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Abstract  
 

This study presents an enhanced genetic algorithm (E-GA) to minimize earliness/tardiness costs in the job shop environment. It considers 

an unrelated parallel machine scheduling problem with a limit on maximum tardiness levels. This problem is motivated by the experience 

of one of the authors in a job shop supporting the local aircraft industry that requires strict control on delivery times. Current literature does 

not consider this critical restriction and unsuccessfully tries to deal with them using higher penalty costs. The proposed method uses the 

design of experiment (DOE) concept while optimizing the GA operators. Furthermore, it improves the initial solution using a hybrid 

dispatch rule through a strategic combination of construction and improvement heuristics. The model was applied to a local job shop. The 

results indicate that E-GA provides a schedule with lower cost and reduced computational time compared to existing dispatch rules in the 

literature and existing algorithms (OptQuest).     
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1. Introduction  

Scheduling is defined as a decision-making process 

involving allocating resources to the operations. The 

proper schedule can help industries reduce costs and time 

and improve customer satisfaction, which are the most 

desirable goals in modern industries. There are multiple 

types of scheduling problems in a manufacturing system. 

One of the most challenging problems in this area is the 

unrelated parallel machine scheduling problem in which 

various jobs should be processed on parallel machines. In 

this problem, the best sequence of the jobs on the 

machines should be provided, which optimizes the given 

performance measurement. There are numerous 

performance measures in scheduling problem, such as 

makespan, maximum lateness, total completion time, total 

flow time, etc. A comprehensive list of performance 

measures with their distribution in the current literature is 

provided in the study by Allahverdi (2022). 

Unrelated parallel machine scheduling can be solved 

using exact, metaheuristics, heuristic, and hybrid 

methods. Some studies assumed a static environment, 

while others considered uncertainties and dynamic 

environments (Kianpour, Gupta, Krishnan, & 

Gopalakrishnan, 2022; Kianpour, Gupta, Krishnan, & 

Gopalakrishnan, 2021). A study by Moser et al. 

(2022)focuses on a real-life scheduling problem with 

complex constraints. In order to determine the best 

solutions for various instance sizes, it suggests a 

mathematical model and simulated annealing algorithms, 

displaying enhanced performance in comparison to 

current methods in terms of minimizing tardiness and 

makespan. The other study presents an in-depth literature 

review on the application of heuristic and metaheuristic 

methods for solving the unrelated parallel machine 

scheduling problem. The study identified research trends, 

it categorized and summarized existing research, and 

provided direction for additional study in the area 

(Ɖurasević & Jakobović , 2023). The other study offered 

a hybrid meta-heuristic method, called LA-ALNS-TS, for 

solving the unrelated parallel machine scheduling 

problem with machine and job sequence-dependent setup 

times. The algorithm combines learning automata 

adaptive large neighborhood search (LA-ALNS) and tabu 

search (TS) to improve search efficiency and address the 

issue of short-term cycles. Experimental findings on 

extensive benchmarks validate the suggested strategy's 

usefulness and efficiency (Fang, Zhu, & Mei, 2022). 

Mixed Integer Linear Programming (MILP) or Mixed 

Integer Programming (MIP) has been used frequently to 

solve scheduling problem in unrelated parallel machine 

systems (Kianpour, Gupta, Krishna, &  Gopalakrishnan, 

2021). The study discusses scheduling unrelated parallel 

machines to reduce overall tardiness. It suggests an ILS 

algorithm for larger cases of up to 400 tasks and 20 

machines and a MILP formulation for smaller cases of up 

to 150 jobs and 20 machines, demonstrating the 

effectiveness of both (De-Alba, Nucamendi-Guillén, & 

Avalos-Rosales, 2022). The other study assesses the 

problem while considering machine processing costs. 

They used MILP to minimize makespan and total cost 

simultaneously for Pareto optimal solutions. The 
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outcomes show that this approach efficiently resolves 

even large-scale issues, producing a large number of 

Pareto solutions in a fair amount of time with little 

divergence from optimality (Safarzadeh & Niaki, 2023). 

Ozer & Sarac (2019) considered the concept of the shared 

resource in identical parallel machine scheduling problem 

with sequence-dependent setup times. The objective of 

their study was to minimize the total weighted completion 

time. Optimal schedules were obtained for almost all 

small problems using a mixed-integer programming 

model. The paper by Fanjul-Peyro (2020) deals with the 

unrelated parallel machine scheduling problem with 

setups and resources with the objective of minimizing the 

makespan. A MILP is presented to model this problem. In 

addition, a three-phase algorithm based on an exact 

mathematical method is introduced to solve up to 50 jobs. 

In terms of improving the efficiency of the MIP models, 

the study by Wang & Ye (2019) developed an enhanced 

MIP formulation based on the concept of “divide and 

conquer” in the branch-and-bound algorithm. They 

proposed two MIP formulations based on dummy jobs 

and linear ordering variables. Computational results for 

multiple instances proved the effectiveness of the 

proposed branch-and-bound algorithm. Despite numerous 

studies to provide the exact solution, it is not 

computationally efficient to solve unrelated parallel 

machine scheduling problems using MIP for large-size 

instances. Therefore,  heuristic methods are used to 

provide the near-optimal solution in a reasonable 

computational time (Lenstra &  Rinnooy Kan 1979). In 

the study by Athmani et al.( 2022), three heuristics, five 

local search techniques, and three metaheuristics, 

including Late Acceptance Hill Climbing and two 

Simulated Annealing versions, are introduced to analyze 

unrelated parallel machine scheduling with release dates 

and machine- and sequence-dependent setup times. The 

study assesses and compares these methods using a three-

set 1620-instance benchmark, identifying the best 

initialization heuristic for metaheuristics and establishing 

the usefulness of the metaheuristics across different sets. 

The other study investigated an unrelated parallel machine 

scheduling problem with the objective of minimizing 

earliness and tardiness penalties in production systems. 

By using two mixed-integer linear programming 

formulations, novel heuristics, and an extension of the 

adaptive large neighborhood search (ET-ALNS), the 

research demonstrates, through computational 

experiments and statistical analysis, that ET-ALNS 

significantly outperforms other methods (Rolim, Nagano, 

& de Athayde Prata, 2023). 

