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Abstract  
 

Probability and simulation techniques have been applied to analyse automobile workshop queue performance, but no study has been 

conducted to identify factors that affect automobile workshop queue performance. It is necessary to identify the factors that influence queue 

performance to design automobile workshop queue system. This study uses the design of experiments method to investigate the factors that 

influence queue performance. The number of servers, server area, number of phases, number of workers, and arrival rate are among the 

numerical factors evaluated. There are two categorical factors to consider: layout type and worker experience. Their effect on queue 

performance, including queue cost, service time, average customer waiting time, and number of customers, is examined. Additionally, this 

study seeks to discover appropriate experimental designs. There are three different experimental designs used. The first design is a split plot 

2VI
7−1 that considers arrival rate as a categorical factor. The second design is a robust design that considers arrival rate as a source of 

variation. The third design is a full split plot design that considers arrival rate as a numeric factor. According to this study, a full split plot 

design offers higher accuracy in identifying factors influencing queue performance. The queue performance is significantly affected by the 

number of servers, phases, workers, arrival rate, and layout. This study paves the way for future studies to determine the optimal point of 

queue performance.  
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1. Introduction  

Implementing a queue system is a common practice in 

many services. When a customer enters the service 

facility, the queue begins. Server performance 

measurement evaluates a server's ability to effectively 

meet the needs of customers (Nguyen & Phung-Duc, 

2022). A queue system is a method or procedure for 

organizing and managing a line of people or entities 

waiting for service or accessing a specific facility, service, 

or process. This research focuses on the automobile 

workshop queue system. A conventional automobile 

workshop queue system, as depicted in Figure 1, 

incorporates multiple servers, each of which performs 

automobile repair. A mechanic attends to each server. The 

entire task is completed in a single phase. Automobile 

service encompasses a variety of tasks, such as vehicle 

maintenance, retrieval of spare parts, and quality 

inspection. The mechanic will attend to the automobiles 

that come to the workshop as soon as they arrive. The 

mechanic inspects the components to determine which 

ones need to be repaired or replaced. Subsequently, the 

mechanic then fills out the spare parts request form and 

submits it to the authorized spare parts department. The 

replacement component will be given to the mechanic and 

installed in the automobile. The mechanic examines the 

automobile thoroughly to determine its optimal working 

condition (Raghuwanshi & Goyal, 2015). 

 

 
Fig. 1. Conventional automobile workshop queue  

system or type A layout 

The presence of lines at automobile workshop facilities 

has a negative impact on customer satisfaction. Customers 

will be dissatisfied if the queue is too long. In addition, 

queues incur costs, such as customer waiting costs and 

capacity costs. The customer waiting costs are related to 

the costs incurred to accommodate the queue, which may 

include providing space, queue facilities, etc. Capacity 

costs are associated with the provision of a queue system 

and include worker, equipment, and resource costs. As the 

number of customers waiting increases, so do the costs of 

queue. To optimize the queue performance and reduce 

related costs, many efforts have been undertaken to 

integrate several factors, including service time, number 

of servers, and arrival rate (Vijay Prasad et al., 2020).  

Analysis of automobile workshop queue performance is 

typically conducted with a queue theory-based method. 

The average arrival rate and average service time or 

service rate are the only two factors utilized by queue * Corresponding author Email address: sugianto.welly@gmail.com 
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theory. These two factors are used to predict a variety of 

responses, including the average number of materials or 

people being served, the average number of materials or 

people in the system, the average time that people or 

materials are in queue, system utilization, the probability 

of zero units in the system, the probability of n units in the 

system, the number of customers in the system, and the 

probability that an arrival must wait. As the arrival rate is 

an uncontrollable factor, the average arrival rate is utilized 

to predict queue performance. Queue theory makes 

numerous assumptions to characterize the queue system; 

therefore, calculations will be erroneous if the 

assumptions are not met. Queue theory ignores other 

factors that influence queue performance (Yaduvanshi et 

al., 2019). Priority-based queue theory approaches are 

also utilized to estimate queue performance. The analysis 

is conducted using identical factors, specifically the 

arrival rate and service rate (Aziziankohan et al., 2017).  

The performance of the automobile workshop queue 

system is also analyzed using the layout arrangement 

(Premono et al., 2020) and server area (Almomani & 

Almutairi, 2020). Break-even is the criterion that 

determines which layout is selected. Arrival rate, service 

rate, and other factors that could potentially influence the 

queue performance are not considered in the analysis.  

Gender and age of workers are identified as factors that 

influence queue performance (Siregar, 2020). This must 

be investigated further, as the age of workers is equivalent 

to their level of experience, which impacts the queue 

performance. 

Also utilized to estimate queue performance is the number 

of servers. Experiments are conducted utilizing both 

single and multiple servers. The findings of the analysis 

indicate that the implementation of multi-servers in the 

queue system enhances its performance through the 

reduction of customer queueing, acceleration of service 

time, and minimization of queue costs. Typically utilized 

as a factor, Service time is regarded as a response in this 

study (Bannikov et al., 2018).  

