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Abstract  

During the crisis, relief supply chain management (also known as humanitarian supply chain management) has received great attention these 

days. The core questions facing many humanitarian organizations are: where are their strengths/weaknesses? Are they positioned to be 

effective in their supply chain system? What challenges do you need to overcome? What do they need to do to take advantage of the 

technological opportunities offered nowadays? These questions have been addressed them extensively during the past two decades. This 

paper tries to review and classify some of the papers carried out in key areas of the humanitarian supply chain such as location, certainty and 

uncertainty, relief teams and injured (patient) classification, machine learning, queue theory, the employed research methods, solution 

methods, and the type of objective functions. The paper begins first to define what the “humanitarian” ecosystem may include, and which 

actors play important roles. After, certain critical views of the humanitarian relief supply chain are examined. The critical views of the 

humanitarian relief supply chain would help researchers to introduce further research orientations and areas to overcome crises in the real 

world.  
   

Keywords: Humanitarian Supply Chain; Location; Machine Learning; Patient Classification; Queue Theory; Relief Team and 

Patient Classification. 

 

1. Introduction  

According to various global surveys, many crises have 

been caused by bad climate conditions, such as floods and 

storms over the recent decade. Such crises have led to the 

death of 410,000 people and affected 1.7 billion people 

globally. The international federation of the Red Cross has 

reported 2.850 crises due to natural hazards, the most 

common of which is floods. Recent statistics indicate that 

147 million people will be at risk of floods by 2030 

(https://www.redcross.org.uk/). The average over the past 

decade indicates 45,000 people globally died from natural 

disasters, representing 1% of global deaths 

(https://ourworldindata.org/natural-disasters#citation). An 

appropriate crisis management system can reduce life and 

financial losses. Humanitarian logistics is divided into 

three phases: pre-disaster logistics (prevention and 

mitigation preparedness), relief logistics (alert, impact, and 

emergency relief), and post-disaster logistics (transport, 

rehabilitation, reconstruction, development, assessment, 

and learning) (Wei et al., 2015). The main purpose of 

humanitarian logistic processes is to deliver the right 

supplies to the right people in the right place and time 

during the crisis (Budak et al., 2020). Cooperation in the 

supply chain is complex due to uncertainties caused by 

intensity, impact probability, infrastructure failure, and 

definitive injury (Chakravarty, 2014). Evidence has 

indicated that humanitarian organizations have been 

recently interested in using supply chain management 

frameworks in their operations (Gatignon et al., 2010).  

In the case of crisis management, the supply chain can be 

defined as activities done in goods flow and converting 

them from raw materials to deliver goods to injured people 

(Pfeiffer et al., 2017). A supply chain network established 

in the crisis phase provides three features: agility, 

flexibility, and alignment (Fontainha et al., 2020). Supply 

chain and social welfare have specific attributes during a 

crisis. These features, that collaborate to the survival of a 

sustainable system, include density, effectiveness, 

adaptability, and coherence. Density means the presence of 

various behaviors, and effectiveness means performance 

with medium consumption of resources. Adaptability 

means flexibility for change in response to new pressures, 

and coherence means unifying forces of connections 

(Sharma and Srivastava, 2016). Traditional supply chain 

management problems, such as allocation of resources, 

transportation, and inventory management, have developed 

a new level of sophistication in the relief area. The 

decisions must be made rapidly based on limited 

information (Ergun et al., 2010). 

The complexity of decision-making is not only limited to a 

lack of prior information, but also thanks to the presence of 

many actors in the big picture. In aid work the term 

“humanitarian” is often used synonymously with 

emergency activities; however, these are not the only actors 
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in the extended ecosystem definition. Therefore, we need 

to include all activities which are undertaken to improve 

the human condition in case of an unexpected event. 

Building on this broad definition of the humanitarian term, 

we consider the actors who support and orchestrate every 

level of field relief operation, locally, nationally, and 

internationally. They include governmental organizations, 

Red Cross, Red Crescent, the military, non-governmental 

NGOs, relief aids, (university) research centers, private 

donors to humanitarian organizations, more importantly, 

the people affected by crises. The dynamic that defines the 

relationship among actors in the human ecosystem is like a 

traditional supply chain (goods, information, and flow of 

money). However, the flow of money depends on the actors 

providing it and their power positions and it is difficult to 

have a comprehensive picture in the humanitarian 

ecosystem. Therefore, humanitarian organizations deal 

with two challenges; time and budget shortages due to 

unexpected maturity of demand, the sudden occurrence of 

needs, high human costs, and lack of resources due to lack 

of sufficient funds.  

The convoluted challenges reveal how strategic long-term 

supply chain operations and logistics decisions are 

substantial in humanitarian relief and rescue operations. 

These key decisions include locating various structural 

activities that would determine the efficiency and 

effectiveness of rescue operations and disaster response. 

The relief/recovery supply decisions include locations of 

major distribution centers, warehouses, shelters, medical 

service centers, and blood donation centers. Therefore, 

smart planning and a network management framework are 

needed to address the entire ecosystem. Figure 1 suggests 

such a framework. This smart framework blends the 

elements of digitalization, classical optimization, and 

machine learning into making the best decisions for all 

logistical activities to supply the relief field. When a large-

scale disaster occurs, the local emergency services become 

weak and ask other countries for help; therefore, relief 

locational decisions are multi-level (local, national, and 

international). For this reason, an information exchange 

platform is needed to establish the coordination and 

optimization of activities. This platform impacts disaster 

response efficiency and can alleviate injury and mortality, 

relax victims and suffering from accidents (Wel et al., 

2015). 

 

Fig. 1. Humanitarian smart planning and network management framework 
 

Without thinking in the long-term, humanitarians cannot 

support communities and address the structural dimensions 

of the crisis. Therefore, a big data repository is required to 

not only carry historical data on previous disasters and 

resources but also be fed in real-time through the Internet 

of Things and smart city sensors. Many natural disasters 

occur all around the world annually. The notion of 

humanitarian relief logistics is an attempt to reduce the 

consequences of natural disasters, which have recently 

increased (Budal et al., 2020). There are different needs in 

each crisis response phase considering the injured people, 

religion, food habits, and climate (Upadhyay et al., 2020). 

All are captured in the big database. There are five key 

elements for relief and humanitarian organizations’ 

preparedness: human resources to choose individuals' 

training, knowledge management to learn from past 

disasters, knowledge transfer, operations, and processing 

management to rapidly transport resources, financial 

resources for preparedness and initiate the operations and 

society for cooperation (Harke and de Leeuw, 2015). We 

did not include the financial flows here as it is very 

complicated and out of the paper scope. Emergency 

location of large-scale disasters is a key element of an 

effective response to major large disasters for instant 

access to resources in emergency centers, which have 

received less attention in previous studies (linLuet al., 

2010) is included in the proposed framework. In the post-

disaster phase at the early stages (first 72 hours), the 

predetermined relief items must be distributed among 

disaster centers to save people's lives and mitigate the 

negative effects of the crisis; however, lack of some 

resources such as predetermined relief items may create 

some problems (Doodman et al., 2019). Estimating 

demand in the humanitarian chain using natural disaster 

specifications (Gobaco et al., 2016) can be achieved using 
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the big database through various traditional and recent 

Artificial Intelligent (AI) techniques.  

During a crisis that damages the life of people, 

infrastructures, constructions, and the natural environment, 

those responsible for relief aids must rapidly start the relief 

process (Oloruntoba et al., 2010). The timely and accurate 

post-disaster evaluation and some strategies, such as 

dynamic evaluation and relief process modification during 

the relief operations, can effectively contribute to general 

health aid and general health prevention system (Shen et 

al., 2012). This would be feasible by a decision support 

system in the framework.  

Recovery activities continue until the system reaches a 

normal or better level. These activities have two types: 

short-term system recovery activities with a standard 

minimum (e.g., cleaning the place and providing temporary 

warehouses), and long-term activities done for years after 

the disaster to recover the life of injured people giving them 

a normal life (renovation of houses, legal aids, and society 

planning) (Mu and Liang, 2014). Transportation planning 

and logistics can be described as the main drivers for 

effective relief operations. These two drivers are 

interconnected in decision-making operations and are done 

based on the personal experiences and intuitions of staff 

(Widera et al., 2017), and more importantly through 

machine learning, which is a part of the AI in Figure 1. 

Land, sea, air, and rail transportation are the most common 

transportation in the crisis response phase. Most 

organizations cope with different problems in transporting 

relief items (e.g., clothes, food, drugs, and relief resources) 

during a crisis (Mushanyuri & Ngcamu, 2020). 

Regarding the increasing number of studies on crisis 

logistics and its application for planners, it is necessary to 

summarize, classify, and identify those cases and indicate 

the neglected issues in order to develop a suitable decision 

support system for the above framework. 

One of the best advantages of reviewing papers is subjects 

categorizing and providing suggestions for future research 

which readers can use them for their research. Therefore, 

in this paper as well as classification of the paper related to 

the humanitarian supply chain papers, we try to the answer 

these questions: where are their strengths/weaknesses? Are 

they positioned to be effective in their supply chain 

system? What challenges do you need to overcome? What 

do they need to do to take advantage of the technological 

opportunities offered nowadays? Therefore, the present 

paper reviewed the relevant studies and offers some 

recommendations for further development. Papers' search 

scope covered 2006-2021. Because the extant paper was 

written in 2022, the studies conducted this year were 

ignored due to inaccessibility to accurate information. In 

total, 180 papers were obtained from searches through 

Science Direct, Scopus, and Google Scholar databases, of 

which 129 papers were used in this research. Sixty-four 

studies were systematic reviews, and the rest of them were 

general studies. Papers were searched by using some 

keywords: “location problem in disasters”, “machine 

learning in crisis”, “relief team classification in an 

earthquake”, “relief team classification in an earthquake”, 

“patient classification in a disaster”, “supply chain in a 

disaster”, and “uncertainty in disasters”.  

Figure 2 depicts the countries in which systematic reviews 

have been carried out. 

Fig. 2. Countries with case studies on crisis 

 

According to Figure 2, China is at the first rank with 14 

reviews in papers, followed by Iran (11 reviews), the USA 

(10 papers), and Japan (10 papers).  

Figure 3 indicates how frequently each crisis has been 

studied in all 129 papers.  