GA has been used widely for unrelated parallel machine 

scheduling problem with either single or multiple 

objectives (Türkylmaz & Bulkan 2015; Chen et al. 2012 ). 

One of the common objectives in unrelated parallel 

machine scheduling problem is minimizing the earliness 

and/or tardiness cost(s). In this problem, it is assumed that 

customer requires jobs neither early nor late. Completing 

jobs before their due dates may lead to inventory costs, 

while shipping the parts after the due date causes potential 

penalty costs and customer dissatisfaction. Therefore, a 

schedule is needed to ship the part with minimum 

deviation from the due date. Few studies have used the 

GA to minimize earliness and tardiness costs in 

scheduling problems (Rohaninejad, Sahraeian, &  Nouri 

2017; Tari &  Niari 2018). The study by Yazdani et al. 

(2017) considers the problem of scheduling as set of jobs 

in the job shop environment with an objective of 

minimizing the sum of maximum earliness and tardiness. 

They proposed an effective meta-heuristic algorithm 

based upon an imperialist competitive algorithm that 

significantly outperformed available algorithms in the 

literature. A study presents a fuzzy approach to tackle 

unrelated parallel machine scheduling in production 

environments with machine reliability and scheduling 

parameter uncertainties, utilizing a fuzzy mathematical 

model and a fuzzy-based genetic algorithm. Numerical 

experiments reveal that this algorithm performs 

exceptionally well for large instances and surpasses the 

mathematical model for smaller instances (Yaghtin & 

Javid, 2023). The other study presents a genetic algorithm 

that integrates fuzzy logic to tackle the flexible job shop 

scheduling problem (FJSSP) in industries with uncertain 

setup and processing times due to windows and sequence-

dependent setup times. Tested on a real-world fabric 

finishing production system, the algorithm notably 

outperforms four standard heuristics, providing efficient 

solutions with a performance improvement of over 30% 

(Campo, Cano, Gómez-Montoya, Rodríguez-Velásquez, 

& Cortés, 2022). 

The performance of the evolutionary optimization 

algorithms highly depends on the value of its parameters. 

Also, the best set of parameters differs from one type of 

optimization problem to the other. In other words, the best 

set of parameters to solve an optimization problem with 

the objective of minimizing makespan in the flow shop is 

not necessarily the best set for solving the optimization 

problem of minimizing tardiness and earliness in the job 

shop. Therefore, proper parameter tuning of an algorithm 

should be considered for each specific optimization 

problem. There are numerous studies in the literature 

regarding the tuning of parameters in evolutionary 

algorithms (Á. E. Eiben, Hinterding, &  Michalewicz 

1999; Nobile et al. 2018; Soares & Carvalho 2022). GA is 

one of the common evolutionary algorithms which grabs 

scholars’ attention in tuning its parameters to improve the 

efficiency and effectiveness of the algorithms (A. E. 

Eiben, Michalewicz, Schoenauer, &  Smith 2007; Huang, 

Li, &  Yao  2019; Kramer  2017; Pavón, Díaz, Laza, &  

Luzón 2009). In terms of Job Shop Scheduling Problems 

(JSSP), few studies investigate the parameter tuning of the 

GA to enhance their solutions. Arin, Rabadi & Unal 

(2011) provided comparative studies on the design of 

experiment (DOE) for tuning of the genetic algorithm 

parameters in scheduling problem. They considered a 

single-machine scheduling problem with the objective of 

minimizing weighted tardiness. They used multiple design 

of experiment methods to tune the parameters effectively. 

The results showed that D-optimal and Signal-to-noise 

(S/N) ratio designs provided the best parameter setting. 

Wang et al. (2017) also used GA to solve JSSP. To 
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enhance the GA's solution quality, they used the DOE 

method to identify the parameters with the highest impact 

on the problem. Then, they established the approximation 

model and optimized it to get the optimal solution. The 

study by Mobin, Mousavi, Komaki & Tavana (2018) 

proposed an approach for parameter tuning in the 

evolutionary algorithm which simultaneously optimizes 

all performance metrices of evolutionary optimization 

algorithm. They used DOE to find the significant 

parameters of the evolutionary algorithms, as well as an 

approximate equation for each parameter metric. They 

considered two multi-objective evolutionary algorithms: 

multi objective particle swarm optimization algorithm 

(MOPSO) and fast non-dominated sorting genetic 

algorithm (NSGA-III). They validated their approach by 

optimizing performance in solving single machine 

scheduling problem to minimize makespan, total 

completion time and total tardiness time.  The other study 

tackles the unrelated parallel machine scheduling problem 

with sequence-dependent setup times and machine 

eligibility constraints, aiming to minimize the maximum 

completion time. Utilizing a lean hybrid genetic algorithm 

enhanced with a targeted local search operator, the study 

demonstrates significantly improved performance over 

other methods, particularly in larger instances, 

highlighting the critical role of calibration for 

representative instances (Adan, 2022). Other reseaech 

proposes a two-stage genetic algorithm, coupled with 

optimal computing budget allocation (OCBA) and 

improved Monte-Carlo Policy Evaluation (MCPE), to 

address a stochastic parallel machine scheduling problem 

in just-in-time manufacturing, where processing time 

follows gamma or log-normal distribution. The developed 

method outperforms existing optimization algorithms, 

showcasing its applicability in practical systems like 

semiconductor manufacturing (Cao, Lin, Zhou, Zhou, & 

Sedraoui, 2023). 

While many studies have focused on unrelated parallel 

machine scheduling problems and employed design of 

experiments (DOE) to optimize the performance of 

metaheuristics, none have specifically applied DOE for 

tuning parameters of the Genetic Algorithm (GA) within 

the context of minimizing total earliness and tardiness 

costs considering maximum allowable tardiness. Our 

research fills this gap by specifically focusing on 

parameter tuning of GA in this unique problem context. 

Moreover, we enhance the GA by integrating construction 

and improvement heuristics to generate an improved 

initial solution, which expedites the convergence of the 

GA to the near-optimal solution. While OptQuest solving 

engine has been employed in various scheduling 

problems, it has not been directly compared with an 

enhanced GA approach in this specific context. Our 

research provides this comparative analysis, offering 

insights on the performance of our proposed GA in 

relation to OptQuest's integrated methods. Hence, this 

study advances understanding of GA parameter tuning 

within the complex environment of unrelated parallel 

machine scheduling while providing a valuable 

comparison for optimization method selection. 

