the Forecasts Demand 

Techno Mechanical Review Public Service Vehicles 

Model RMSE MSE MAE MAPE r2_score 

LSTM 

Public 
1.205 1.453 0.924 11885235000.0 0.035 

CNN 

Public 
1.263 1.596 0.947 111104026000.0 -0.059 

RNN 

Public 
1.217 1.483 0.923 11294165000.0 0.015 

GRU 

Public 
1.202 1.446 0.924 11538203000.0 0.039 

Public 

MLP 
1.231 1.515 0.912 104596614000.0 -0.006 

 

In the analysis of the demand for techno mechanical 

revision for public service vehicles, we are faced with a 

scenario of high variability and intermittency, 

characterized by a Coefficient of Variation (CV²) of 0.966 

and an Aggregate Demand Index (ADI) of 1.444. These 

metrics classify demand as uneven, presenting a significant 

challenge to forecasting models due to their 

unpredictability.  

For this case, the LSTM model has an RMSE of 1.206. 

Given that the mean demand is 1.404 and the standard 

deviation is 1.381, an RMSE of this magnitude suggests 

that the errors in the model's predictions are comparable to 

the natural variability of the data. This indicates 

reasonable, but not exceptional, accuracy in a context 

where demand is inherently unpredictable. 

The CNN model, with an RMSE of 1.264 and a negative 

r2_score of -0.060, shows a slightly higher error in 

predictions compared to the LSTM. The negative r2_score 

here implies that the CNN model is not only inaccurate, but 

also ineffective at capturing the variability of the data, 

which may be due to the complex nature of the time series 

in question. This decrease in performance can be attributed 

to the fact that CNNs, despite their effectiveness in pattern 

recognition, may not be as well suited to capturing the 

complex temporal dependencies present in utility vehicle 

demand data. 
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Fig .7. Results evaluation metrics Forecasts Demand Techno Mechanical Review Public Service Vehicles 

 

The RNN and GRU models, with RMSEs of 1.218 and 

1.203 respectively, show similar performance to LSTM. 

These RMSE values, slightly higher than that of the LSTM 

model, indicate comparable accuracy, but with a slight 

decrease. The mildly positive r2_scores of these models 

suggest a moderate ability to explain the variability of the 

data, although there is still room for improvement. The 

MLP model, with an RMSE of 1.231 and a r2_score of -

0.006, reflects unsatisfactory performance compared to the 

other models. This result underscores the difficulty of 

applying direct-fed neural networks, such as MLPs, to 

problems where temporal dependencies and unpredictable 

variations are prominent. 

Unlike the previous cases, in the demand forecast for 

techno mechanical overhauls of public service vehicles, 

none of the models achieved outstanding performance, 

reflecting the challenges inherent in demand prediction in 

scenarios of high variability and intermittency. This 

suggests the need to explore more advanced or hybrid 

approaches to improve accuracy in such contexts. 

4.4. General analysis of results 

In general, this study evidenced significant variations in the 

performance of the neural network models in the prediction 

of demand for the three services evaluated in an 

Automotive Diagnostic Centre (ADC). First, the 

classification of demand in this study was based on two key 

indicators: The Coefficient of Variation (CV²) and the 

Aggregate Demand Index (ADI). These metrics are crucial 

to understanding the nature of demand for each of the 

services analysed. Generally speaking, a high CV² coupled 

with a high ADI characterizes "uneven" demand, which 

translates into high variability and intermittency in 

demand. For motorcycle techno-mechanical reviews, 

ranked with mild demand, no neural network model 

showed exceptional performance. The Bidirectional LSTM 

model, while exhibiting reasonable accuracy with an 

RMSE of 6.453 and a r2_score of 0.018, did not fully 

capture demand dynamics. The CNN, RNN, and GRU 

models exhibited similar returns to the LSTM in terms of 

RMSE, but with limitations in addressing data variability. 

The MLP model, despite its simplicity, registered the 

highest inaccuracy. 

In the case of private vehicles, which also presented a soft 

demand, a similar trend was observed. The LSTM model 

performed moderately with an RMSE of 9.984, while the 

CNN model showed better performance, possibly due to its 

ability to extract complex features from time series. The 

RNN, GRU, and MLP models performed slightly better 

than the LSTM, though not significantly noting, reflecting 

the complexity inherent in the demand for these vehicles. 