 

 
Fig. 3. Number of crises examined in reviewed studies 

 

Figure 3 shows that earthquake (31 times) has been the 

most common crisis examined in reviewed studies in 

different countries. Floods and storms (9 times each) were 

the second crises mostly considered in research. The term 

"general disasters" covers those papers that did not 

examine any specific crisis and addressed their problems 

during a crisis.  

The extant study aimed to examine a part of different 

studied areas in the supply chain for natural disaster 

conditions. This study allows researchers to identify those 

approaches and techniques used in papers over recent 

years, as well as those methods increasingly used. The 

present paper has been structured as follows: Section 2 

reviews the study conducted on the crisis and classifies the 

papers. The reviewed studies have been divided into areas, 

including location in crisis conditions, certainty and 

uncertainty in disaster, patient classification in disaster, 

relief team classification in disaster, the queuing system in 

disaster, and machine learning in disaster. Furthermore, it 

classified papers based on the research method (analytical, 

empirical, conceptual, and applied), number of objective 

functions (single-objective and multi-objective functions), 

solution methods (exact, heuristic, metaheuristic, 

31

9 9 5 1 1 8

65

Type of disaster
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simulation, multi-criteria decision-making, game 

approach, questionnaire and statistical analyzes, and 

learning techniques). Finally, Section 3 concludes and 

suggests some approaches for further research orientations 

and tries to answer the questions which asked before. 

Figure 4 illustrates an overview of the research structure. 

 

 
Fig. 4. Research structure of relief/recover logistical decisions 

 

2. Literature Review  

This section examines the reviewed studies on the crisis at 

different levels of location, solution techniques, certainty, 

uncertainty, relief team classification, patient 

classification, number and type of objective functions, and 

research method. Each level mentioned above has been 

divided into some subsets, and their relevant papers have 

been analyzed. The studies on location have been 

addressed regarding the mathematical model, location of 

facilities (fixed and temporary), and type of facilities 

(shelter, warehouse, distribution center, factory, medical 

service centers, and blood donation centers). The papers 

about certainty and uncertainty were examined in terms of 

certainty and different types of uncertainty (fuzzy, 

stochastic, and robust). The studies on patient classification 

were reviewed based on the acuity degree and intensity, 

patient coloring, and type of injury (urgent, non-urgent, 

normal). The papers related to research methods were 

examined in terms of methods, including analytical and 

conceptual, empirical and applied. Studies related to 

objective functions were divided into single-objective and 

multi-objective objective functions. Regarding solution 

methods, studies were reviewed based on the exact 

techniques, heuristic and metaheuristic methods, 

simulation, multi-criteria decision-making (MCDM), game 

approach, questionnaire, scientific-statistical analyses, 

machine learning, and queuing systems.  

The reviewed studies have examined pre-disaster, post-

disaster, or both periods. Figure 5 indicates the number of 

studies conducted on pre-disaster, post-disaster, or both.  

 

 
Fig. 5. Planning outlooks considered in papers 

 

As seen in Figure 5, most papers reviewed in the present 

study have considered the post-disaster period.  

Figures 6, 7, and 8 depict the frequency of papers per year, 

the number of papers published in each journal, and the 

number of papers written by each author.  

Figure 6 indicates that most studies have been conducted in 

two recent years, and this ascending trend implies this 

subject has received great attention from researchers in 

recent years.  

Figures 7 shows that most papers have been published in 

the International Journal of Production Economics (12 

papers), followed by Transportation Research (8 papers), 

Transportation Research (8 papers), and Lecture Notes in 

Logistics (5 papers).  

Figure 8 shows Tavakkoli-Moghaddam. R has carried out 

the most studies in this field (4 papers), followed by authors 

with 3 and 2 papers. The majority of authors, however, 

have published only one paper.  
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Fig. 6. Number of papers carried out per year 

 

 
Fig. 7. Number of papers reviewed in each journal 

 
Fig. 8. Number of papers conducted by each author 

 

2.2. Location problems in disaster  
 

 Location problem under disaster conditions is an 

important case that improves the relief process for victims. 

It is challenging when planning in a disaster to find the best 

place for shelter, warehouse, distribution center, medical 

service, and blood donation centers. Selection of the best 

location based on the researchers' goals and problem 

conditions can be done based on the different criteria. The 

best location for a medical service center is a place with a 

minimum distance from damaged areas. In this way, 
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injured people and patients can be taken to the relief center 

within the shortest time. The best location for building a 

warehouse or shelter is a place with the lowest risk, far 

away from the points on the fault, or at risk of aftershocks. 

Sometimes, some constraints in the problem cause 

choosing a suitable location based on several criteria. For 

instance, a limited budget does not allow medical service 

centers in all potential locations and affects the distance 

criterion.  

 

2.2.1. Location Models  
 

Location problems have been divided into several 

categories in terms of their mathematical models: 1- center 

problem (CP), 2-network location problem (NLP), 3-

Covering location problem (CLP), 4-quadratic assignment 

problem (QAP), 5-hub location problem (HLP), and 6- 

hierarchical facility location problem (HFLP), which have 

been examined individually. 

 

2.2.1.1. Center Problem (CP) 
 

The purpose of these problems is to minimize the risk of 

worse conditions. These problems are used to find the 

location of the clinic in rural areas, the location of fire 

stations in a large urban area, telecommunication 

applications, such as the location of a multi-wave station 

(TV, radio, and cellphone), and the location of delivery 

systems' facilities (delivery, post, and food). These 

problems ate widely used in urgent facilities (emergency 

and firefighting) or easy access (access to the warehouse), 

or other cases that require investment in far distances 

(Francis & White, 1974). Some authors have conducted 

studies in this field: Saatchi et al. (2021), Praneetpholkrang 

et al. (2021), Gutierrez and Mutuc (2018), Charles et al. 

(2016), and Budak et al. (2020).  

Saatchi et al. (2021) designed a round-trip supply chain 

network. In their model, central warehouses provided 

materials required for hospitals and commodities on the 

forward route. They transported injured people to hospitals 

using transportation facilities on the backward route to 

warehouses. Praneetpholkrang et al. (2021) carried out a 

study on shelter location-allocation in humanitarian relief 

logistics. The difference between their study and other 

papers was the idea of minimizing the distance between 

affected areas and candidate shelters protected from 

aftershocks. Gutierrez and Mutuc (2018) designed a model 

to determine the minimum time and cost of the optimum 

location of a temporary relief center and meet victims' 

needs instantly. 

 

2.2.1.2. Network Location Problem (NLP) 

 

In these location problems, a new facility can be located on 

a network called an advanced center location or network 

location. It is assumed in these problems that several 

facilities exist, and one or more facilities are supposed to 

be located on the network (Francis & White, 1974).  

Mansoori et al. (2020), Velasquez et al. (2021), Stauffer et 

al. (2016), Rezaei-Malek et al. (2016), Harke and de Leeuw 

(2015), and Manopiniwes et al. (2015) have been 

conducted studies on NLP. Velasquez et al. (2021) 

introduced mixed-integer linear programming in which 

damage and demand points were assumed exactly. Stauffer 

et al. (2016) formulated the vehicle supply chain of an 

international humanitarian organization using a dynamic 

hub location model. They derived vehicle data from the 

International Federation of Red Cross Society. Rezaei-

Malek et al. (2016) formulated disaster relief logistic 

problems at two echelons: the location of warehouses and 

the location of hospitals. They formulated the problem as a 

multi-objective mixed-integer linear programming model.  

 

2.2.1.3. Covering Location Problem (CLP) 

 

In CLP, customers can receive service from all facilities if 

the distance between the customer and the provider facility 

is less than a predetermined value, the covering radius 

(Francis & White, 1974).  

Zokaee et al. (2021), Guan et al. (2021), Barzinpour and 

Esmaeili (2014), Memari et al. (2018), Moeen-Moghadas 

et al. (2013), and Lu et al. (2010) have carried out studies 

based on CLP. Zokaee et al. (2021) developed a three-tier 

multi-resource model and capacitated location routing to 

identify the suppliers of the most reliable resources, the 

most advantages in facilities, and optimal routes for 

procurement and transpiration of resources from suppliers 

to damaged residential areas. 

 

2.2.1.4. Quadratic Assignment Problem (QAP) 

 

In QAP, there are some locations. We want to assign some 

new facilities to them to connect new facilities, such as 

assigning factories to a certain number of locations 

(Francis & White, 1974). 

Zavvar Sabegh et al. (2017) and An et al. (2015) are the 

authors that have used this method. Zavvar Sabegh et al. 

(2017), for example, formulated a new multi-objective 

model to assign a drug supply chain in a natural disaster. 

They considered some objectives: minimizing production 

costs considering the cost of low quality, minimizing 

negative environmental effects, and maximizing social 

responsibility, such as enhancing humanitarian forces in 

their model.  

 

2.2.1.5. Hub Location Problem (HLP) 
 

This problem is based on the network location problem and 

aims to consider some nodes as central cores used for 

collection and distribution. This problem uses a set of 

nodes as hub nodes instead of a direct connection between 

two nodes (Francis & White, 1974). Ismail (2021), 

Boostani et al. (2021), Lauras et al. (2014), and 

Chakravarty (2014) can be named as authors who have 

used this problem in their studies.  

Ismail (2021) proposed a mathematical stochastic 

programming model to control relief items flow in the 



Journal of Optimization in Industrial Engineering, Vol.16, Issue 2, Summer & Autumn 2023, 15-40 

 

21 
 

humanitarian supply chain. This model assumed that 

responsible people for relief distribution had sufficient 

information about demand locations, the number of 

stakeholders in each location, transportation network, 

consumption rate, volume, and required items. Boostani et 

al. (2021) formulated a stochastic mixed-integer 

programming model to achieve a humanitarian relief 

logistic network. This model tended to minimize the total 

cost of logistics, maximize the minimum rate of 

satisfaction, and minimize the environmental effects of the 

humanitarian supply chain. Lauras et al. (2014) designed a 

network that could deliver all required goods most 

effectively.  

 

2.2.1.6. Hierarchical Facility Location problem (HFLP) 
 

A hierarchical system is a system in which facilities are 

connected in a one-way method (top-down or bottom-up) 

at different service phases. The medical center is at the 

lowest level and clinic at a higher level, and the hospital at 

the highest level of customers, for instance. In these 

problems, the higher levels provide services of the lower 

level and some other services (Francis & White, 1974).  