1.1. Problem statement 

Delivering high-quality products as close to the due date 

as possible while preserving timely schedules against 

underlying uncertainties and fierce global competition is 

the primary difficulty in job shop contexts. The problem 

in this research is inspired by real-case industrial demands 

that minimize total earliness and tardiness in unrelated 

parallel machine scheduling. The problem is formulated 

using a Mixed Integer Linear Programming (MILP) 

model. It encompasses N independent jobs and M 

machines. Each job, indivisible and requiring one 

machine, has pre-determined processing times and due 

dates. Processing times differ per machine and are 

mutually independent, and due dates are unique. Setup 

time, though excludable, can be incorporated within the 

processing time. In the scheduling problem, an objective 

function minimizes total earliness and tardiness. 

Constraints ensure that jobs are processed by only one 

machine in a specific sequence, starting with the initial 

job. Start and completion times are set, and machine 

completion times are determined based on job processing 

times. The earliness and tardiness of each job are 

calculated by comparing its completion time with the due 

date. The comprehensive mathematical model, inclusive 

of a detailed objective function and constraints, is 

elaborated in (Kianpour, Gupta, Krishnan, & 

Gopalakrishnan, 2021) 

In response, the study suggests an Enhanced Genetic 

Algorithm (E-GA) that is specifically created to reduce 

both earliness and tardiness costs in the challenging 

environment of unrelated parallel computers while 

simultaneously complying to maximum tardiness 

limitations. This study makes use of the Design of 

Experiment (DOE) idea to optimize GA settings in order 

to guarantee quick solutions and informed decision-

making. Additionally, it adds hybrid dispatch rules to 

improve the original solutions, substantially boosting the 

effectiveness and performance of our E-GA in this 

difficult scheduling situation. 

2. Genetic Algorithm in Unrelated Parallel Machine 

Scheduling Problem 

GA is classified as the evolutionary algorithm based on 

natural genetic evolution. Darwin investigated the original 

study on natural evolution in 1859. He claimed that 

natural populations evolve based on natural selection per 

“survival of the fittest” in his research.  

The idea of using GA in optimization problems to find an 

optimal or near-optimal solution was first proposed by 

Holland in the early 1970s (Taylor 1994), which Goldberg 

then expanded in the late 1980s (Goldberg 1989). The 

process of natural genetic evolution begins with 

identifying the fittest individuals from the population. 

Then, the next generation will be created by producing 

offspring based on the characteristics of the parents. The 

offspring from the fit parents will have better fitness than 

their parents and consequently a better chance of survival. 

The algorithm keeps creating a new generation until a 

generation with the fittest individuals is found.  



Parsa Kianpour and et al. / DOE-based Enhanced Genetic Algorithm for Unrelated Parallel… 

 

 

102 

 

The GA includes five main phases initial population, 

fitness function, selection, crossover, and mutation. For 

unrelated parallel machine scheduling problem, the 

assignment's initial population includes assigning the jobs 

to the machines with their sequence on that particular 

machine. The initial population plays a critical role in 

determining the quality of the solution, in addition to 

computational time. In this paper, at first, the initial 

solution was generated randomly. Then, a hybrid dispatch 

rule has been proposed to improve the initial solution and, 

consequently, the efficiency and effectiveness of the 

algorithm. The fitness function is the same as the 

objective function in the mathematical modeling (e.g., 

makespan, earliness, tardiness, etc.). This paper uses the 

total earliness (inventory cost) and tardiness costs (penalty 

cost) as the fitness function. There are multiple techniques 

for selection in unrelated parallel machine job shop 

scheduling problem. Roulette wheel selection, rank 

selection, steady-state selection, stochastic universal 

sampling, etc., are frequently used techniques for 

selection (Nasr et al. 2015). In this paper, we used a 

steady-state approach. This means that only one solution 

is replaced at a time instead of the entire generation. 

When a new solution is generated, two parents are 

selected from the current population (solutions with high 

fitness function values are more likely to be selected as 

parents). The crossover operator has a significant effect 

on the performance of the GA. The role of the crossover 

operator is to combine the features of the two 

chromosomes simultaneously to generate offspring. There 

are multiple crossover operators presented in the literature 

(e.g. order crossover, cycle crossover, position-based 

crossover, etc.) (Cheng, Gen, &  Tsujimura 1999). 

In the context of the unrelated parallel machine 

scheduling problem, a genetic algorithm (GA) is 

employed to find a solution that minimizes earliness and 

tardiness. The GA utilizes chromosomes to represent 

potential solutions using binary string encoding. The 

variables associated with the problem, such as job 

sequences, start times, and machine assignments, are 

encoded within the genes of the chromosomes. For 

instance, the order of tasks can be represented by integers, 

while start times and machine assignments can be 

represented by real numbers or integers. To evaluate the 

fitness of each chromosome, an objective function is 

utilized that quantifies the degree of earliness and 

tardiness in the scheduling. This objective function 

incorporates the specific constraints and requirements of 

the problem. Through the application of genetic operators, 

the GA evolves and refines the chromosomes across 

generations. The selection operator favors chromosomes 

with higher fitness, allowing them to be chosen as parents 

for generating the next generation. Crossover then takes 

place, exchanging genetic information between parent 

chromosomes to create offspring with new combinations 

of genes. This process enables the exploration of different 

solutions and promotes the exploitation of promising 

regions in the search space. To maintain diversity and 

explore new areas, the mutation operator introduces 

random changes in the genes of the chromosomes. By 

iteratively applying these genetic operators and evaluating 

the fitness of the resulting chromosomes, the GA 

progressively improves the solutions. This iterative 

process continues until a satisfactory or optimal solution 

is reached, minimizing earliness and tardiness in the 

unrelated parallel machine scheduling problem. 

In this paper, we have used a uniform crossover routine 

(two children are created by randomly selecting genes in 

one group or another). This operator chooses genes 

randomly from one parent, finds their position in the other 

parent, and copies the remaining genes into the second 

parent in the same order as they look in the first parent. 