Motivated by previous literature, it is necessary to identify 

factors that impact the automobile workshop queue 

performance simultaneously. Analysis is carried out 

simultaneously to determine the factors that have 

dominant impacts. The design of experiments is used to 

determine whether these factors have a significant impact 

on the queue performance. This research also identifies 

the design of the experiment model with the highest 

accuracy for identifying the factors that influence the 

queue performance. 

2. Literature Review 

2.1 Factors used for queue performance analysis. 

The Markov chain is the basic way to evaluate queue 

performance. The Markov chain is a stochastic model that 

is built using a probabilistic technique. The probability of 

each object in the queue is highly dependent on the state 

attained in the previous event. This approach uses only 

the probability value of each event (Litvak, 2022). 

Evaluation of queue performance is carried out using the 

birth-and-death process approach. The term birth refers to 

the arrival of a new customer. The term death refers to the 

departure of a served customer. The birth-and-death 

process is a special type of markov chain. The birth-and-

death process uses only two factors, the average service 

rate, which is assumed to have an exponential 

distribution, and the average arrival rate, which is 

assumed to have a poisson distribution. The birth and 

death process approach derives several queue models, 

such as M/M/S, M/M/1, M/M/s/K, and M/M/1/K. This 

approach estimates the characteristics of the queue system 

(Pang et al., 2022). 

Analyzing queue systems also employs the queue network 

methodology. At a specific point or stage, customers are 

in and out. A connection exists between this point or 

phase and another. At this point, customers have the 

option to proceed to an alternative point or exit the queue 

system. Modeling and simulation are nearly analogous to 

this approach. It is presumed that the distributions of the 

arrival rate and service rate are free (Moka et al., 2023). 

Queue systems are also evaluated using stochastic 

scheduling. This methodology assumes that the workload 

to be performed is determined at random by the customer 

requests that are queued. Minimizing costs and flowtime 

are the primary objectives. Additionally, arrival rate and 

service time parameters are incorporated into this method 

to estimate the attributes of the queue system (Huang et 

al., 2022). 

Queue systems are also examined using priority models. 

Priority is given to customers who have a greater priority 

for service. This is implemented to provide service to 

customers who require assistance immediately, thereby 

preventing them from exiting the queue system. The 

analysis is conducted using two key factors: arrival rate 

and service time. The objectives of this analysis are to 

estimate service utilization, the average amount of time 

customers spend in the system, and the number of 

customers present in the system (Walraevens et al., 2022). 

The simulation approach uses random numbers to 

estimate the characteristics of the queue system by 

considering several factors such as arrival rate, service 

time, queue behavior, arrival process, system capacity, 

and calling population. These factors are used to estimate 

the number of customers in the queue system, the average 

customer waiting time, and server utilization (Blanchet, 

2022). 

All the previously described approaches utilize only a 

subset of factors, including arrival rate and service time, 

and disregard other factors that could potentially impact 

the queue performance. In addition, as shown in Table 1, 

queue system analyses are conducted utilizing a variety of 

techniques and other factors. 
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Table 1 

Previous research 
Methods Factors Responses Objectives Sources 

Multi-priority strategy Average arrival rate, 
Arrival service rate 

Mean waiting time To minimize customer waiting time (Okonkwo et al., 
2019) 

Reservation and customer arrival 

schedule management are managed 
through mobile application-based 

information systems 

Average arrival rate, 

Arrival service rate 

Number of customers or queue 

length 

To minimize the number of queues 

and increase the number of customers (Windarto et al., 
2021) 

Dynamic programming Admission control and 

service rate 

(Yom-Tov & 

Chan, 2021) 

CNN-based vehicle detection 

model 

Arrival rate (Umair et al., 

2021) 

Moment’s estimator Average arrival rate, 

Arrival service rate 

Queue length, waiting time, 

queue cost 

To minimize queue length, average 

customer waiting time and queue cost 

(Ravner & 

Sakuma, 2021) 

Layout preparation Distance between 

layout 

Travel times and distances To reduce movement time and 

distance between departments. 

(Kommula et al., 

2015) 

Fractional programming Number of workers Customer delay and 

abandonment costs, operating 
costs, and costs for changing 

staffing levels 

To minimize queue costs 

(Xiao et al., 2022) 

Meta-heuristic algorithm Distance, inventory 
control in the main 

blood center, product 

shortage, and queueing 
systems 

Customer delay and 
abandonment costs, operating 

cost 
(Aghsami et al., 

2023) 

Fuzzy environment Number of servers Customer delay and 

abandonment costs, operating 
cost 

(Panta et al., 2021) 

Queue theory and discrete 

simulation 

Arrival rate, service 

rate 

The cost of service and the cost 

associated with waiting for 

service 

(Burodo et al., 
2021) 

Decomposition-based solution 

technique 

Average arrival rate, 

Arrival service rate 

Server utilization, projected 

throughput time, and predicted 

queue lengths 

To increase service utilization and 

minimize queue lengths 
(Van Ommeren et 

al., 2020) 