Sun et al. (2021), Saghehei et al. (2021), Haghjoo et al. 
(2020), Beiki et al. (2010), Liu and Song (2019), Ghasemi 
(2019), Habibi-Kouchaksaraei et al. (2018), Fahimnia et 

al. (2017), Fereiduni and Shahanaghi (2016), Ghezavati et 

al. (2015) have used this problem in their studies.  

Saghehei et al. (2021) divided the disaster emergency 

network into three phases. The first phase included national 

warehouses; the second phase covered regional 

warehouses; and the third phase included demand 

locations. Haghjoo et al. (2020) examined temporary 

facility locations and blood supply chain networks and 

facility and relief assignments in disasters. Beiki et al. 

(2010) designed a model for location during the earthquake 

in Tehran, Iran. They considered some assumptions: fixed 

and exact number of supplier locations in damaged and 

relief areas, and certain potential locations for building 

distribution centers. Liu and Song (2019) suggested a linear 

mixed-integer multi-objective model using several 

vehicles, blood groups, and periods that allowed decision-

makers to determine the required blood volume for 

collection of blood dispatching strategy and blood volume 

existing in each blood bank and center.  

Ghasemi (2019) designed a model for assignment location 

problems in the post-disaster phase. This model comprised 

eight blood donators, five locations for temporary facilities, 

and three proposed locations for fixed facilities. Habibi-

Kouchaksaraei et al. (2018) considered blood facilities in 

two forms: temporary facilities with low capacity and the 

ability to be deployed in different areas and fixed facilities 

with higher capacity, such as hospitals and clinics. 

Fahimnia et al. (2017) formulated a stochastic multi-

objective model to design a sustainable blood supply chain 

for different disaster scenarios. This model could 

determine the number of temporary blood centers in each 

scenario.  

Thirty-three papers reviewed in this study examined the 

location problem. Figure 9 indicates the frequency of 

different location types. It indicates HFLP has been mostly 

used in the reviewed models.  

 
Fig. 9. Frequency of location problems in disaster 

 

2.2.2. Location of different facilities in disaster  
 

This part of the study examines fixed and temporary 

facility locations. It has strived to consider fixed facilities 

and temporary facilities to minimize costs and deal with 

demand uncertainties regarding budget shortage, time 

limitations, and demand uncertainty. This classification of 

facilities has been examined herein. Table 1 reports the 

papers related to the type of facility location.  

Figure 10 illustrates the percentage of papers related to 

fixed, temporary, and facilities compared to all reviewed 

location studies.

 

Table 1.  

Type of located facilities 

Author and year Facilities 

Saghehei et al. (2021); Moeen-Moghadas et al. (2013); Barzinpour and Esmaeili (2014); Budak et al. (2020); 

Boostani et al. (2021); Manopiniwes et al. (2015); Lauras et al. (2014); Lu et al. (2010); Velasquez et al. (2021); 

Ismail (2021); Mansoori et al. (2020); Harke and de Leeuw (2015); Chakravarty (2014); Rezaei-Malek et al. (2016); 

Charles et al. (2016); Ghezavati et al. (2015); Guan et al. (2021); Praneetpholkrang et al. (2021); An et al. (2015); 

Liu and Song (2019); Saatchi et al. (2021); Zavvar Sabegh et al. (2017) 

Fix 

Memari et al. (2018); Zokaee et al. (2021); Fahimnia et al. (2017); Stauffer et al. (2016) Temporary 

Gutierrez and Mutuc (2018); Habibi-Kouchaksaraei et al. (2018); Fereiduni and Shahanaghi (2016); Ghasemi 

(2019); Sun et al. (2021); Haghjoo et al. (2020); Beiki et al. (2020). 
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Fig. 10. Frequency of facility types in studies related to location 

in disaster 
 

Figure 10 indicates that 67% of reviewed studies addressed 

fixed facility location, 22% examined fixed and temporary 

facilities, and the rest was related to temporary facility 

location.  
 

2.2.3. Type of located facility 
 

In location problems, the type of located facilities can be 

different based on the crisis and the problem's objectives. 

The problems reviewed in this study considered the 

location of the shelter, warehouse, distribution center, 

medical service centers, and blood donation centers, which 

have been assessed herein. Table 2 reports the papers 

related to the type of located facility.  

 

Table 2.  

Type of location facilities 

Author and year Facility 

Mansoori et al. (2020); Praneetpholkrang et al. 

(2021) 

Shelter 

Lauras et al. (2014); Budak et al. (2020); 

Manopiniwes et al. (2015); Harke and de 

Leeuw (2015); Rezaei-Malek et al. (2016); 

Charles et al. (2016); Saghehei et al. (2021); 

Saatchi et al. (2021); Guan et al. (2021). 

Warehouse 

Barzinpour and Esmaeili (2014); Zavvar 

Sabegh et al. (2017); Chakravarty (2014); 

Ghezavati et al. (2015); Stauffer et al. (2016); 

Mansoori et al. (2020); Zokaee et al. (2021); 

Ismail (2021); Boostani et al. (2021); 

Velasquez et al., (2021); Beiki et al. (2020); 

Gutierrez and Mutuc (2018). 

distribution 

center 

Lu et al. (2010); An et al. (2015); Sun and et 

al. (2021); Saatchi et al. (2021); Sun et al. 

(2021); Beiki et al. (2020); Memari et al. 

(2018); Moeen-Moghadas et al. (2013). 

medical 

service 

centers 

Fahimnia et al. (2017); Fereiduni and 

Shahanaghi (2016); Habibi-Kouchaksaraei et 

al. (2018); Ghasemi (2019); Liu and Song 

(2019); Haghjoo et al. (2020) 

blood 

donation 

centers 

Figure 11 indicates the frequency of different location 

facilities in all reviewed studies on location.  

Fig.11. Frequency of types of facilities located in the disaster 
 

As seen in Figure 11, the locations of distribution centers 

have had the highest location frequency indicating the 

frequency of different types of location facilities in all 

reviewed studies. 

Figure 12 depicts the number of studies conducted in 

various locations in different years. It indicates the 

increasing number of studies on the location problem. 

 
Fig. 12. Number of studies conducted on location in different 

years among all reviewed location papers 
 

2.3. Certainty and uncertainty under disaster conditions 
  

Problems' parameters can be certain or uncertain (definitive 

or probabilistic) under different conditions and 

information. Because the exact time of the disaster is 

unclear and the number of injured people is unpredictable, 

some parameters will be definitive or probabilistic. This 

part of the study reviews the papers in cases of certainty 

and uncertainty, dividing the uncertainty cases into three 

categories: fuzzy, stochastic, and robust. 
 

2.3.1. Uncertainty in disaster 
  

In this section, those studies conducted on uncertainty 

under disaster conditions have been examined. These 

papers have been divided into three categories: fuzzy 

approach, stochastic or probabilistic approach, and robust 

approach. Fuzzy logic is the opposite of the 0 and 1 logic. 

Fuzzy numbers provide each parameter with values 

between zero and one, the membership degrees of numbers 

in the fuzzy membership function. These numbers indeed 

indicate the probability of a state as a number between 0 

and 1. In the stochastic approach, all or some parameters 

are probabilistic with a specific probability distribution. A 
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robust approach is not just looking for an optimum 

solution; it tends to find a solution that remains constant in 

possible change. Table 3 reports the studies conducted on 

different uncertainty approaches.  
 

Table 3 

Types of uncertainty in reviewed papers 

Author and year Type 

Ismail (2021); Cao et al. (2021); Guan et al. (2021); Budak 

et al. (2020); Doodman et al. (2019); Liu and Song (2019); 

Torabi et al. (2018); Ganguly et al. (2017); Deng et al. 

(2016); Wei et al. (2015); Li et al. (2021); Tian et al. 

(2011); Memari et al. (2018); Kondo Lu et al. (2018) fu
z
zy

 

Zokaee et al. (2021); Zhang et al. (2021); Boostani et al. 

(2021); Cheng et al. (2021); Patil et al. (2021); Diaz et al. 

(2020); Kaur and Singh(2020); Mora-Ochomogo et al. 

(2020); Gao and Cao(2020); Beiki et al. (2020); Alaswad 

and Salman (2020); Doodman et al. (2019); Nozhati et al. 

(2019); Naghipour and Bashiri (2019); Cui et al. (2019); 

Song et al. (2018); Torabi et al. (2018); Sun et al. (2018); 

Wang et al. (2018); Cao et al. (2018); Javadian et al. (2017); 

Fahimnia et al. (2017); Hu and et al. (2017); Manopiniwes 

and Irohara (2017); Gobaco et al. (2016); Anjomshoae et al. 

(2016); Ghezavati et al. (2015); Alem and Clark (2015); 

MacKenzie et al. (2014); Kelle et al. (2014); Lauras et al. 

(2014); Chakravarty(2014); Davis and et al. (2013); Kumar 

and Havey (2013); Han and et al. (2010); Ozbay and 

Ozguven(2007); Sayarshad et al. (2020); Memari et al. 

(2018); Moeen-Moghadas et al. (2013); MacKenzie et al. 

(2013); Rahimzadeh Dehaghani et al. (2021); Lu et al. 

(2010); Xiang and Zhuang (2016); An et al. (2015); Lee and 

Lee (2021); Bravo et al. (2019); Nie and et al. (2020); 

Azimi et al. (2019); Yu et al. (2018); Hashemipour et al. 

(2018); Bune et al. (2016); Iizuka and Iizuka (2015); Ni et 

al. (2015); Edrissi et al. (2013); Taskin and Lodree (2010); 

Kaddoussi et al. (2013); Gamage and Olapiriyakul (2020). p
ro

b
a
b

il
is

ti
c

 

Mansoori et al. (2020); Kamyabniya et al. (2021); Sun et al. 

(2021); Velasquez et al. (2021); Haghjoo et al. (2020); 

Hamdan and Diabat (2020); Liu et al. (2019); Safaei et al. 

(2018); Habibi-Kouchaksaraei et al. (2018); Liu et al. 

(2018); Fereiduni and Shahanaghi (2016); Connelly et al. 

(2016); Zokaee et al. (2016); Rezaei-Malek et al. (2016); 

Tal et al. (2011); r
o
b

u
st

 

 Cao et al. (2021) designed a fuzzy multi-level optimization 

model for pre-disaster relief distribution in a sustainable 

humanitarian supply chain. Ganguly et al. (2017) modeled 

the performance of the relief system in a disaster in terms 

of preparedness and suddenness of the model situation.  