By applying uniform crossover, we avoid biasing the 

search with the irrelevant position of variables which may 

happen in single-point or double-point crossovers. The 

last GA operator is a mutation, which is used to make 

slight changes in chromosomes to keep the diversity of 

the population. Soni & Kumar (2014) provided different 

types of mutation operators as inversion, insertion, shift 

mutation, etc. This paper provides a random number 

between 0 and 1 for each variable. If the variable gets a 

number less than or equal to the mutation rate, that 

variable is mutated. 

 
 

3. Proposed Approach 

Mixed-integer linear programming formulation to solve 

such problems was presented in the model by (Kianpour, 

Gupta, Krishna, &  Gopalakrishnan, 2021). It has been 

further studied by (Kianpour, Gupta, Krishna, &  

Gopalakrishnan, 2022) to include uncertainties. The 

objective of the model is to minimize earliness, and 

tardiness costs subject to job assignment, machine 

assignment, and sequencing constraints. Since the model 

is categorized as an NP-hard problem, it cannot solve 

medium or large-size issues in a timely manner. 

Consequently, we proposed an enhanced heuristic 

algorithm (GA) to solve large-scale problems. The 

heuristic algorithms can be classified into construction 

and improvement heuristics. In construction heuristics, we 

start without the schedule and start to add one job at a 

time. In improvement heuristics, we begin with the initial 

schedule and try to find a better schedule. Dispatching 

rules are examples of the construction heuristics, while 

local search methods such as Simulated Annealing, Tabu 

Search, and GA are examples of the improvement 

heuristics. The literature review indicates that multiple 

factors can affect the performance of the GA algorithm in 

terms of the quality of the solution and computational 

time. These factors include but are not limited to 

population size, crossover probability, mutation rate, and 

the quality of the initial solution. In this paper, we 

combined construction and improvement heuristics to 

improve the quality of the initial solution. Also, we have 
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tuned the GA operators using design of experiment to get 

to the near-optimal solution in less time.   

3.1. Hybrid dispatch rule to generate the initial solution   

The first step in implementing the GA algorithm is 

generating an initial population. Studies show that good 

initial solutions help GA get to the good solution faster 

(Brucker 2007; Zitzler, Deb, &  Thiele  2000). Also, if the 

initial solution is not good or large enough,  GA would 

have difficulty finding a good solution. The random 

generation of the initial solution will affect the search 

space and selection process, which consequently increases 

the problem difficulty. This research proposed the hybrid 

dispatching rule to provide the initial solution. There are 

multiple ways to dispatch the jobs on the machines in the 

job shop environment. Jobs can be assigned based on their 

due dates, processing times, or arrival times to the shop. A 

sample list of dispatching rules in the job shop 

environment is presented in (Shahzad &  Mebarki 2016).  

This study combined the shortest processing time (SPC) 

with the highest penalty cost to dispatch jobs on the 

machines. In this process, we assign jobs to the machines 

using this strategy based on processing time and 

maximum earliness and tardiness unit costs. In the first 

step, we assign the job with the highest earliness/tardiness 

cost to the machine with the shortest processing time. We 

repeat the first step until all machines have at least one job 

to complete in the second step. Then in the last step, we 

repeat the first two steps until all jobs are assigned to the 

machines. The implementation process will be explained 

in detail in section 4.2. 

3.2. Identifying the best set of the ga parameters 

Generating the new population in the GA algorithm is 

highly dependent on the GA operators, such as population 

size, crossover rate, and mutation rate. A suitable 

parameter setting affects the performance of the 

algorithm. Selecting an appropriate parameter tuning 

technique for each specific optimization problem should 

be considered. There are various ways in the literature to 

identify the best parameter setting for the GA algorithm, 

such as one-factor-at-a-time (OFAT) (Daniel 1994). But 

the disadvantage of such methods is that they don’t 

consider the interaction between parameters which may 

change the whole solution process. To overcome this 

drawback, the design of experiment (DOE) has been 

widely used to consider the interaction of parameters (Li 

et al. 2009). The DOE process includes identifying the 

key parameters, transforming the input parameters if 

needed to find the best combination of them, analyzing 

the best relationship between input parameters and 

responses, constructing the empirical formula, and 

developing an approximation model. Once the significant 

factors have been identified and the approximation model 

has been built, the next step is to determine the best set of 

these parameters to achieve the desired objective. A 

detailed introduction to the design of experiment is 

provided in (Goupy &  Creighton 2007). In this paper, we 

used the DOE approach to identify the significant 

parameters on the performance of the GA and optimized 

those parameters to minimize the total cost and 

computational time simultaneously. The details of the 

implementation process will be provided in section 4.1. A 

detailed flow chart is shown in Figure 4. 

4. Case Studies from Local Job Shops 

In this section, we first optimize the GA operators (e.g., 

population size, crossover rate, and mutation rate) using 

DOE. Then, we propose the improved initial solution for 

the GA using the hybrid dispatching rule and compare 

results with the known dispatching rules in the literature. 

Finally, we compare our enhanced GA with the OptQuest 

algorithm, a powerful search engine that integrates Tabu 

Search, Neural Network, Scatter Search, and 

Linear/Integer Programming into a single composite 

method. In this paper, the GA algorithm is coded by 

visual basic language in the Excel platform, and the 

Evolver solver is used to solve the problem. The GA 

algorithm's stoppage criteria is no more than 0.01% 

difference between two consecutive optimal solutions for 

50,000 trials.  All computations are carried out on an Intel 

® Core ™ 3.20 GHz with 8.00 GB RAM. 

4.1. Hybrid dispatch rule to generate the initial solution   

To optimize the GA, six different problem sizes with 

random combinations of jobs and machines have been 

considered. The details of the problems are provided in 

table 1. 
 