Server movements Server movements such 
as delivery, pickup, and 

dual transactions 

Number of customers To minimize the number of customers 
(Li et al., 2020) 

Non-convex nonlinear program Interarrival-time 
distributions 

Mean waiting time To minimize the average customer 
waiting time 

(Chen & Whitt, 
2022) 

Non-linear mathematical 

modelling approach 

Number of servers Waiting times, number of 

customers in queue and servers’ 

utilization rates 

To minimize waiting time, increase 

service utilization, and minimize the 

number of customers 

(Franco et al., 
2022) 

Fluid deterministic model 

technique 

Number of servers, 

arrival rate 

Number of customers, waiting 

times, and service time 

To minimize the number of customers 

and waiting time 
(Zychlinski, 2023) 

Moment estimator Service time, arrival 

rate 

(Ravner & Wang, 

2023) 

Simulation, and queue theory Service time, arrival 

rate 
(Irisbekova, 2021) 

Queue theory, swot analysis Service time, arrival 

rate 

(Bannikov et al., 

2018) 

Markovian queue model Service time, arrival 

rate 

(Kothandaraman & 

Kandaiyan, 2023) 

Queue theory Service time, arrival 
rate 

(Vasanthi & 
Santhi, 2022) 

Queue management Service time, arrival 

rate 

Customer satisfaction 

coefficients 

To maximize customer satisfaction (Kondrashova, 

2021) 

Real-time system Service time, arrival 
rate 

Queue length To minimize the number of customers (Okaishi et al., 
2021) 

Anova, and queue theory Service time, arrival 

rate 

Waiting time for customers, and 

service time 

To minimize service time and 

customer waiting time 
(Anne et al., 2021) 

Discrete-event simulation model 
"AS-IS" 

Business process 
reengineering 

Number of customers, average 
waiting time, service time, 

queue cost, number of leavers 

To minimize all responses 
(Revina & 

Trifonova, 2021) 

Queue theory and probability Service time, arrival 

rate 

Traffic intensity, expected 

number of customers at a steady 
rate, expected queue length, 

expected waiting time, total 

customers waiting, and mean 
number of customers in the 

system 

(Michael K. et al., 

2023; State et al., 

2022) 

Critical path method Activity Car maintenance and repair 
times 

To minimize service time (Marit et al., 2020) 
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Table 1 shows that the queue system analyses use several 

factors, such as the number of servers, the number of 

workers, the server area, the arrival rate, and the layout 

type, but the analyses are not carried out simultaneously 

so that the factors that have a dominant influence on 

queue performance cannot be identified. Analysis of the 

factors that have a dominant influence on queue 

performance is very important because it helps 

management in designing the queue system by 

considering the dominant factors to improve its 

performance.  

2.2 Design of experiments 

Researchers have utilized design of experiments (DoE) to 

enhance the performance of queue systems. Among the 

parameters considered are the number of servers, cashiers, 

and interarrival rate. The relevant responses are queue 

length and sales rate (Galankashi et al., 2016). DoE is a 

procedure for optimizing manufacturing processes, but 

DoE can also be utilized in non-manufacturing 

environments. DoE can be applied to several service 

sectors such as healthcare, retail, logistics, education, 

marketing, after-sales service, and hospitality. Screening, 

factorial designs, taguchi, response surface technique, and 

split plot are among the experiments conducted. Several 

studies indicate that DoE has been utilized successfully in 

the service industry to identify factors affecting queue 

performance (Antony et al., 2020). 

A queue system is part of supply chain management. Its 

performance is influenced by several factors. DoE can 

identify several factors that simultaneously have a 

dominant impact on queue performances, such as the 

number of errors, service time, and distance between 

departments that can minimize failure (Glistau et al., 

2017). 

The DoE approach is also integrated with the queue 

theory approach. For example, queue on the internet of 

robotic things system is optimized using a queue network-

based performance model by considering factors that have 

impact on queue performance determined by the DoE 

approach (Feitosa et al., 2021).  

Additionally, DoE is utilized to optimize hospital queue 

systems. Several factors are examined using DoE, 

including the quantity of beds, receptionists, nurses, and 

cardiologists, as well as community workers. Factors that 

have a significant influence on the queue performance are 

used to design a queue simulation system (Bahari et al., 

2021). 

Using the DoE method, the car queue system at gas 

station is also evaluated. DoE identifies factors that affect 

queue performance significantly. Utilizing a response 

surface methodology, optimization is conducted in 

consideration of these factors. The utilized model is a 

second-order equation. The existence of quadratic and 

interaction is demonstrated by the second order equation. 

DoE has the benefit of simultaneously identifying factors 

by minimizing correlation between factors, thereby 

improving the accuracy of estimation (Asadzadeh et al., 

2021). 