Zhang et al. (2021) studied a reliable closed-loop supply 

chain design under facility-type-dependent probabilistic 

disruptions. They considered some assumptions in their 

research: normal distribution of demand for new goods of 

the retailer, the independent failure probability of separate 

distribution centers in the forward route that was not in the 

same place as the backward path, and unlimited capacity of 

distribution centers in the round-trip path. Cheng et al. 

(2021) modeled an effective and fair distribution problem 

in humanitarian relief logistics using ideal robust 

programming. They considered some assumptions in their 

study: increased demand due to increased poverty, 

different poverty levels in countries, and transportation 

between food banks. Nozhati et al. (2019) presented a 

probabilistic framework for evaluating the food security of 

households in the aftermath of a disaster. They introduced 

three conditions of food availability, accessibility, and 

affordability to take a house or urban area as a place with 

food security in society. Sun et al. (2018) proposed a bi-

level model concerning storage levels for emergency 

resources and the distribution of resources in different post-

disaster demand locations. They considered uncertain 

demand, predetermined reserves survival, and post-disaster 

transportation network. Mora-Ochomogo et al. (2020) 

suggested a Markov model that simulated specific 

operations in collection locations and helped decision-

makers with inventories to determine the optimal volume 

and time of entering the donated items. Alaswad and 

Salman (2020) designed a game for humanitarian aid and 

relief distribution, which allowed researchers to derive 

humanitarian supply chain management notions by 

learning from classroom activities. Cui et al. (2019) 

considered the operational risk of emergency resource 

locations and apparent resilience as problem factors. Song 

et al. (2018) designed a model to optimize system design 

and operations to minimize total programming delay. 

Javadian et al. (2017) designed a multi-objective linear 

mixed-integer programming to determine the location of 

central warehouses and local distribution centers 

simultaneously, the corresponding inventory volume for 

relief items, the number of distribution of items sent from 

the supplier to central warehouses, from central 

warehouses to local distribution center in damaged areas, 

and from strategic storage to local distribution centers. 

Kelle et al. (2014) considered three decision criteria: 

expected cost and reliable regret criteria with different 

max-min regret probabilities. Liu et al. (2018) presented a 

robust optimization approach to demand programming and 

uncertain transportation time. Safaei et al. (2018) designed 

a multi-objective robust optimization model for urgent 

logistic operations. Zokaee et al. (2016) designed a three-

tier robust supply chain model that included suppliers, item 

distribution centers, and affected locations. Connelly et al. 

(2016) designed an analytical method to enhance 

humanitarian logistic management for disaster 

preparedness and responsiveness. Their model allows 

decision-makers to assess priorities change. Tal et al. 

(2011) designed a robust optimization framework for 

optimal dynamism traffic allocation in disaster. Gamage 

and Olapiriyakul (2020) focused on different supply chain 

parameters under the possible disruption in the supply 

chain.  
 

2.2.1.4. Uncertain parameters 
 

Various uncertain parameters have been reviewed in this 

part of the study. Uncertain or probabilistic parameters 

include demand, number of injured people and patients, 

time (travel or waiting), capacity, number of vehicles, cost, 

damage level, service level, inventory level, risk, 

efficiency, and profit. Table 4 reports the classification of 

uncertain parameters. 
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Table 4.  

Classification of uncertain parameters 

 

Author and year parameter 

Mansoori et al. (2020)  , Zhang et al. (2021)  , Boostani et al. (2021), Velasquez et al. (2021), Diaz et al. (2020), Mora-

Ochomogo et al. (2020), Gao and Cao (2020), Beiki et al. (2020), Alaswad and Salman (2018), Doodman et al. 

(2019), Liu et al.(2019), Song et al(2018), Torabi et al. (2020), Sun et al. (2018), Safaei et al. (2018), Liu et al. 

(2018), Wang et al. (2018), Cao et al. (2018), Javadian et al. (2017), Hu et al.(2017), Manopiniwes and Irohara 

(2017), Gobaco et al. (2016), Zokaee et al. (2019), Rezaei-Malek et al. (2016), Wei et al. (2015), Alem and Clark 

(2015), Ni et al. (2015), Lauras et al. (2014), Li et al. (2013), Davis et al. (2013), Tal et al. (2011), Han et al. (2010), 

Ozbay and Ozguven (2007), Taskin and Lodree (2010), Lu et al. (2010) 

Total relief items without 

mentioning a specific type 

d
e
m

a
n

d
 Haghjoo et al. (2020), Hamdan and Diabat (2020), Naghipour and Bashiri (2019), Liu and Song (2019), Fahimnia 

et al. (2018), Fereiduni and Shahanaghi (2016) 
Blood items 

Memari et al. (2019) medical items 

Kaddoussi et al. (2013) Water, food and clothing 

Mansoori et al. (2020), Sun et al. (2021), Guan et al. (2021), Cui et al. (2020), Liu et al. (2018), Rezaei-Malek et 

al. (2016), Tian and et al. (2011), Memari et al. (2018), An et al. (2015), Javadian et al. (2017), Edrissi et al. (2013)  

time of travel 

ti
m

e 

Moeen-Moghadas et al. (2013) waiting time 

Liu and Song (2019) Time of distributing items 

Manopiniwes and Irohara (2020), Hashemipour et al. (2018) Relief time 

Zokaee et al. (2021), Mora-Ochomogo et al. (2020), Lauras et al. (2014) Warehouse 

c
a

p
a

ci
ty

 

Zokaee et al. (2021)  Road 

Cheng et al. (2021), Kaur and Singh (2020), Javadian et al. (2017), Gobaco et al. (2016), Zokaee et al. (2016) Supplier 

Doodman et al. (2019)  Distribution center 

Liu and Song (2019), Habibi-Kouchaksaraei et al. (2021)  Facilities for collecting, 

storing and donating blood 

Fereiduni and Shahanaghi (2016) The capacity of blood 

donors to donate 

Liu and et al. (2019) Capacity of relief centers 

Ismail (2021)  Deprivation 

c
o

st
 

Cheng et al. (2021), Torabi et al. (2018), Zokaee and et al. (2016), Chakravarty (2014)  Budget 

Doodman and et al. (2019), Torabi et al. (2018) Storage of relief items 

Doodman and et al. (2019, Torabi et al. (2018), Fereiduni and Shahanaghi (2016) Providing relief items 

Doodman and et al. (2019), Torabi et al. (2018), Javadian et al. (2017), Manopiniwes and Irohara (2017).  Distribution of items 

Torabi et al. (2018), Zokaee and et al. (2016), Rezaei-Malek et al. (2016) Shortage 

Javadian et al. (2017)  Surplus 

Habibi-Kouchaksaraei et al. (2018) Construction of facilities 

Fereiduni and Shahanaghi (2016)  Facility relocation 

Ghezavati et al. (2015)  Transportation of relief 

items 

Xiang and Zhuang (2016) Service level of medical 

centers to the injured 

Nie et al. (2020) Power disruption 

An et al. (2015), Kaddoussi et al. (2013) Delay 

Manopiniwes and Irohara (2017)  Evacuation 

Cao et al. (2021), Mora-Ochomogo et al. (2020), Liu et al. (2019), Javadian et al. (2017), Alem and Clark (2015), 

Davis et al. (2013)  

Distribution center 

In
v

e
n

to
ry

 l
e
v
e
l 

Hamdan and Diabat (2020), Liu and Song (2019), Fahimnia et al. (2017) Blood collection and storage 

facilities 

Javadian et al. (2017)  Warehouse 

Anjomshoae et al. (2016)  water level of River 

Kelle et al. (2014(, MacKenzie et al. (2013)  Supplier  

Sayarshad et al. (2020) Remaining debris removal 

equipment 

Nie et al. (2020) Stored electricity 

Budak et al. (2020), Ganguly et al. (2017(, Tian et al. (2011) Risk 

Deng et al. (2016), Connelly et al. (2016) Efficiency 

MacKenzie et al. (2014), Li et al. (2013) Profit 

Gamage and Olapiriyakul (2020) Shortage 

Velasquez et al. (2021). Nozhati et al. (2019), Bune et al. (2016(, Kumar and Havey (2013(, Kondo (2018) Damage level 

Memari et al. (2018), Lu et al. (2010), Xiang and Zhuang (2016), Rahimzadeh Dehaghani et al. (2021) Service level 

Mansoori et al. (2020), Kamyabniya et al. (2021), Sun et al. (2021), Patil et al. (2021), Beiki et al. (2020), Liu et al. 

(2019), Habibi-Kouchaksaraei et al. (2018), Liu et al. (2018), Kelle et al. (2014), Lu et al. (2010), Lee and Lee 

(2021), Bravo et al. (2019), Azimi et al. (2019), Yu et al. (2018), Iizuka and Iizuka (2015) 

Number of injured people 
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Fig. 13. Frequency of uncertain parameters in papers 

 

Figure 13 indicates the frequency of uncertain parameters 

in studies conducted on uncertainty.  

As seen in Figure 13, demand has been the most used 

parameter among uncertain parameters, while the number 

of vehicles and shortage had the lowest frequency. Figure 

14 indicates the number of studies conducted on 

uncertainty in disasters during different years.  

 

 
Fig. 14. Frequency of papers considering uncertainty per year 

 

As seen in Figure 14, most studies on uncertainty have been 

carried out in 2018, 2020, and 2021. 
 

2.3.2. Certainty in disaster 

 

The papers related to this scope have defined parameters. 

The following authors used certain parameters in their 

studies: Gulzari and Tarakci (2021), Mousa et al. (2021), 

Saatchi et al. (2021), Islam et al. (2021), Xavier et al. 

(2021), Praneetpholkrang et al. (2021), Saghehei et al. 

(2021), Rezaei et al. (2020), Ren et al. (2020), Ghaffari et 

al. (2020), Guo and Peng (2019), Behl et al. (2019), 

Ghasemi (2019), Hong and Jeong (2019), Gökçe and Ercan 

(2019), Gutierrez and Mutuc (2018), Zavvar Sabegh et al. 

(2017), Baraka et al. (2017), Widera et al. (2017), 

Baharmand et al. (2017), Ransikarbum and Mason (2016), 

Charles et al. (2016), Stauffer et al. (2016), Abidi et al. 