Table 1 
Problem sizes for GA operator’s optimization 

No. # of Jobs # of Machines 

1 9 Jobs 5 Machines 

2 10 Jobs 2 Machines 

3 18 Jobs 7 Machines 

4 25 Jobs 10 Machines 

5 31 Jobs 13 Machines 

6 40 Jobs 20 Machines 

The processing times of the jobs on the machines, due 

dates of each job, and unit inventory cost and penalty cost 

are different for each problem size. The two-level 

factorial design has been used to run the experiment in 

which population size, crossover rate, and mutation rates 

are factors while each factor gets minimum and maximum 
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value. The response parameters in this experiment are 

total cost and computation time. The details of the factors 

and their levels are presented in table 2. Each experiment 

has been run five (5) times; therefore, the total number of 

experiments for each problem size is 40. In this step, the 

initial solution for the GA is provided randomly. In the 

first step of the GA operators’ optimization, we need to 

identify if the residuals are randomly and normally 

distributed around zero. If not, then the transformation is 

required to achieve normality before using some form of 

the general linear model. 

 

Table 2  

List of factors and their levels 

Factor Min Level Max Level 

A: Population Size 500 2,000 

B: Crossover Rate 0.25 0.75 

C: Mutation Rate 0.05 0.2 

 

With the number of levels as (L), the number of factors as 

(F), and the number of runs as (R), the total number of 

experiments (Ex_t) for each problem size is calculated as 

follows: 

 

𝐸𝑥𝑡 = 𝐿𝐹 × 𝑅 = 23 × 5 = 40                                      (1) 

In this paper, the normal plot of the residuals is used to 

test the normality of the data. The plot with residuals 

versus predicted responses is used to indicate the 

existence of a pattern in the data. Finally, the Box-Cox 

plot is used to identify which transformation type is 

needed (e.g., square root, natural log, inverse, power, 

etc.). This study selected only the main factors and two-

factor interactions to approximate the model 

(A,B,C,AB,AC,and BC). ANOVA is used to assess the 

significance of each factor and their interactions (a p-

value less than 0.0500 indicates that the factor’s effect is 

significant). Then, we calculate the model coefficients, 

and finally, the approximation model is built to be used in 

the optimization process. A summary of the DOE process 

for the studied problem sizes is presented in table 3. 

Problem number 3 in table 1 (10 jobs and 2 machines) 

provide the same cost as the exact model regardless of the 

population size, crossover rate, and mutation rate. The GA 

operators, in this case, only affect the computational time 

and convergence process to get to the optimal solution. 

Table 3 evaluates the cost model and the computational 

time model separately in terms of transformation type, a 

significant factor, and positive and negative factors. 

Negative factors have a negative effect on the cost and 

computational time, while positive factors have a positive 

effect on the total cost and computational time. For 

instance, in the case of 40 jobs and 20 machines, mutation 

rate (factor C) and population size (factor A) are 

considered negative factors. In other words, the increase 

in mutation rate and population size will increase the total 

cost, which is against the objective of this optimization 

problem. Therefore, they affect the objective function 

negatively.  In this case, the effect of factor C is more 

significant than A. 

 

Table 3 

The summary of the DOE analysis 

 

 

Problem Size Response Variable Transformation Significant Factors Negative Factors Positive Factors 

𝟗 × 𝟓 Cost - - C-AB-A-AC B, BC 

Time Natural Log A A-AC-C-B AB-BC 

𝟏𝟎 × 𝟐 Cost Inverse - - - 

Time Natural Log - AC-A-BC B-C-AB 

𝟏𝟖 × 𝟕 Cost - - AB-A-C-BC B-AC 

Time Natural Log A A-B-C AB-BC-AC 

𝟐𝟓 × 𝟏𝟎 Cost - C-B-A C-A-BC-AC B-AB 

Time Natural Log C B-A-AC-AB C-BC 

𝟑𝟏 × 𝟏𝟑 Cost Inverse C-B-A B-AC-AB C-A-BC 

Time - C A-B-AC C-BC-AB 

𝟒𝟎 × 𝟐𝟎 Cost Natural Log C-A-B C-A-BC B-AC-AB 

Time Square Root C C-BC B-AC-A-AB 

*A: population size; B: crossover rate; C: mutation rate 

 

The general structure of the approximation model is 

presented as follows: 

 

𝑀 = 휀 + 𝛼 × 𝐴 + 𝛽 × 𝐵 + 𝛾 × 𝐶 + 𝜌 × 𝐴𝐵 +
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𝜎 × 𝐴𝐶 + 𝛿 × 𝐵𝐶                                                    (2) 

 

Where M can be either cost or time, based on the type of 

transformation, M can be different. For instance, in the 

case of 40 jobs and 20 machines, M equals to ln(cost) 

since the natural log transformation has been used for 

normalization. The coefficients (e.g., α, β, γ, ρ, σ and δ) 

are determined based on the experimental data. (A, B, C, 

AB, AC, and BC) represent the primary factors and 

interactions. In the optimization process, we search for the 

combination of factor levels that simultaneously satisfy 

the criteria placed on each factor or response. The 

approximation model provided by the analysis is used to 

include a response in the optimization criteria. The 

desired goal for each factor or response should be selected 

in this process. The options for desired goals include 

maximize, minimize, target, within range, none (for 

responses only), and set to an exact value (factors only). 

Each parameter, either factors or responses, should have a 

minimum or maximum level. Also, if we have a more 

important factor than the other ones, we can assign a 

higher weight to that factor. The goals are integrated into 

an overall desirability function. The program's objective is 

to maximize this function by beginning from the random 

starting point and proceeding up the steepest slope to the 

maximum. In the numerical optimization process, the 

factors (population size, crossover rate, and mutation rate) 

are set in range (they can get any value between their 

maximum and minimum level). The responses (total cost 

and computational time) are set to minimize. Figures 1-3 

show the optimization results for problem No. 3. Figures 

1.a, 1.b, and 1.c evaluate the effect of population size on 

the desirability, cost, and computational time respectively. 

The increase in population size from 500 to 2,000 reduces  

the desirability of the optimization process from 60% to 

less than 40%. Also, increasing the population size 

reduces the probability of getting the near-optimal 

solution. When the population size is 500, the value for 

minimum cost is approximately $14,500, while this 

number increases to $15,500 when the population size is 

2,000. The same trend is observed for computational time. 

When the population size is 500, it takes approximately 

250 seconds to solve the problem. This computational 

time doubles by increasing the population size from 500 

to 2,000. Contrary to the general belief, this result 

indicates that providing a large population size does not 

necessarily lead GA to a good solution, and a smaller 

population size can provide a better solution in less time. 