2.3 Research gap 

Prior studies used simulation, queue theory, and other 

techniques to assess the performance of the automobile 

workshop queue system. Prior studies merely utilized the 

average arrival rate and average service time to predict 

and evaluate the queue performance. Other studies 

utilized additional factors, such as the number of workers, 

the number of servers, and queue discipline. Little 

emphasis has been placed on evaluating the factors that 

determine the performance of automobile workshop 

queue system. The factors that contribute to the 

performance of the automobile workshop queue system 

have not been thoroughly investigated yet. DoE 

implementation to ascertain the significance of factors 

affecting queue performance has also never been 

conducted. This study introduces several new factors, 

including number of phases and server area. The 

performance of the automobile workshop queue system 

includes queue cost, service time, average customer 

waiting time, and the number of customers. This study not 

only identifies factors that influence the automobile 

workshop queue performance but also identifies 

appropriate designs for the experimental model. This 

research is conducted at an SUV automobile maintenance 

business with a daily capacity of fifty cars. This research 

examines routine maintenance services. 

3. Methodology 

3.1 Factors 

There are several factors to consider: 

1. Number of servers (x1) as numeric factor. 

The number of servers affects queue performance, 

particularly in the number of customers. If more 

servers are used, queue length will be smaller. Eighty 

percent of customers, according to company data, 

request routine maintenance services. Routine 

maintenance services employ four terminals. To 

ascertain the impact of the number of servers on the 

response, the number of servers varies between two 

levels, 4 and 8 workstations (Asadzadeh et al., 2021; 

Bahari et al., 2021; Feitosa et al., 2021; Srivastava, 

2015). 

2. Server Area (X2) as numeric factor.  

Each server has a space allocated to automobile 

maintenance and repair. In analysis, the server area is 

divided at two levels, 9 square meters and 12 square 

meters. 

3. Number of phases (x3) as numeric factor. 

 In a single phase, all stages of routine maintenance 

services are carried out by a worker. If the task is 

divided into three phases, the following activities will 

be included in each phase: 

The first phase consists of:  
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a. Inspecting the condition of the brake pads and 

tires. 

b. Examining the oil leak, the ball joint, the tie rod, 

the wheel bearing, and the shock absorber leak. 

The second phase consists of: 

a. Examining radiator water, windshield washer fluid, 

windshield wiper rubber, brake fluid, and radiator 

water for leaks. 

b. Examining exterior and interior lighting, engine 

and body electricity, and heat. 

c. Inspecting the air conditioning unit. 

d. Examining the battery's performance. 

The third phase consists of engine tune-up. 

4. Number of workers per phase (x4) as numeric factor. 

The impact of the number of workers per phase on 

response is investigated in this study. Between one 

and two workers are combined for each phase.  

5. Arrival rate (x5). 

The arrival rate will be regarded as a categorical, 

variance source, and numeric factor in this study. 

Experiments will be conducted on the value between 

low and high. 

6. Layout Type (𝑧1) as categorical factor. 

Types A and B correspond to two discrete variations 

of layouts. The Type A model, which is depicted in 

Figure 1, is widely employed by most workshops. As 

illustrated in Figure 2, the Type B layout permits 

customers to remain within the car. To facilitate 

understanding, type A and type B factors are assigned 

the values -1 and 1, respectively.  

 

 
Figure 2. The type B layout 

 

7. Worker experience (z2) as categorical factor 

Worker experience is a categorical factor with values 

ranging from -1 to 1. A non-certified worker with one 

to three years of work experience is deemed to have 

level -1 or low-level experience. A worker who has 

successfully completed training and possesses over 

three years of professional experience is classified as 

level 1 or high-level. 

3.2 Responses 

There are several responses that will be examined as 

follows: 

1 Queue costs are divided into two categories: capacity 

costs and customer waiting costs (Vijay Prasad et al., 

2020). Capacity costs include resource costs and the 

cost of providing equipment or equipment 

depreciation. Customer waiting costs include the cost 

of waiting space, and the opportunity cost incurred 

because of the customer's refusal to wait. 

2 The average number of customers in the queue system 

per hour consists of the number of customers in the 

line who are expecting to receive service and the 

number of customers who are being served.  

3 Average customer waiting time per day is the average 

time spent by customers to be in the queue line and to 

get service in one day. 

4 Service time is the time it takes to repair one car. 

Service time is one response that needs to be 

considered in making service designs (Galankashi et 

al., 2016). 

 

3.3 Design of experiments 

 

1. Design of experiments for arrival rate is considered 

as categorical factor. 

There are seven factors that are analyzed to determine the 

queue performance. The utilized model is as follows: 

 

𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝐬 = 𝛂 + ∑ 𝛃𝐣𝐱𝐣
𝟒
𝐣=𝟏 + ∑ 𝛃𝐳𝐢

𝐳𝐢
𝟑
𝐢=𝟏 +

∑ ∑ 𝛃𝐢𝐣𝐱𝐢𝐱𝐣
𝟒
𝐢<𝐣<𝟐

𝟒
𝐢=𝟏 + ∑ ∑ 𝛃𝐳𝐢𝐣𝐳𝐢𝐱𝐣

𝟒
𝐣=𝟏

𝟑
𝐢=𝟏   

(1) 

 

Three categorical factors are represented by equation 1, 

including arrival rate, layout type, and worker experience. 