(2015), Harke and de Leeuw (2015), Gil and Mcneil 

(2015), Manopiniwes et al. (2015), Barzinpour and 

Esmaeili (2015), Ji and Zhu (2012), Hu (2011), 

Mushanyuri and Ngcamu (2020), and Horner and Downs 

(2007). Mousa et al. (2021) conducted a study to optimize 

the supply chain under natural disaster conditions; they 

developed a multi-objective optimization algorithm. Islam 

et al. (2021) proposed a predictive model for fuel shortages 

during a hurricane evacuation. Xavier et al. (2021) 

developed a mathematical model to minimize operation 

time and deployment of helicopters and people to optimize 

distribution during the last path of the humanitarian supply 

chain. Rezaei et al. (2020) suggested a framework that 

required flexibility for sync with other natural disasters, 

like floods, volcanic eruptions, storms, tsunamis, and 

tornadoes. They claimed that natural disasters have many 

points in common despite their differences. Ren et al. 

(2020) introduced a model to compensate for the damages 

caused by Coronavirus in Wuhan, China. Behl et al. (2019) 

introduced ten critical success factors for humanitarian 

supply chain management. Panned emergency relief 

systems, technology applications, and reasonable 

organizational structures were the most important success 

factors. In the pre-disaster preparedness phase, Hong and 

Jeon (2019) designed a two-phase framework for 

humanitarian supply chain network design. They 

introduced two four-objective programming models for the 

configuration of a modified humanitarian supply chain 

network. Gökçe and Ercan (2019) designed a mixed-

integer model to find those goods with replenishment 

requirements. Their model could determine replenishment 

strategies for several periods. Baraka et al. (2017) designed 

a single-objective model to minimize transportation costs. 

Ransikarbum and Mason (2016) designed a model to 

integrate the responsive phase of supply chain distribution 

operations and the network restoration decisions phase. Ji 

and Zhu (2012) studied an emergency supply chain in 

disasters and urgent relief decision-making. Horner and 

Downs (2007) developed a flow network model for 

programming relief item distribution to minimize 

allocation, relief, and facility location costs.  

Among reviewed studies on certainty and uncertainty, 83 

papers studied certainty, and 32 studies examined certainty 

parameters. In total, 115 studies conducted on certainty and 

uncertainty were reviewed; the rest were qualitative 

studies. Figure 15 shows the frequency of certainty and 

uncertainty approaches, including fuzzy, probabilistic, and 

robust cases compared to all studies conducted on certainty 

and uncertainty. 
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Fig. 15. Frequency of papers covering certain parameters and uncertainty approaches 

 

Figure 15 depicts that the probabilistic approach has been 

mostly used for parameters, while the fuzzy approach has 

had the least application in reviewed studies. Moreover, 

73% of studies used uncertainty, while 27% considered a 

certainty state. Figure 16 compares the number of papers 

considering certainty and uncertainty in each year. 

 

 
Fig. 16. Comparison of frequency of papers covering certainty and uncertainty in each year 

 

 

Figure 16 indicates that papers considering uncertainty 

equaled or exceeded the number of papers with certainty 

approaches in all studied years. The most uncertain studies 

were carried out in 2021 rather than in other years.  

The ascending trend of uncertainty studied in recent years 

implies authors’ willingness to use uncertain (probabilistic) 

approaches to deal with unpredictable disaster conditions.  
 

2.4. Relief team classification in disaster  
 

relief team classification is one of the most appropriate 

methods of accelerating the relief process. Relief teams are 

responsible for participating in post-disaster response 

operations and delivering drugs, food, and clothes to 

injured people and patients. This classification is done in 

several forms: medical classification based on proficiency, 

teams based on their relief services, classification of 

different organizations in the relief process, and similar 

relief teams (regardless of their skills) assigned to affected 

locations. In general, the affected population starts within 

the first 30-min of the disaster to save their lives and others, 

assess the conditions of people buried or trapped under the 

rubble, and ask for dispatching medical and relief teams. 

Relief forces at the urban and state level, like armed police, 

traffic police, firefighters, and pharmaceuticals, must arrive 

at the scene within 2 hours to carry out rescue operations, 

while provincial forces must arrive and provide services 

within four hours (Guan et al., 2021).  

Ghaffari et al. (2020) examined the dispatch of relief teams 

from their stations to hospitals through pre-positioned 

routes for relief providers and the initial evaluation of 

required relief items. They considered an agreement 

between the supplier and humanitarian organizations that 

persuaded suppliers to provide or produce required drug 

relief items. Abidi et al. (2015) carried out a study on 

sustainable supply chain optimization considering relief 

team classification. This study aimed to mitigate casualties 

and deaths, save people's lives, increase the number of 

survivors, fight against diseases, and promote gender 

equity in response and transportation phases. Gil and 

Mcneil (2015) conducted a study on post-disaster 

humanitarian logistics to find the role of outsourcing in the 

supply chain to identify available situations for improving 

performance and chance for optimization of storage, 

transportation, distribution capacity of relief teams, relief 

network, and humanitarian relief system. Table 5 reports 

the studies that have used relief team classification in their 

models.  
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Table 5 

Studies with relief team classification 

classification Author(year) Title 

Medical team 

classification 

based on 

proficiency 

Gulzari and 

Tarakci 

(2021) 

A healthcare location-allocation 

model with an application of 

telemedicine for an earthquake 

response phase 

Level of 

relief 

services 

(high and 

low) 

Guan et al. 

(2021) 

Multilevel coverage location 

model of earthquake relief material 

storage repository considering 

distribution time sequence 

characteristics 

Medical 

team  Ghaffari et al. 

(2020) 

Emergency supply chain 

scheduling problem with multiple 

resources in disaster relief 

operations 

Different 

organizations 

in the relief 

process 

Abidi et al. 

(2015) 

Sustainable humanitarian logistics 

optimization-a hub concept for 

Germany based on the shapley 

value 

 Similar 

relief teams 

Gil and 

Mcneil 

(2015) 

Supply chain outsourcing in 

response to manmade and natural 

disasters in Colombia, a 

humanitarian logistics perspective 

 

2.5. Patient classification in disaster 
 

The patient classification system is a method that 

accelerates the relief process. Patient classification helps 

assign injured people to suitable medical teams based on 

their conditions. Patient classification can be done based on 

the injury severity and acuity within two forms of colors 

(red: severe injury, yellow: normal casualty, and green: a 

patient needs outpatient treatment) or urgent-nonurgent 

patient.  

Kamyabniya et al. (2021) considered a multi-phase supply 

chain consisting of regional blood units, hospitals, and 

specific needs of emergency shelters in the affected 

locations. This model was considered a transportation 

model of multi-layer injury intensity of patients with 

sharing resources among relief facilities. Sun et al. (2015) 

proposed a multi-objective robust optimization model for 

disaster response programming under uncertainty.  

This model classified patients based on their injury severity 

into two serious and lower injuries. Table 6 reports the 

studies conducted on patient classification based on their 

publishing years. 
 

Table 6 

 Studies with patient classification 

classification 
Author and 

year 
Title 

Emergency and 

non-emergency 

patient 

Gulzari and 

Tarakci (2021) 

A healthcare location-

allocation model with an 

application of telemedicine 

for an earthquake response 

phase 

Different types of 

patients (without 

mentioning the 

specific type) 

Mansoori et al. 

(2020) 

A robust multi-objective 

humanitarian relief chain 

network design for 

earthquake response, with 

evacuation assumption 

under uncertainties 

Injury level 
Kamyabniya 

et al. (2021) 

A robust integrated 

logistics model for age-

based multi-group platelets 

in disaster relief operations 

Serious and non-

serious injuries 

Sun et al. 

(2021) 

A bi-objective robust 

optimization model for 

disaster response planning 

under uncertainties 

Patient 

classification based 

on blood type 

Naghipour and 

Bashiri (2019) 

Designing a bi-objective 

stochastic blood supply 

chain network in a disaster 

Different types of 

patients (without 

mentioning the 

specific type) 

Liu et al. 

(2019) 

A robust model predictive 

control approach for post-

disaster relief distribution 

Classification 

based on injury 

severity (yellow-

green-red-black) 

Memari et al. 

(2018) 

Fuzzy dynamic location-

allocation problem with 

temporary multi-medical 

centers in disaster 

management 

Different types of 

patients (without 

mentioning the 

specific type) 

Xiang and 

Zhuang (2016) 

A medical resource 

allocation model for 

serving emergency victims 

with deteriorating health 

conditions 

According to Table 6, classification was done based on the 

injury severity indicated in color categories (red: severe 

injury, yellow: normal casualty, and green: a patient who 

needs outpatient treatment) or urgent-nonurgent patient. 
  

2.6. Research Methods  
 

This part of the study reviews studies based on their 

research methods, including analytical, empirical, 

conceptual, and applied.  

The authors choose different methods based on the 

research subject and available tools for data collection. 

Table 7 reports the research methods used in reviewed 

studies.  
 

Table 7 

The research method of reviewed papers 

Author and year  

Zhang et al. (2021); Mousa et al. (2021); Saatchi et al. (2021); 

Patil et al. (2021); Kaur and Singh(2020); Ghaffari et al. (2020); 

Budak et al. (2020); Alaswad and Salman(2020); Guo and 

Peng(2019); Behl et al. (2019); Naghipour and Bashiri(2019); 

Cui et al. (2019); Gökçe and Ercan(2019); Song et al. (2018); 

Wang et al. (2018); Zavvar Sabegh et al. (2017); Fahimnia et 

al. (2017); Ganguly et al. (2017); Charles et al. (2016); Gobaco 

et al. (2016); Ni et al. (2015); Harke and de Leeuw(2015); 

Ghezavati et al. (2015); Chakravarty(2014); Li et al. (2013); Ji 

and Zhu(2012); Hu et al. (2011); Tal et al. (2011); Han et al. 

(2010); Taskin and Lodree(2010); )Ozbay and Ozguven(2007); 

Memari et al. (2018); Rahimzadeh Dehaghani et al. (2021); Lu 

et al. (2010); Xiang and Zhuang (2016); Lee and Lee (2021); 

Nie et al. (2020); Iizuka and Iizuka (2015); Edrissi et al. (2013); 

Kaddoussi et al. (2013); Azimi et al. (2019); An et al. (2015); 

Sutrisno et al. (2020); Upadhyay et al. (2020); Fontainha et al. 

(2020); Mora-Ochomogo et al. (2020); Pfeiffer et al. (2017); 

Sharma and Srivastava (2016); Schumann-Bölsche (2015); 

Syahrir et al. (2015); Mu and Liang (2015); Venkatesh et al. 