However, the disadvantage of the smaller population size 

is that the algorithm might be easily trapped in local 

optimal. To overcome this issue, the other GA operators 

(crossover rate and mutation rate) should be optimized to 

help the algorithm with the exploration and exploitation 

process. Therefore, a population size of 500 will be the 

best population size for this problem.  

 

 
Fig. 1. (a) Population Size vs. Desirability 

 

 
Fig. 1. (b) Population Size vs. Cost ($) 

 

 
Fig. 1. (c) Population Size vs. Time (Sec) 

 
 

The crossover rate does not affect the desirability 

significantly. However, increasing the crossover rate from 

0.25 to 0.75 improves desirability (Figure 2.a). Also, 

increasing the crossover rate helps GA find the better 

near-optimal solution (Figure 2.b). 
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Fig. 2. (a) Crossover Rate vs. Desirability 

 

 
Fig. 2. (b) Crossover Rate vs. Cost ($) 

 

 
Fig. 2. (c) Crossover Rate vs. Time (sec) 

 

The increase in the crossover rate will increase the 

computational time slightly (Figure 2.c). However, the 

main objective of this problem is reducing costs. 

Therefore, the slight increase in computational time can 

be ignored. Therefore, the crossover rate of 0.75 has been 

selected as the optimal crossover rate.  The mutation rate 

does not affect desirability considerably.  

 

 
Fig. 3. (a) Mutation Rate vs. Desirability 

 

 
Fig. 3. (b) Mutation Rate vs. Cost ($) 

 

 
Fig. 3. (c) Mutation Rate vs. Time (Sec) 

 

The increase in mutation rate from 0.05 to 0.2 will lead to 

a small reduction in desirability (Figure 3.a). However, a 

smaller mutation rate (0.05) helps GA find a better 

schedule than the larger mutation rate (0.2) as shown in 
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Figure 3.b. The goal of mutation is to explore the 

promising region provided by the crossover operator. 

Therefore, a large mutation can act against the crossover 

operator and push the algorithm away from the 

concentrated point provided by crossover to search other 

spaces. Also, the increase in mutation rate has no 

significant change in the computational time (Figure 3.a).  

As a result, the mutation rate of 0.05 has been considered 

as the optimal level for this problem. The same analysis 

has been done for problems #4, 5, and 6 in table 1, and the 

results are summarized in table 4.  We optimized the GA 

operators to minimize total cost and computational time 

simultaneously until this point. However, the primary 

objective of this study is minimizing total cost. Therefore, 

numerical optimization has been implemented to optimize 

the GA operators with the single objective of the total 

cost. The results are provided in table 5. The problem 

with 10 jobs and 2 machines is excluded from the study 

since it provided the same total cost (equal to the cost 

provided by the exact method) in all scenarios.  Based on 

the results in tables 4 and 5, the population size of 500, 

crossover rate of 0.75, and mutation rate of 0.05 have 

been selected to solve the scheduling problem in this 

paper. 

 

 

Table 4  

Optimal GA Operators 

Problem Size Desirability Optimal Population Size Optimal Crossover Rate Optimal Mutation Rate 

𝟏𝟎 × 𝟐 64% 500 0.75 0.2 

𝟗 × 𝟓 64% 500 0.25 0.2 

𝟏𝟖 × 𝟕 64% 500 0.75 0.05 

𝟐𝟓 × 𝟏𝟎 58% 500 075 0.19 

𝟑𝟏 × 𝟏𝟑 57% 500 0.75 0.19 

𝟒𝟎 × 𝟐𝟎 52% 500 0.75 0.14 

 
Table 5  

Optimal GA Operators 

Problem Size Desirability Optimal Population Size Optimal Crossover Rate Optimal Mutation Rate 

𝟗 × 𝟓 71% 2000 0.75 0.2 

𝟏𝟖 × 𝟕 65% 500 0.75 0.05 

𝟐𝟓 × 𝟏𝟎 80% 500 075 0.05 

𝟑𝟏 × 𝟏𝟑 69% 500 0.75 0.05 

𝟒𝟎 × 𝟐𝟎 82% 500 0.75 0.05 

4.2. Improving the initial solution for the GA 

In this section, we combined the shortest processing time 

with the maximum penalty or inventory cost (as 

applicable for late and early jobs, respectively) to provide 

the hybrid dispatch rule, which is used as the initial 

solution in the GA. In this method, we assigned the jobs 

on the machines based on their processing time and 

maximum earliness and tardiness unit costs. For instance, 

if we have 10 jobs to be assigned to six (6) machines, we 

assign the job with the maximum earliness/tardiness unit 

cost to the machine with the minimum processing time. 

We continue this cycle until all machines have at least one 

job to process. Then, we start to assign the second round 

of jobs to the machines following the same rule. We 

continue this process until all jobs have been assigned. 

The algorithm to determine the initial solution is 

illustrated in figure 4. In the case of a tie, random 

selection is made from the jobs or machines that are tied 

with respect to their rank or least jobs/processing times, 

respectively. 

In order to create a starting solution for the problem with 

31 jobs and 13 machines, We rank the jobs based on their 

maximum earliness (inventory) or tardiness (penalty) cost 

in the first step. The ranking is presented in table 6. Then, 

we need to follow the rest of the steps (note: in the second 

step, if the machine with the least processing time has 

already been assigned, we pick the machine with the next 

least processing time). The assignment of the jobs on the 

machines based on the proposed method is presented in 

table 7. Table 7 represents the initial solution for GA 

while using optimized operators given in the previous 

section. 

 
Fig. 4. The summary of the hybrid dispatch rule algorithm 

 

The same concept has been applied to the other problem 

sizes. The proposed hybrid dispatch rule was compared 

with other dispatch rules in literature, such as shortest 
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processing time (SPT), longest processing time (LPT), 

biggest weight (WI), earliest release date (ERD), and 

earliest due date (EDD). The biggest weight in this study 

is the maximum of either inventory or penalty unit cost of 

the job. Each approach was run five (5) times, and results 

are compared in terms of the mean optimal cost, 

percentage cost deviation, and mean computational time. 