With generator I = ABCDEG, a split plot 2VI
7−1 design is 

used to calculate the model's coefficient as indicated by 

equation 1. The design of the experiments is depicted in 

Figure 3.  

 

 
Figure 3. DoE for arrival rate as categorical and controlled factor 

 

All factors are combined at two levels, denoted as low and 

high, as illustrated in Figure 3. Low magnitude (26-35 

cars per day) and high magnitude (36-45 cars per day) are 

the two values assigned to the arrival rate category factor. 

One factor and the interactions of five factors, two factors 

and the interactions of four factors, and three factors and 

the interactions of three factors are all correlated. 

Empirically, interactions involving more than two factors 

are disregarded because they rarely have a significant 
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impact on responses. This construction has an orthogonal 

design. The split plot 2VI
7−1 design is repeated once so that 

the significant factors can only be found using a half 

normal plot. 

 

2. Robust design of experiment. 

The arrival rate is uncontrollable because it is challenging 

to maintain customer arrivals. Variation in the arrival rate 

will affect the variance or standard deviation of the 

responses. The design model consists of inner and outer 

designs (Hamzaçebi, 2021; Wahid et al., 2020). 

Controllable factors are used in inner design. Outer design 

is used for arrival rate that cannot be controlled (Ashenafi 

& Geremew, 2020). The inner design model employed is: 

 

𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝐬 = 𝛂 + ∑ 𝐳𝐢
𝟐
𝐢=𝟏 (∑ 𝛃𝐣𝐱𝐣

𝟒
𝐣=𝟏 +

∑ ∑ 𝛃𝐢𝐣𝐱𝐢𝐱𝐣
𝟒
𝐢<𝐣<𝟐

𝟒
𝐢=𝟏 )  

(2) 

 

As shown in Equation 2, the arrival rate has been 

removed, leaving only two categorical factors and four 

numerical factors in the equation. 

 
Figure 4. Robust design 

 

A split plot 𝟐𝐕
𝟔−𝟏 design is used for the inner design and is 

depicted by Figure 4. Each factor and their interaction are 

not mutually aliasing. Two-factor interactions are alias for 

three-factor interactions. This indicates that the inner 

design is orthogonal. The outer design is an arrival rate 

factor with two levels of variations. Each inner design 

experiment is replicated twice at both high and low arrival 

rates, as shown in Figure 4. The standard deviation and 

mean of the responses are utilized in the analysis. The 

robust design experiment seeks to ascertain the effect of 

controlled factors on responses and variances (Wahid et 

al., 2020).  

Experiments are being carried out with a daily arrival rate 

of 35 cars. The arrival rate changes by +/- 5 cars during 

the experiment. The low arrival rate is less than -5 

automobiles per day. The high arrival rate is within +5 

cars/day.  

 

3. Split plot full design. 

The split plot full design consists of seven factors, as 

shown in Figure 5. Figure 5 shows that arrival rate is 

considered a controlled and numeric factor.  

 
Figure 5. Full design 

 

There are 128 experiments that must be conducted to 

identify the factors that influence the responses. Equation 

3 represents the mathematical model employed in the 

analysis. As demonstrated by Equation 3, the arrival rate 

is explicitly accounted for and designated as a numerical 

factor within the mathematical model. 

 

𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝐬 = 𝛂 + ∑ 𝛃𝐣𝐱𝐣
𝟓
𝐣=𝟏 + ∑ 𝛃𝐳𝐢

𝐳𝐢
𝟐
𝐢=𝟏 +

∑ ∑ 𝛃𝐢𝐣𝐱𝐢𝐱𝐣
𝟓
𝐢<𝐣<𝟐

𝟓
𝐢=𝟏 + ∑ ∑ 𝛃𝐳𝐢𝐣𝐳𝐢𝐱𝐣

𝟓
𝐣=𝟏

𝟐
𝐢=𝟏   

(3) 

 

The arrival rate is maintained at a constant level to ensure 

an accurate estimate. The average daily arrival rate is 50 

vehicles, so the experiment is conducted with two daily 

arrival rates of 20 and 30 cars. This is achieved through 

the booking mechanism. 

4. Results 

4.1 Design experiment for arrival rate is considered as 

categorical factor. 

According to Table 2, the number of servers, number of 

phases, and arrival rate all have a significant impact on 

queue cost. Table 2 reveals that the number of servers has 

a positive impact. The queue cost increases with the 

number of servers. According to previous research, 

increasing the number of servers reduces the total queue 

cost to a certain threshold, after which the total queue cost 

rises when the cost of providing a server exceeds the 

queue cost. Both the number of phases and the number of 

workers per phase have a detrimental effect on the queue 

cost. This contradicts previous research, which indicates 

that the number of phases and workers ought to have a 

positive effect on queue costs. The low R square value of 

0.533 indicates a lack of fit.   

The number of phases, the number of workers, and their 

interactions all negatively affect service time, as shown in 

Table 2. Increasing the number of phases and workers 

reduces service time. A high R square value of 0.9458 

indicates a good fit. 