(2014). A
n

a
ly

ti
ca

l 
a

n
d

 C
o

n
ce

p
tu

a
l 



Fatemeh Kheildar and et al. / Humanitarian Smart Supply Chain: Classification…. 

28 

 

Ismail (2021); Velasquez et al. (2021); Islam et al. (2021); Ren 

et al. (2020); Ransikarbum and Mason (2013); Gil and Mcneil 

(2015); Davis et al. (2013); Shen et al. (2012); Gulzari and 

Tarakci(2021); Mansoori et al. (2020); Zokaee et al. (2021); 

Kamyabniya et al. (2021); Sun et al. (2021); Boostani et al. 

(2021); Cao et al. (2021); Cheng et al. (2021); Guan et al. 

(2021); Xavier et al. (2021); Praneetpholkrang et al. (2021); 

Saghehei et al. (2021); Rezaei et al. (2020); Diaz et al. (2020); 

Gamage and Olapiriyakul(2020); Haghjoo et al. (2020); 

Hamdan and Diabat (2020); Mushanyuri and Ngcamu (2020); 

Gao and Cao(2020); Beiki et al. (2020); Doodman et al. (2019); 

Liu and Song (2019); Nozhati et al. (2019); Ghasemi (2019); 

Hong and Jeong (2019); Liu et al. (2019); Torabi et al. (2018); 

Sun et al. (2018); Gutierrez and Mutuc(2018); Safaei et al. 

(2018); Habibi-Kouchaksaraei et al. (2018); Liu et al. (2018); 

Cao et al. (2018); Kondo(2018); Javadian et al. (2017); Baraka 

et al. (2017); Hu et al. (2017); Manopiniwes and Irohara (2017); 

Widera et al. (2017); Baharmand et al. (2017); Deng et al. 

(2016); Fereiduni and Shahanaghi (2016); Stauffer et al. 

(2016); Connelly et al. (2016); Anjomshoae et al. (2016); 

Zokaee et al. (2016); Rezaei-Malek et al. (2016); Abidi et al. 

(2015); Wei et al. (2015); Alem and Clark (2015); 

Manopiniwes et al. (2015); MacKenzie et al. (2014); Kelle et 

al. (2014); Lauras et al. (2014); Barzinpour and Esmaeili 

(2014); Kumar and Havey (2013); MacKenzie et al. (2012); 

Tian et al. (2011); Horner and Downs(2007); Sayarshad et al. 

(2020); Moeen-Moghadas et al. (2013); Bravo et al. (2019); Yu 

et al. (2018); Hashemipour et al. (2018); Bune et al. (2016); 

Ergun et al. (2010); Oloruntoba et al. (2010); Gatignon et al. 

(2010); Kwasinski et al. (2006). E
m

p
ir

ic
a
l 

a
n

d
 A

p
p

li
e
d

 

 

 

This section examined the studies based on their research 

methods (analytical and conceptual, empirical and 

applied). Of 129 reviewed papers, 77 were applied and 

empirical, while 52 studies were analytical and conceptual. 

Figure 17 indicates the frequency of research methods in 

reviewed studies. 
  

 

Fig. 17. Frequency of research methods 

 

According to Figure 17, 58% of reviewed papers used 

empirical and applied approaches, and 42% employed 

analytical and conceptual approaches.  

2.7. Number of objective functions 
 

This part of the study reviews the papers based on their 

number of objective functions. Table 8 indicates the type 

and number of objective functions in single-objective 

problems. 

 

Table 8 

Type of objective functions in single-objective papers 

Quantity Author and year 

type of 

objective 

function 

30 

Zokaee et al. (2021); Ismail et al. 

(2021); Zhang et al. (2021); Velasquez 

et al. (2021); Gamage and 

Olapiriyakul(2020); Haghjoo et al. 

(2020); Mora-Ochomogo et al. (2020); 

Naghipour and Bashiri (2019); Ghasemi 

(2019); Torabi et al. (2018); Gutierrez 

and Mutuc(2018); Liu et al. (2018); 

Baraka et al. (2017); Hu et al. (2017); 

Charles et al. (2016); Fereiduni and 

Shahanaghi (2016); Stauffer et al. 

(2016); Zokaee et al. (2016); Wei et al. 

(2015); Ghezavati et al. (2015); Alem 

and Clark (2015); Kelle et al. (2014); 

Davis et al. (2013); Hu et al. (2011); Tal 

et al. (2011); Han et al. (2010); Taskin 

and Lodree (2010); Ozbay and Ozguven 

(2007); An et al. (2015); Iizuka and 

Iizuka (2015). 

Minimize 

the Cost  

8 

Xavier et al. (2021); Ghaffari et al. 

(2020); Song et al. (2018); Wang et al. 

(2018); Manopiniwes et al. (2015); Tian 

et al. (2011); Hashemipour et al. (2018); 

Kaddoussi et al. (2013). 

Minimize 

service 

delivery 

time 

6 

Gulzari and Tarakci (2021); Cheng et al. 

(2021); Liu et al. (2019); Lauras et al. 

(2014); Sayarshad et al. (2020); Lu et al. 

(2010). 

Maximize 

demand 

satisfaction 

4 

Moeen-Moghadas et al. (2013); Lee 

and Lee (2021); Bravo et al. (2019); 

Bune et al. (2016). 

Maximize 

the number 

of rescued 

people 

2 
Gökçe and Ercan (2019); Nie et al. 

(2020). 

Maximize 

the Profit  

2 Saghehei et al. (2021); Yu et al. (2018). 
Minimize 

distance 

 

According to Table 8, minimization of costs is the most 

common type of objective function among other options in 

single-objective papers.  

Multi-objective problems have more than one objective 

function. In most real cases, problems have more than one 

objective function, so researchers try to solve these 

problems with minimum conflicts between functions. 

Table 9 reports the papers that had multi-objective 

functions. 

 

 

 

 

 

 

 

 

42%

58%
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Table 9  

 Type of objective functions in multi-objective papers 

Max 

quality of 

relief services 

Max 

efficiency 

Max 

reliability 

Min 

Risk 

Min 

environmental 

effects 

Min 

shortage 

Max 

number of 

rescued 

people 

Max 

demand 

satisfaction 

Min 

time 

Min 

Cost 
Author(year) 

          Mansoori et al. (2020) 

          Kamyabniya et al. (2021)  

          Sun et al. (2021) 

          Mousa et al. (2021) 

          Boostani et al. (2021) 

          Cao et al. (2021) 

           Guan et al. (2021) 

          Saatchi et al. (2021) 

          
Praneetpholkrang et al. 

(2021) 

          Rezaei et al. (2020) 

          
Hamdan and Diabat 

(2020) 

          Gao and Cao (2020) 

          Guo and Peng (2019) 

          Doodman et al. (2019) 

          Liu and Song (2019) 

          Cui et al. (2019) 

          Hong and Jeong (2019) 

          Cao et al. (2018) 

          
Zavvar Sabegh et al. 

(2017) 

          Javadian et al. (2017) 

          Fahimnia et al. (2017) 

          
Manopiniwes and 

Irohara (2017) 

          
Habibi-Kouchaksaraei et 

al. (2018) 

          
Ransikarbum and Mason 

(2016) 

          Gobaco et al. (2016) 

          
Rezaei-Malek et al. 

(2016) 

          
Barzinpour and Esmaeili 

(2014) 

          Ji and Zhu (2012) 

          
Horner and Downs 

(2007) 

          Memari et al. (2018) 

          
Rahimzadeh Dehaghani 

et al. (2021) 

          
Xiang and Zhuang 

(2016) 

          Azimi et al. (2019) 

          Edrissi et al. (2013) 

3 3 1 1 1 3 9 9 17 24 Total 
 

 
Fig. 18. Frequency of objective function types in both single-objective and multi-objective papers 
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According to Table 9, minimizing costs is the most 

common type of objective function among other options in 

multi-objective papers. Figure 18 depicts the frequency of 

objective function types in both single-objective and multi-

objective papers.  

 Figure 18 shows that cost and time are the most common 

types of objective functions, while risk, number of 

manufacturing products, and quality have been less used as 

objective functions.  
 

2.8. Solution methods  
 

This part of the study reviews papers based on their 

solution methods. Solution methods are selected based on 

the number of objective functions, constraints, and problem 

data. 
  

2.8.1. Exact 
  

The exact solution method is about finding the optimal 

solution in a limited time. The exact solution is a classic 

method (Rao, 2009). Table 10 reports the studies that used 

the exact solution method and mentions the names of these 

methods. 
 

Table 10  

Papers with the exact solution method 

Quantity Author and year Solution method 

26 

Gulzari and Tarakci(2021); Zhang 

et al. (2021); Gamage and 

Olapiriyakul(2020); Mansoori et al. 

(2020); Doodman et al. (2019); 

Hong and Jeong (2019); Liu et al. 

(2019); Torabi et al. (2018); Liu et 

al. (2018); Hu et al. (2017); Stauffer 

et al. (2016); Rezaei-Malek et al. 

(2016); Alem and Clark(2015); 

Kelle et al. (2014); Han et al. 

(2010); Rahimzadeh Dehaghani et 

al. (2021); Horner and Downs 

(2007); Zokaee et al. (2021); Cheng 

et al. (2021); Ghasemi (2019); 

Mason and Ransikarbum (2016); 

Fereiduni and Shahanaghi (2016); 

Zokaee et al. (2016); Lauras et al. 

(2014); Davis et al. (2013); Gökçe 

and Ercan (2019). 

Cplex 

solver 

E
x
a

c
t

 

3 
Kamyabniya et al. (2021); Hamdan 

and Diabat (2020); An et al. (2015). 

Lagrangian 

relaxation 

method 

9 

Kamyabniya et al. (2021); Sun et al. 

(2021); Naghipour and Bashiri 

(2019); Fahimnia et al. (2017); 

Memari et al. (2018); Saatchi et al. 

(2021); Praneetpholkrang et al. 

(2021); Gao and Cao (2020); Gökçe 

and Ercan (2019). 

ε -

Constraint 

2 Guan et al. (2021); Cao et al. (2021) 

Branch and 

bound 

method 

3 
Boostani et al. (2021); Cao et al. 

(2021); Liu and Song (2019). 

Lp-metric 

method 

4 
Barzinpour and Esmaeili (2014); 

Wei et al. (2015); Habibi-

Lingo 

solver 

Kouchaksaraei et al. (2018); Guo 

and Peng (2019).  

3 

Song et al. (2018); Manopiniwes 

and Irohara (2017); Manopiniwes et 

al. (2015). 