Finally, in the analysis of public service vehicles, 

characterized by highly variable and intermittent demand, 

the challenge was even greater. The LSTM model showed 

reasonable accuracy with an RMSE of 1.206, but all 

models, including CNN, RNN, GRU, and MLP, faced 
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significant difficulties in adequately capturing data 

variability, as indicated by their r2_scores. The MLP 

model, although with a similar RMSE to the other models, 

demonstrated notable limitations in this context of high 

variability. 

The main reason behind the suboptimal results obtained in 

this study is due to the inherently unpredictable and highly 

variable nature of demand in the context of a CDA. Neural 

network models, while advanced and capable of capturing 

complex patterns, have limitations when faced with data 

with high variability and little consistency. In the case of 

motorcycles and private cars, where demand is classified 

as soft, models still face difficulties due to the subtlety of 

variations in demand that are not always captured by the 

models. For utility vehicles, with demand classified as 

uneven, the challenge is intensified due to high irregularity 

and low predictability, resulting in RMSEs and r2_scores 

reflecting a limited ability of the models to make accurate 

forecasts.  

On the other hand, the complexity of the time series and the 

possible presence of nonlinear patterns and complex 

temporal relationships in demand data add another layer of 

difficulty. Models such as LSTM, CNN, RNN, GRU, and 

MLP, while versatile and powerful, may not be fully 

equipped to handle such levels of irregularity without 

specific tweaks and optimizations. Additionally, the 

applicability of the models may be limited by the need for 

a large amount of historical data and the computational 

complexity involved in training deep learning models. 

Another challenge encountered was the selection and 

optimization of suitable hyper parameters for each model, 

which is crucial for its performance, which turns out to be 

an intensive and technical process. 

This study reveals that, although neural network models 

have considerable potential, their effectiveness is limited in 

highly variable and unpredictable demand scenarios, as is 

the case in Automotive Diagnostic Centres. This finding 

underscores the need for continued research and 

development in the field of demand forecasting, especially 

in contexts where irregularity is a dominant feature. In 

addition, it suggests the possibility of exploring hybrid 

approaches or more specialized models that can better 

handle variability and intermittency in demand. 

5.1 Reas of future research 

Future research could explore the integration of external 

data, such as economic or climatic variables, to improve 

the accuracy of models in CDAs. In addition, it would be 

beneficial to investigate hybrid approaches that combine 

different types of deep learning models or that integrate 

machine learning techniques with traditional statistical 

methods. Another area of interest could be the development 

of models that dynamically adapt to changes in demand 

patterns, thereby improving their ability to handle 

variability and intermittency in different automotive 

diagnostic service contexts. 

5. Conclusion 

This study on demand prediction in Automotive Diagnostic 

Centres (CDAs) using neural network models reveals 

critical points in both theory and practical application. In 

situations where models fail to achieve optimal results, a 

plausible explanation lies in the intrinsic nature of demand 

data. High variability, evidenced by a high CV², and 

significant intermittency, marked by a high ADI, can 

seriously limit the predictive capacity of any model, 

including neural networks. This understanding is crucial 

not only for model selection but also for providing a 

perspective through which forecasts can be interpreted and 

improved. It is essential to recognize the nature of demand 

in each service category, which allows for adjusting 

performance expectations and developing more resilient 

and adaptive management practices in CDAs. 

In addition, the variability in model performance by service 

type highlights the importance of considering the unique 

characteristics of each demand segment when applying 

forecasting models. External factors such as economic 

conditions, government regulations, and market trends play 

a crucial role and can significantly influence demand. 

Therefore, these factors must be considered to improve the 

accuracy of predictive models. The choice of the most 

appropriate model for each service in a CDA should be 

based on a detailed assessment of the specific needs and 

demand characteristics of each service. 

It is highlighted that, although Deep Learning models are 

powerful tools, their effectiveness is closely linked to the 

detailed understanding of demand patterns. The ability to 

accurately predict demand can facilitate better resource 

allocation, improve customer satisfaction, and optimize 

operational efficiency in CDAs. Future research should 

focus on the integration of external variables, the 

development of hybrid and adaptive models, and the 

implementation of mitigation strategies to improve the 

management of uncertainty in demand. 
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