Table 2 indicates that the number of servers, phases, 

workers per phase, and layout type all have a significant 

effect on average customer waiting time. Additionally, 

Table 2 shows that the average customer waiting time is 

negatively impacted by the number of servers, number of 

phases, number of workers, and layout type. The average 
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customer waiting time can be decreased by using a type B 

layout and by adding more phases, servers, and workers. 

The R square value of 0.9293 shows a good fit.  

Table 2 demonstrates that the number of customers is 

significantly impacted by several factors. The regression 

coefficient for the number of servers is positive. This 

suggests that expanding the number of servers will 

increase the number of customers within the system. This 

contradicts previous research findings. The low R square 

value of 0.6792 indicates a lack of fit. The residual 

variance is shown to be non-uniform across Figures 6a 

and 6b. The factor values exhibit a correlation with the 

residual variance. As the value of the factor increases, the 

residual value diminishes. This is due to the fluctuating 

nature of the arrival rate, which causes response values to 

vary. 

 
Table 2 

Estimation of each response's coefficient when the arrival rate is categorical. 

Factor 
Coefficient Estimate for Each Response 

Queue Cost Service Time Average Customer Waiting Time Number of Customers 

Layout type (𝒛𝟏) -  -  -0.3757 - 

Servers (𝒙𝟏) 1.24E+06 -  -0.1562 1.47 

Phases (𝒙𝟑) -1.60E+06 -0.636 -0.6213 -0.6074 

Workers (𝒙𝟒) -1.80E+05 -0.2582 -0.2594 -0.4512 

Arrival rate (𝒙𝟓) 1.82E+06 -  -  0.6191 

𝒙𝟏-𝒙𝟑 1.63E+06 -  -  -  

𝒙𝟑-𝒙𝟒 1.41E+06 0.0764 -  -  

𝒙𝟒-𝒙𝟓 -  -  -  -0.5605 

R Square 0.533 0.9458 0.9293 0.6792 

 

Fig. 6. Residual versus factor plot for average customer waiting time with categorical arrival rate. 

 

4.2 Robust design of experiment 

Table 3 demonstrates that the number of workers, the 

number of servers, the number of phases, the layout type, 

and their interactions have significant effects on the queue 

cost. The high R square value of 0.9827 indicates a good 

fit. The number of servers and phases has significant 

impacts on the variance of queue cost. According to Table 

3, the number of servers has a significant negative impact, 

whereas the number of phases has a significant positive 

impact. Because the coefficients of the two factors are 

almost identical but have opposite signs, their effects are 

nullified. A low R square value of 0.3962 indicates a poor 

fit. This indicates that fluctuating arrival rate values have 

no effect on the variance of queue cost.  

Table 3 reveals that the number of phases, the number of 

workers per phase, and their interactions all have a 

significant impact on service time. Service time is 

decreased by increasing both the number of phases and 

the number of workers. Increasing the number of servers 

and workers speeds up repair operations, resulting in a 

reduction in service times. Due to its high R square value 

of 0.9889, the model fits perfectly. Table 3 demonstrates 

that the number of servers and workers has a negative 

effect on service time deviation. The service time 

fluctuates slightly as the number of servers and workers 

increases. The high R square value of 0.9836 supports this 

finding. 

 

 

 

 

 
(a)  

(b) 
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Table 3. 

Coefficient estimates for robust design. 

Factor 

Coefficient Estimate for Each Response 

Queue Cost Service Time Average Customer Waiting 

Time 

Number of Customers 

Response Deviation Response Deviation Response Deviation Response Deviation 

Layout (𝒛𝟏) -3.55E+05 - - - -0.2836 - -0.9092 - 

Servers (𝒙𝟏) -4.47E+06 -0.1745   -0.6332 -0.0801 -0.6166 -1.92 -0.5249 

Phases (𝒙𝟑) 8.15E+05 0.1571 -0.4588 - -0.456 - -1.07 -0.4351 

Workers (𝒙𝟒) 1.58E+06 - -0.2017 -0.37 -0.2073 -0.3681 - - 

𝒙𝟏 - 𝒙𝟑 1.69E+06 - - - - - - - 

𝒙𝟏 - 𝒙𝟒 8.25E+05 - - -0.2078 - -0.1993 - - 

𝒙𝟑 - 𝒙𝟒 9.12E+05 - -0.0801 - - - - - 

𝒛𝟏 - 𝒙𝟏 - - - - -0.0548 - - - 

𝒙𝟑 - 𝒙𝟒 - - - - -0.0783 - - - 

𝒛𝟏 - 𝒙𝟑 - - - - - - 0.667 - 

𝒙𝟏 - 𝒙𝟑 - 𝒙𝟒 4.63E+05 - - - - - - - 

R Square 0.9827 0.3962 0.9889 0.9836 0.9945 0.9871 0.8739 0.660 

The number of servers, the number of phases, the number 

of workers per phase, and the interaction between factors 

all have a negative impact on the average customer 

waiting time, as shown in Table 3. This indicates a 

reduction in the average customer waiting time if these 

factors are integrated at a high level. The high R square 

value of 0.9945 indicates that the proposed equation has a 

good fit. 