Gurobi 

solver 

1 Ji and Zhu (2012) 
Lindo 

solver 

According to Table 10, CPLEX Solver is the widely used 

exact solution method in reviewed papers.  
 

2.8.2. Heuristic  
 

Heuristic algorithms provide some criteria or principles to 

decide on several policies and strategies to select the most 

effective option. The papers that used the heuristic method 

have been mentioned herein (Rao, 2009).  

Ismail (2021) studied the allocation of relief items in the 

humanitarian supply chain. Zhang et al. (2021) addressed 

the location problem in a closed-loop supply chain under 

disaster conditions. Velasquez et al. (2021) examined relief 

item distribution problems in emergency conditions. Islam 

et al. (2021) studied fuel shortages during a hurricane 

evacuation. Xavier et al. (2021) examined the use of 

helicopters in relief resource distribution operations. Diaz 

et al. (2020) studied evacuation problems and sending 

patients to temporary shelters. Wang et al. (2018) assessed 

emergency transportation in supply chain response 

operations. Kondo (2018) examined the effects of 

disruptions on the supply chain in a disaster. Charles et al. 

(2016) studied location problems in relief networks. 

Anjomshoae et al. (2016) studied the flood evacuation 

problem. Gobaco et al. (2016) examined relief items 

distribution problems in humanitarian supply chain 

networks. Rezaei-Malek et al. (2016) studied the location 

and allocation of relief items in a disaster. Abidi et al. 

(2015) assessed the effect of relief organizations' 

cooperation in disasters on the reduction of the relief 

process' cost and time. Ni et al. (2015) proposed a method 

to evaluate the performance of various relief strategies in 

disasters. Chakravarty studied the relief process under 

disaster conditions. Kumar and Havey (2013) developed a 

model to evaluate the decisions made in the supply chain. 

MacKenzie et al. (2012) studied inventory management 

problems in disasters, and Tian et al. (2011) assessed relief 

items' distribution routing problems. Hu et al. (2011) 

examined transportation planning problems in emergency 

relief conditions. Taskin and Lodree (2010) studied the 

inventory control problem for emergency relief resources. 

Sayarshad et al. (2020) examined the debris clearance 

problem in a disaster. Moeen-Moghadas et al. (2013) 

studied relief centers' location problems. Torabi et al. 

(2018) examined procurement planning problems in the 

supply chain. Gutierrez and Mutuc (2018) assessed 

facilities' location problems in a disaster. Ozbay and 

Ozguven (2007) introduced an inventory control model 

under crisis conditions. Xiang and Zhuang (2016) studied 

medical resource allocation under emergency conditions. 
 

2.8.3. Metaheuristic 
 

The metaheuristic method is an algorithm that searches 

through a solution space to find a solution near to optimum 

within the shortest time (Rao, 2009). 
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Mousa et al. (2021) studied the blood supply chain 

problem. Guan et al. (2021) examined the coverage 

location model of relief materials. Gökçe and Ercan (2019) 

assessed inventory management problems in humanitarian 

logistics. Javadian et al. (2017) studied transportation in the 

humanitarian supply chain. Memari et al. (2018) examined 

the relief center's location and allocation problems. 

Rahimzadeh Dehaghani et al. (2021) studied the blood 

supply problem in the humanitarian supply chain. Saatchi 

et al. (2021) examined warehouse and hospital location 

problems and emergency relief vehicle routing. Saghehei 

et al. (2021) studied warehouse location problems in 

disasters, and Rezaei et al. (2020) designed a fuel supply 

chain network under crisis conditions. Haghjoo et al. 

(2020) studied the blood facilities' location problem. 

Ghaffari et al. (2020) studied relief items inventory 

management for disaster conditions. Cui et al. (2019) 

addressed relief items distribution in disaster. 

 Hong and Jeong (2019) examined relief items allocation in 

post-disaster conditions. Wang et al. (2018) studied 

transportation under disaster conditions. Cao et al. (2018) 

considered the relief items distribution problem in a 

disaster. Baraka et al. (2017) studied transportation in 

disaster relief. Zavvar Sabegh et al. (2017) examined relief 

facilities' location problems in a disaster. Ghezavati et al. 

(2015) evaluated relief facilities' locations in disaster. 

Table 11 reports the papers that used the metaheuristic 

method, introducing the name of each solution method.  
 

Table 11. 

Papers with the metaheuristic solution method 

Qua

ntity 
Author and year Solution method 

4 

Zavvar Sabegh et al. (2017); 

Ghaffari et al. (2020); Rezaei et 

al. (2020); Mousa et al. (2021) 

Particle swarm 

optimization 

M
e
ta

h
e
u

r
is

ti
c 

8 

Guan et al. (2021); Gökçe and 

Ercan (2019); Javadian et al. 

(2017); Memari et al. (2018); 

Rahimzadeh Dehaghani et al. 

(2021); Saatchi et al. (2021); 

Rezaei et al. (2020); Hong and 

Jeong (2019) 

Non dominated 

sorting genetic 

algorithm II 

2 
Saatchi et al. (2021); Ghezavati 

et al. (2015) 

Simulated 

annealing 

2 
Saatchi et al. (2021); Saghehei 

et al. (2021) 

Neighborhood 

search algorithm 

1 Haghjoo et al. (2020), 

Imperialist 

competitive 

algorithm 

1 Haghjoo et al. (2020) 
Invasive weed opt

imization  

2 
Lu and et al. (2010); Wang et 

al. (2018) 

Ant Colony 

Algorithm 

6 

Ghezavati et al. (2015); Zavvar 

Sabegh et al. (2017); Baraka et 

al. (2017); Cao et al. (2018); 

Cui et al. (2019); Saghehei et 

al. (2021). 

Genetic algorithm 

Table 11 indicates that the multi-objective genetic 

algorithm (GA) has been widely used in papers that 

employed metaheuristic methods. 

2.8.4. Simulation  
 

Simulation is an imitation of a real natural process. In the 

simulation, the actual effects of a phenomenon on a target 

are applied under controlled and determined conditions 

(Pido, 2004). 

Nozhati et al. (2019) studied individuals' food supply after 

a disaster. Stauffer et al. (2016) examined temporary hubs' 

location problems in the humanitarian supply chain, and 

Tal et al. (2011) studied emergency evacuation and relief 

problems under disaster conditions.  
 

2.8.5. Multi-Criteria Decision-Making  
 

This decision-making assesses optimization using several 

criteria (Hwang and Lin, 1987).  

Patil et al. (2021) evaluated the effectiveness of different 

relief activities. Kaur and Singh (2020) investigate the 

order allocation to suppliers in the supply chain. Behl et al. 

(2019) evaluated critical success factors for the supply 

chain. Ren et al. (2020) studied various criteria for first aid 

under crisis conditions. Baharmand et al. (2017) assessed 

the performance, efficiency, and effectiveness of 

transportation systems in disasters.  

Connelly et al. (2016) studied relief items allocation to 

damaged locations based on different criteria. Budak et al. 

(2020) studied warehouse locations in disasters by using 

different criteria. Sun et al. (2018) investigated the 

inventory management problem in a disaster. Safaei et al. 

(2018) studied relief item distribution problems under 

crisis conditions. Beiki et al. (2020) examined the 

distribution center location problem. Ganguly et al. (2017) 

assessed the factors affecting supply chain management. Li 

et al. (2013) designed a decision model for relief item 

distribution. Deng et al. (2016) studied the performance of 

the disaster supply chain. Table 12 reports those papers that 

have used MCDM methods and mention the names of these 

methods. 
 

Table 12 

Papers with MCDM 

Author and year 
Solution 

method 

Patil et al. (2021) Fuzzy ANP 

MCDM 

Deng et al. (2016) Fuzz AHP 

Kaur and Singh (2020); Behl et al. 

(2019) 

Dematel 

method 

Ren et al. (2020); Baharmand et al. 

(2017); Connelly et al. (2016); Ganguly 

et al. (2017); Li et al. (2013) 

Weighting 

method 

Budak et al. (2020); Sun et al. (2018); 

Safaei et al. (2018). 

Topsis 

method 

Beiki et al. (2020) Lexicographic 
 

According to Table 12, the weighted method has been 

widely used among other MCDM methods.  
 

2.8.6. Game Approach  
 

The following authors used a game approach in their 

studies: Alaswad and Salman (2020) studied relief 

problems and relief item distribution in disasters. Harke 

and de Leeuw (2015) examined inventory management 
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problems in disasters, and MacKenzie et al. (2014) 

assessed disruptions in the supply chain in disasters.  
 

2.8.7. Questionnaire and scientific-statistical analyses  
 

In the questionnaire method, the data are collected through 

a questionnaire distributed among a specific statistical 

society and then analyzed through statistical software.  

Mushanyuri and Ngcamu (2020) studied the effectiveness 

of a humanitarian supply chain in Zimbabwe. Widera et al. 

(2017) studied integrated logistics and transportation 

planning in disaster relief operations. Gil and Mcneil 

(2015) examined the supply chain performance in response 

to the disaster. 
 

2.8.8. Machine learning & intelligent systems in the 

crisis area  

Machine learning and its algorithms are one of the 

substantial and practical techniques that have received 

great attention in crisis problems over recent years. This 

algorithm helps researchers solve dynamic problems and 

other cases requiring simulation. These algorithms are used 

based on the problem subject and the researcher's idea. 

Accordingly, various approaches, like machine learning, 

deep learning, and multi-agent learning, are the most 

popular techniques used in papers.  

Lee and Lee (2021) formulated the disaster response 

problem as a decentralized-partially observable Markov 

decision process (dec-POMD); they used a multi-agent 

reinforcement learning algorithm (MARL) to solve the 

problem. Bravo et al. (2019) studied unmanned aerial 

vehicles (UAVs) in humanitarian relief. They used Markov 

decision process and a greedy algorithm to solve their 

problem. Comparing the results of the two solution 

methods indicated that the Markov decision process could 

rapidly find victims compared to the greedy search. Nie et 

al. (2020) investigated the energy supply optimization 

problem in the aftermath of the disaster using multi-agent 

deep reinforcement learning. Azimi et al. (2019) developed 

two multi-agent models for intelligent search and rescue 

operations. In one model, the priority was delivering drugs 

to victims, sending information about victims to hospitals 

to find urgent cases, and updating ambulance routes. The 

second model considered coordination between emergency 

vehicles and intersections' traffic lights and updating the 

route of emergency vehicles concerning their initial place. 