The percentage cost deviation is the average of the 

absolute difference between the results of each run with 

the minimum cost provided by the GA in that problem 

size. In this process, the proposed model was compared 

with cases with random initial solution (RI) and random 

operators (RO), RI and best operators (BO), SPT, LPT, 

WI, ERD, and EDD. Figures 5-7 evaluate five (5) 

different problem sizes in terms of the mean of the 

minimum cost, %Cost deviation, and computational time. 

 

 

Table 6  

The ranking of the jobs 

Rank Job Rank Job Rank Job Rank Job 

1 4 10 25 19 19 28 6 

2 7 11 2 20 9 29 31 

3 20 12 10 21 27 30 26 

4 12 13 1 22 28 31 30 

5 17 14 22 23 29   

6 18 15 5 24 3   

7 24 16 21 25 8   

8 13 17 11 26 14   

9 23 18 16 27 15   

Table 7  

Assignment of the jobs on the machines 

Machine 1 Sequence 2 Sequence 3 

1 J20 J16 J31 

2 J13 J21 J30 

3 J25 J28 - 

4 J1 J3 J26 

5 J12 J8 J15 

6 J10 J11 - 

7 J2 J19 - 

8 J17 J5 - 

9 J4 J14 - 

10 J24 J27 - 

11 J23 J9 - 

12 J18 J22 J6 

13 J7 J29 - 

 

Figure 5 compares the optimal total cost provided by the 

schedule from the proposed model with the cost of the 

schedules provided by other dispatch rules in the 

literature. In all the studied problem sizes, the proposed 

model provided the schedule with the least earliness and 

tardiness costs compared to the other methods. The 

shortest processing time (SPT) ranked second in 80% of 

the studied problems since it is used in the development 

of the proposed hybrid method.  As we expected, the 

random initial solution with random operators (RI-RO) 

provided the worst optimal cost in 60% of the cases. This 

method offers almost the same cost with random initial-

optimized (best) operators (RI-BO) in two smaller size 

problems.  There was no significant difference between 

the costs provided by ERD and EDD, which are slightly 

better than the costs provided by WI. One key 

performance indicator for heuristic algorithms is the 

deviation of the results provided in different runs. Less 

deviation shows that the difference in the results provided 

by solving the same problem is negligible, so it would not 

be necessary to run the algorithm multiple times. Based 

on Figure 6, the proposed algorithm provides results with 

about 1% average cost deviation (with no deviation for 

small size problems), which is at least five times lower 

than the %cost deviation of the other methods. Although 

reducing the computational time is not the primary 

objective of this paper, the results indicate that the 

proposed method provides a better solution with lower 

computational time (Figure 7). On average, the 

computational time of the proposed methods is 70% less 

than the computational time provided by all the other 

methods.  
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Fig. 5. Comparison of the minimum cost provided by the 

proposed method with other 

 

In general, the results show that the initial solution 

improves the efficiency and effectiveness of the GA 

drastically. Also, the optimized population size helps GA 

search for the solution in a smaller area, reducing the 

computational time required to find the near-optimal 

solution. Moreover, the optimized crossover and mutation 

rate help the convergence of the algorithm, which 

improves the quality of the solution and reduces 

computational time. 

 
Fig. 6. Comparison of the % cost deviation provided by the 

proposed method with others 

 

Fig. 7. Comparison of the computational time provided by the 

proposed method with others 

4.3 Comparing proposed E-GA with OptQuest 

In this section, the performance of the enhanced GA 

method (E-GA) is compared with OptQuest, which is 

defined as a unique set of powerful algorithms and 

sophisticated analysis techniques. In the first step, the cost 

of the schedule provided by the E-GA method is 

compared with the cost from OptQuest in two cases. In 

the first case, we use the proposed hybrid dispatch rule to 

provide the initial solution for the OptQuest algorithm (P-

OptQuest). In the second case, the initial solution is 

selected randomly (R-OptQuest). 

 
Fig. 8. Comparison of the minimum cost provided by E-GA and 

OptQuest 
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Fig. 9. Comparison of the % cost deviation provided by the E-

GA and OptQuest 

 

Comparative results are illustrated in Figure 8. The results 

show that E-GA and OptQuest perform the same for the 

small size problem (9J-5M). However, E-GA provides a 

better solution (schedule with minimum cost) for other 

problem sizes. The study shows that the schedule 

provided by E-GA can reduce the total cost by up to 15% 

and 46% compared to P-OptQuest and R-OptQuest, 

respectively. In terms of % cost deviation, both E-GA, 

and P-OptQuest provide zero deviation for the small size 

problem. For the rest of the problem sizes, E-GA provides 

lower deviation compared to P-OptQuest and R-OptQuest 

(average deviation of 1.21% for E-GA compared to 

1.97% and 6.53% for P-OptQuest and R-OptQuest, 

respectively). Figure 10 shows that P-OptQuest converges 

faster compared to E-GA in 80% of the studied problems. 

However, the solution quality provided by the E-GA is 

better (schedule with lower earliness and tardiness costs). 

 

 
Fig. 10. Comparison of the computational time provided by the 

E-GA and OptQuest 

 

To compare the computational time performance between 

E-GA and P-OptQuest, the analysis has been 

implemented to identify how long it would take for E-GA 

to provide the same cost provided by P-OptQuest. The 

small size problem and the problem with 25 jobs and 10 

machines are excluded since the difference for the small 

size problem is negligible, and E-GA provides the best 

schedule in less time for 25J-10M problem. For other 

problems, the analysis results are illustrated in Figure 10. 

Figure 11 compares how long it would take for E-GA and 

P-OptQuest to provide the schedule with the costs of 

$13,408, $11,326, and $18,382 provided by OptQuest for 

problems sizes 18J-7M, 31J-13M, and 40J-20M, 

respectively. 

 
Fig. 11. Comparison of the computational time provided by the 

E-GA and P-OptQuest 

 

The results indicate that for problem size 18J-7M, it takes 

56% less time for E-GA to provide the schedule with a 

cost of $13,408. This number is 85% and 6% for 31J-13M 

and 40J-20M problems, respectively. Since the primary 

objective of this research is to minimize the total cost than 

computational time, E-GA is deemed most effective since 

it provides the schedule with the lowest total earliness and 

tardiness costs. 