The number of servers, the number of workers, and their 

interactions all have a considerable negative effect on the 

average customer waiting time deviation. The response 

deviation is diminished when the two factors are operated 

at high levels. The high R square value of 0.9871 

indicates that the model is well-fitting. 

Table 3 reveals that layout type, number of servers, 

number of phases, and the interaction between layout type 

and number of phases have a significant negative effect 

on the number of customers. The number of customers 

will decrease as more servers and phases are added. The 

high R square value of 0.8739 indicates a good fit.  

According to Table 3, both the number of servers and the 

number of phases have a negative impact on the number 

of customer deviations. The R square value of 0.660, 

however, is relatively low. This indicates a poor fit. In 

general, the response deviation value decreases if the 

factors are operated at a high level, or, in other words, the 

effect of the arrival rate on the response can be eliminated 

if the factors are operated at a high level. Not all factor 

values can be operated at a high level under optimal 

conditions, making this difficult to achieve during the 

optimization process.  

4.3 Full design 

The factors that have a substantial impact on automobile 

workshop queue performance are listed in Table 4. 

Arrival rate that was excluded from the analysis model in 

Table 3 are now included in Table 4's analysis. The 

number of servers has a negative effect on queue cost. 

Increasing the number of servers will decrease queue 

costs. The number of phases, the number of workers, and 

the arrival rate have a substantial positive effect on queue 

cost. Increasing the number of phases causes a 

proportional increase in the number of workers, thereby 

causing an increase in queue cost. With an increase in the 

arrival rate, the costs of losing customers and the cost of 

providing space to accommodate lines both increases. The 

server area does not have a significant impact on queue 

cost. Increasing server or workstation space has no effect 

on queue costs because it has no effect on service time. 

The layout type also has no effect on the queue cost. 

Queue cost is unaffected by worker experience. Workers 

with one to three years of work experience go through the 

same training programs to develop a standard method of 

doing their jobs. As a result, the number of customers 

who leave the queue system is unaffected, and neither is 

the queue cost.  

The number of phases and the number of workers both 

have a significant negative impact on service time. The 

results of this analysis match those of the robust design 

analysis in Table 3. Increasing the number of phases and 

workers improves efficiency while shortening the service 

time. Service time is unaffected by the number of servers, 

server area, worker experience, layout type, or arrival 

rate. The number of servers has a minimal impact on the 

work process, hence their impact on service time is minor. 

The increase in workstation size from 9 to 16 square 

meters has no significant impact on service time. 

Ergonomic considerations led to the choice of a nine-

square-meter workstation space, such that enlarging the 

area would not have a significant impact on service time. 

Worker experience has no impact on service time because 

all workers have been trained to ensure that all work is 

performed in accordance with standards. The layout type 

has no significant effect on service time because it does 

not result in a decrease in service duration. The arrival 

rate has no effect on the service time. The arrival rate has 

the effect of lengthening the queue or increasing the 

number of customers without shortening the service 

duration.  

 
Table 4.  
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Coefficient estimates for full design. 

Terms Queue cost Service time Average customer 

waiting time 

Number of 

customers 

Terms Effect F Effect F Effect F Effect F 

Layout (𝒛𝟏) 43750 1,06 -0,00 0,02  -20,06 3846.62 -0.18 4,14 

Server area (𝒙𝟐)   28125 0,44 -0,05  2,71   0,55 2.94 0.11 1,64 

Servers (𝒙𝟏) -2068187 459,01 0,11  0,12 0,14 0.14 -4,684 1653,86 

Phases (𝒙𝟑) 1503125 242,46 -36,44 12201,06  -36,58 9510.48 -1,086 88,91 

Workers (𝒙𝟒) 1528125 250,59 -31,87  9330,99 -32,33 7431.62 -1,113 93,44 

Arrival rate (𝒙𝟓) 4579688 2250,70  -0,06  0,04  5,16 189.44 4,605 1599,14 

Worker experience (𝒛𝟐) -70312 0,53 -0,37 1,27 0.46 1.5 0.11 0,90 

Servers*Phases 1031250 114.12 - - - - - - 

Servers*Workers 1078125 124.73 - - - - - - 

Phases*Workers 1201563 154.93 - - - - - - 

 𝐑𝟐  97,44%   99,56%  99,45%  97,38% 

 

The analysis results for average customer waiting time in 

Table 4 differ from Table 3. The number of servers has no 

effect on the average customer waiting time. This occurs 

because increasing the number of servers does not reduce 

service time or overall waiting time. The layout has a 

significant negative impact on the average customer 

waiting time. The Type B layout decreases the average 

customer waiting time. The Type B layout eliminates non-

value-added activity, resulting in a shorter average 

customer waiting time. Both the number of phases and the 

number of workers have a negative impact on the average 

customer waiting time. An increase in the number of 

phases and workers reduces service time and the 

customer's waiting time within the queue system. The 

arrival rate increases the average customer waiting time. 