4.4. Computational complexities of the algorithm 

This study provides a runtime versus the number of inputs 

(n) plot as a scale to measure the efficiency of the 

proposed algorithm. This plot originated from the big O 

notation concept used in computer science to describe the 

performance or complexity of an algorithm. According to 

big O notation, the algorithm can run in constant time 

(regardless of the number of inputs), linear time, quadratic 

time, etc. The list of common types of big O notation is 

provided in (Danziger, 2010). 
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Fig. 12. Run Time vs. n for Proposed Model 

 

 

 
Fig. 13. Run Time vs. n for RI-RO Mode 

 

 

 
Fig. 14. Run Time vs. n for RI-BO Model 

 

Fig. 15. Run Time vs. n for SPT Model 

 

Fig 16. Run Time vs. n for LPT Model 

 

Fig. 17. Run Time vs. n for WI Model 

Fig. 18. Run Time vs. n for ERD Model 

 

Fig. 19. Run Time vs. n for EDD Model 

Figures 12-19 show the runtime vs. input plots for the 

proposed algorithm and the other methods in this study.  

Assuming the linear relationship between the total number 
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of jobs & machines and runtime (average R2 = 0.81), we 

see that the proposed model provides the most efficient 

algorithm since it provides the minimum coefficient for n 

among all other compared methods in the literature. The 

summary of the results is provided in table 8. Applying 

other methods, such as exponential and second-order 

polynomial, validated that the proposed algorithm 

outperforms other studied algorithms in terms of 

efficiency. 

4.5. Summary and discussion of the results 

Genetic Algorithm has been used extensively to obtain an 

optimal and near-optimal solution for NP-hard 

optimization problems, which can take a lifetime to solve. 
The most important GA parameters based on function-

based biology-inspired concepts are initial population, 

population size, crossover, and mutation operators.

Table 8 

Coefficient of n (total number of jobs & machines) for different algorithms 

Method Proposed SPT RI-RO LPT RI-BO ERD WI EDD 

Coefficient of n 48.5 83.6 94.5 146.7 179.4 194.9 201.8 214.4 

 

To incorporate those parameters to obtain the optimal or 

near-optimal solution, this study followed the basic GA 

structure presented (Kumar, 2019) in figure 20. The 

numerical results provided in this study indicated that the 

selection of different GA parameters and their interaction 

directly affects the quality of the solution. Providing 

controlled instead of random initial solutions will reduce 

search time to identify an optimal solution and decrease 

the probability of resulting in infeasible solutions since it 

approximates where the minimal points for a function lie. 

In this study, the hybrid dispatch rule was proposed to 

provide a feasible solution by taking unit 

earliness/tardiness cost and processing time of the jobs 

into account. However, using the intended initial solution 

may decrease the exploration capacity of the GA and may 

lead to a local optimum rather than a global optimum. 

This problem has been solved by using optimized 

crossover and mutation operators. An optimized crossover 

operator was used to explore the search space by selecting 

the pair of individuals among those who survived from 

the previous generation and then generating offspring that 

inherits valid characteristics of the two parents. As 

crossover proposed better solutions, a mutation was used 

to make solutions closer to the best solution. In other 

words, the mutation operator was used to provide 

exploration, and the crossover operator was used to lead 

the population to converge on one of the good solutions 

found so far (exploitation). 

Consequently, while crossover tried to converge to a 

specific point in the landscape, the mutation did its best to 

avoid convergence and explore more areas. Their 

probabilities impact the effect of these parameters. For 

instance, the probability rate of 100% for crossover 

provides a completely different result compared to the 

probability rate of 50%. The same rule applies to mutation 

probability as well. Therefore, maintaining the balance 

between these parameters is one of the most significant 

factors in improving the GA’s performance. 

 

 
Fig. 20. The basic structure of the GA algorithm 

5. Conclusion 

This paper developed an enhanced GA method to solve 

the unrelated parallel machines job shop scheduling 

problem with a maximum allowable tardiness limit. In the 

first step, the numerical optimization method is used to 

tune GA operators (population size, crossover rate, and 

mutation rate) using design of experiment (DOE) 

methodology. The computational time of the DOE 

process has not been considered in the study since it was 

negligible. In the second step, the construction heuristics 

based on dispatch rules were combined with improvement 

heuristics. The hybrid dispatch rule was proposed to 

provide an initial solution for GA in order to help the 

efficiency and effectiveness of the algorithm’s 

convergence. In the last step, the solution provided by E-

GA was compared with OptQuest, which is one of the 

most powerful heuristic solvers. OptQuest uses advanced 

techniques like tabu search, scatter search, and neural 

networks to analyze different scenarios and find the 

optimal solution. Tabu Search uses memory structures to 

avoid cycling and to promote diversification in the search 

process, aiming to escape local optima to find better 

solutions. Scatter Search creates a diverse set of reference 

solutions as a base to generate potential solutions, making 

it effective for combinatorial optimization problems. 

Neural Networks, though not a traditional metaheuristic, 

can be integrated within a metaheuristic framework. 

Therefore, we can conclude that the E-GA was compared 

with the combination of the most advanced metaheuristics 

approaches and provided more satisfactory results overall. 

The method was implemented on data obtained from the 

local job shop. With a hybrid dispatch rule for the initial 

solution, the proposed E-GA works better in finding the 

near-optimal solution compared to other dispatch rules 

(on average, the solution provided by the hybrid dispatch 

rule leads to the schedule with 17% lower cost compared 

to other dispatch rules). Although OptQuest provides the 

results slightly faster, the quality of the solution provided 

by the proposed E-GA is better. Also, it is identified that, 

on average, E-GA would provide the same results which 

had been provided by OptQuest in 49% less time. The 

results provided by E-GA deviate 60% less than the 

results provided by P-OptQuest. Therefore, the proposed 

E-GA is recommended to solve the unrelated parallel 
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machine scheduling problem. The proposed model can 

help decision-makers with scheduling jobs on the 

machines in an efficient and effective manner. The result 

of the proposed model provides an explicit view to 

production, budgeting, and financial managers. As a 

future research direction, uncertainty may be incorporated 

before solving the problem using E-GA or a similar 

heuristic method.  Most of the jobs in the job shop under 

consideration are completed by only one machine. 

However, production cells, including multiple machines 

(with known processing sequences) may be considered 

future research opportunities. 
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