Customers will spend more time in the queue system if 

the arrival rate is higher, as the queue will be longer. 

The number of servers negatively impacts the number of 

customers. Increasing the number of servers increases the 

number of customers serviced, which reduces the number 

of customers. The number of phases and the number of 

workers have a negative effect on the number of 

customers. When the number of phases and the number of 

workers is increased, service time decreases, and the 

number of customers decreases. This result differs from 

the findings in Table 3, which indicate that the number of 

workers has no significant impact on the number of 

customers. The arrival rate adds to an increase in the 

number of customers because, as the arrival rate expands, 

more customers will attend the queue.  

The split plot 2𝑉𝐼
7−1 design is less accurate for determining 

the factors that influence the response. The results of the 

analysis indicate that the linear model for the queue cost 

and the number of customers in the queue system is 

inadequate. Estimates of the effect of factors on responses 

are obscured by the arrival rate.  

The next experiment is carried out using a robust design 

experiment technique. Robust design experiment 

combines inner and outer design. The inner design is a 

split plot 2𝑉
6−1 design. Because there are no correlations 

between single factors, the design is orthogonal. The outer 

design comprises a two-level arrival rate. Each 

experiment on the inner design is repeated twice at each 

level of arrival rate, for a total of four replications. The 

replications are averaged, and a single response is 

obtained, resulting in a single replicated experiment. The 

goal is to eliminate the impact of the arrival rate on 

response variances. The results show that the arrival rate 

causes the response value to fluctuate. Robust design can 

identify factors that influence the response, but the arrival 

rate is the main source of response variance. A robust 

design can eliminate the effect of arrival rate but cannot 

identify the influence of arrival rate on response.  

The split plot full model accurately estimates the factors 

that influence responses. High magnitudes of R square 

indicate a perfect fit. The equations 4 to 7 represent the 

mathematical model that is generated in accordance with 

the full split plot design. 

 

𝐐𝐮𝐞𝐮𝐞 𝐜𝐨𝐬𝐭 = 𝛂 + 𝐳𝟏(𝛃𝟏𝐱𝟏 + 𝛃𝟑𝐱𝟑 + 𝛃𝟒𝐱𝟒 +
𝛃𝟓𝐱𝟓 + 𝛃𝟏𝟑𝐱𝟏𝐱𝟑 + 𝛃𝟏𝟒𝐱𝟏𝐱𝟒+𝛃𝟑𝟒𝐱𝟑𝐱𝟒)  

(4) 

 

𝐒𝐞𝐫𝐯𝐢𝐜𝐞 𝐭𝐢𝐦𝐞 = 𝛂 + 𝛃𝟏𝐱𝟏 + 𝛃𝟑𝐱𝟑 + 𝛃𝟒𝐱𝟒  (5) 

 

𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐜𝐮𝐬𝐭𝐨𝐦𝐞𝐫 𝐰𝐚𝐢𝐭𝐢𝐧𝐠 𝐭𝐢𝐦𝐞 = 𝛂 +
𝐳𝟏(𝛃𝟏𝐱𝟏 + 𝛃𝟑𝐱𝟑 + 𝛃𝟒𝐱𝟒 + 𝛃𝟓𝐱𝟓)  

(6) 

 

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐮𝐬𝐭𝐨𝐦𝐞𝐫𝐬 = 𝛂 + 𝛃𝟏𝐱𝟏 + 𝛃𝟓𝐱𝟓  (7) 

 

Equation 4 can be used to find the optimum point with the 

steepest descent. Equation 4 and 6 indicate that 

determining the optimum point must be carried out on two 

types of layouts to obtain comprehensive results. In the 

absence of the layout type factor in Equations 5 and 7, 

optimization can be performed with a single layout type. 

5. Conclusions 

The split plot full model has the best accuracy in 

identifying factors that affect automobile queue 

performance. The performance is significantly impacted 

by several factors, including servers, workers, phases, 

layout, and arrival rate. Responses are unaffected by the 
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server area. This is a result of the workspace's design 

prioritizing the flexibility and ergonomics of its users. 

Worker experience is a categorical factor that has minimal 

effect on responses because workers receive adequate 

training, ensuring that new workers and experienced 

workers perform at the same level. This study affects the 

managerial aspect in which the automobile queue system 

design must consider the number of servers, workers, and 

layout in addition to the arrival rate. Services must be 

divided into multiple phases to enhance the performance 

of the queue system. This study opens several possibilities 

for future research to optimize workshop queue 

performance using a response surface technique.  

Nomenclature 

R = Response 

𝛂 = Intercept 

𝛃𝐣 = Coefficient for numeric factors 

𝛃𝐳𝐢
 = Coefficient for categorical factors 

𝛃𝐢𝐣 = Coefficient for numeric factor interaction 

𝛃𝐳𝐢𝐣 = Coefficient for numeric and categorical factor 

interaction 

𝛜 = Error 

𝐳𝐢 = Categorical factor 

xi and xj = Numeric factors 
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