Yu et al. (2018) allocated the space of surrounding shelters 

by integrating multi-agent system techniques and multi-

criteria evaluation. Compared to previous methods used for 

shelter allocation, their methods clarified the importance of 

dynamic emergency evacuation simulations for appropriate 

analyses of space allocation. Hashemipour et al. (2018) 

developed an agent-based simulation system using 

machine learning techniques and experimental methods to 

test different configuration setups and determine the effects 

of various factors on operation completion time. Bune et al. 

(2016) used a multi-agent system at the mesoscopic level 

to examine people's behavior during evacuation time in 

post-disaster emergency conditions. Iizuka and Iizuka 

(2015) suggested a system to evacuate people from 

dangerous places using multi-agent cooperation. The main 

feature of this system is that it does not require central 

servers. Edrissi et al. (2013) proposed an agent-based 

optimization approach to earthquake disaster prevention 

and management. They used a heuristic technique to solve 

different subproblems introduced in their study. Kaddoussi 

et al. (2013) proposed a method to solve multi-agent-based 

scheduling for delivering goods (food, water, clothes) to 

the affected areas.  

Table 13 reports the studies conducted on machine learning 

in crisis and the approaches they used.  
 

Table 13 

Approaches used in machine learning studies in crisis scope 

Machine learning approach Author and year 

Multi-agent Reinforcement, Lee and Lee (2021) 

Partially observable Markov decision 

process 
Bravo et al. (2019) 

Multi-agent deep reinforcement learning Nie et al. (2020) 

Multi-agent Azimi et al. (2019) 

Multi-agent ,Simulation Yu et al. (2018) 

Agent-based simulation 
Hashemipour et al. 

(2018) 

Multiagent Bune et al. (2016) 

Multi-agent 
Iizuka and Iizuka 

(2015) 

Multi-agent optimization Edrissi et al. (2013) 

Multi-agent systems Kaddoussi et al. (2013) 
 

Table 13 reports that used machine learning in disasters, 

and ten papers used machine learning. These studies used 

Markov chains, agent-based learning, reinforcement 

learning, deep learning, learner agent-based simulation, 

and multi-agent optimization. 

The mitigation of the impact of a possible natural disaster 

is vital for a modern city. In the framework proposed, it is 

critical to identify and analyze the most vulnerable regions 

of the city and use intelligent systems to gather data or 

process it (Nefros et al. 2022). Various intelligent systems 

can contribute, from sensors to unmanned aerial vehicles 

(UAV), to Artificial Intelligence to the Internet of Things 

(IoT). Today, for example, UAVs are used as navigation 

and surveillance tools on the ground and in the air. More 

recently, the use of UAVs has been abundant in a wide 

range of rescue missions, and disaster management in line 

with the requirements of smart and intelligent cities and 

their management (Qadir et al. 2021). A smart cities 

concept, which is being implemented by many countries, 

are innovative solution for cities and municipalities but 

also for humanitarian needs (Gavurova et al. 2022). 

Remote sensing technology has been used for the short-

term and imminent earthquake precursory which contains 

both inland and sea areas (Liu et al. 2020). 

Sufi (2022) reported a K-Means clustering-based 

knowledge discovery methodology that discovered the 

similarity and dissimilarities among various disaster types. 

Gupta et al. (2022) investigated the role of AI-based cloud 

technologies during emergency and disaster relief 

operations through qualitative exploratory research. Based 

on organizational information processing theory, their 

study examined the deployment of AI and cloud-based 

collaborative platforms in different phases of the extreme 

weather and disaster life cycle, and several key themes 
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were identified through an axial, open, and selective coding 

process. Raza et al. (2020) established effective 

communications in disaster-affected areas and AI-based 

detection using social media platforms. Their proposed 

work effectively establishes communication infrastructure 

to facilitate communications in the affected areas. In 

addition, their proposed machine learning scheme assists in 

identifying critical regions in the affected areas by 

analyzing bulk information through social messaging 

platforms. 

Fan et al. (2021) presented a vision for a disaster city digital 

that could: (1) enable interdisciplinary convergence in the 

field of crisis informatics and information and 

communication technology in disaster management; (2) 

integrate AI algorithms and approaches to improve 

situation assessment, decision making, and coordination 

among various stakeholders; and (3) enable increased 

visibility into network dynamics of complex disaster 

management and humanitarian actions. Dubey et al. (2022) 

showed that AI-driven big data analytics capability was a 

significant determinant of agility, resilience, and 

performance of the humanitarian supply chain. Essam et al. 

(2021) suggested artificial neural network models predict 

earthquake acceleration, depth, and velocity, in 

Terengganu. Also, they compared the results of the 

artificial neural network with the random forest results. 
 

2.8.9. Use of the queuing system in disaster  
 

A queue (or queueing) system is one of the useful 

approaches widely used in the disaster response phase. This 

approach is used in papers in two forms: in the first case, 

transfer matrix and Markov chains are used in dynamic 

systems solved using machine learning methods or 

heuristic algorithms. In the second case, queuing systems 

are used in nondynamic systems as models with one or 

more servers with limited or infinitive capacities along 

with probabilistic conditions and distributions. The second 

problem is solved based on exact, heuristic, and 

metaheuristic methods. Sayarshad et al. (2020) studied 

debris clearance using two debris clearance and debris 

management strategies. They used machine learning, 

dynamic programming, and a heuristic algorithm. Memari 

et al. (2018) designed a relief center location and allocation 

model using queuing systems. They use a multi-objective 

genetic metaheuristic algorithm to solve this problem. 

Moeen-Moghadas et al. (2013) studied emergency location 

problems by using the queuing system to maximize 

population coverage. For this purpose, they used a heuristic 

algorithm. Rahimzadeh Dehaghaniand et al. (2021) 

designed a blood supply chain network optimization 

model. They used a multi-objective genetic metaheuristic 

algorithm. Lu et al. (2010) designed a facility location 

model with fuzzy data using the queueing system. They 

used the ant colony algorithm to solve their problem. Xiang 

and Zhuang (2016) designed a medical resource allocation 

model for serving emergency victims. They used a 

heuristic algorithm in this study. An et al. (2015) presented 

a model for emergency facility locations. They used the 

KNITRO solver in GAMS software and the heuristic 

method to solve the model. Mora-Ochomogo et al. (2020) 

designed a Markov decision model for inventory 

management in disasters. The use of queuing system 

depends on the problem conditions and researchers’ 

detection. For instance, victims’ arrival at and departure 

from relief vehicles, relief vehicles’ arrival at and departure 

from damaged centers, services provided by medical relief 

teams for victims, and similar cases with limited capacity 

and labor that causes victims to wait can be considered 

queueing systems. Table 14 reports the studies that have 

used queueing systems.  

Table 14 

Papers with queueing systems 

Markov 

chain 

Queueing systems type 
Author and year 

m/m/m/k m/g/k m/m/m 

    
Sayarshad et al. 

(2020) 

    Memari et al. (2018) 

    
Moeen-Moghadas et 

al. (2013) 

    

Rahimzadeh 

Dehaghani et al. 

(2021) 

    
Xiang and Zhuang 

(2016) 

    An et al. (2015) 

    
Taskin and Lodree 

(2013) 
 

 According to Table 14, seven papers used queuing systems 

in the disaster, of which three papers used the queue 

system, and four papers used the Markov chain. Figure 19 

depicts the frequency of solution methods used in 

reviewing studies. 
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As seen in Figure 19, the exact and heuristic methods had 

the most frequencies, while simulation, game theory, and 

questionnaire were less used in reviewing studies.  

 

3. Conclusion  

It is necessary to design efficient crisis management due to 

increasing natural and humanitarian crises causing the loss 

of lives and properties over recent years. The academic 

advances and the advent of state-of-the-art optimization 

techniques make us conduct novel studies in crisis 

management. Moreover, machine learning, queuing 

system, and simulation must be used more than before. 

The systematic review of studies indicated that serving 

structure in the disaster is usually hierarchy, and 

hierarchical facility location was the most popular type in 

these studies. Moreover, the distribution center location 

had the most frequency among facilities located in 

reviewed studies. The widely used parameter used as 

uncertain (probabilistic) parameters in reviewed papers 

were demand, cost, and the number of victims. The 

probabilistic approach was the most popular uncertain 

approach used in reviewed studies. The number of 

uncertainty papers equaled or exceeded certainty papers in 

all reviewed years. Relief team and patient classification in 

disaster accelerate the relief process. In the reviewed 

studies, relief team classification was done as the 

classification of physicians based on their proficiency, 

relief team classification based on service levels, 

classification of different organizations involved in the 

relief process, and identical relief team classification. 

Patients were classified into two emergency and 

nonemergency categories, different types of diseases 

without naming any specific illness, injury severity of 

patients, serious and minor injuries, blood group-based 

classification, and classification using injury severity based 

on colors (green, yellow, red, and black). The Queueing 

system was one of the useful approaches employed in 

reviewed papers. Normally, we cannot fulfill all demands 

due to the unpredictable nature of the crisis and facility 

shortages in the early hours of the disaster. This case is 

more familiar to medical relief teams and debris clearance 

teams. Under such circumstances, victims must wait in 

queues to receive services. Markov chains are preferred to 

queueing systems in studies that used dynamic methods. 

Machine learning is a new approach that has received great 

attention from many researchers. This approach helps 

researchers solve dynamic problems and other cases 

requiring simulation. The reviewed studies were conducted 

in these countries: India, Iran, China, the United States, 

Brazil, Thailand, Syria, Zimbabwe, Japan, Nepal, 

Malaysia, Peru, Tunisia, Egypt, Libya, Morocco, 

Democratic Sahara, Algeria, Indonesia, Sudan, and 

Romania. Earthquakes, floods, tsunamis, hurricanes, 

droughts, and humanitarian crises were considered in the 

reviewed empirical and applied studies. 

China was the country where most crises were examined, 

and earthquake was the most common disaster studied in 

the reviewed studies. Cost, time, and demand were three 

important factors for selecting the type of objective 

function, among other cases. The exact solution methods 

that were performed using GAMS, LINGO, CPLEX, and 

LINDO software, was the most common method employed 

in the reviewed papers. Heuristic and metaheuristic 

methods were at the next rank of the widely used 

techniques. Although the reviewed papers covered a wide 

range of scopes, they were inadequate. Because there are 

increasing problems in the world and modern technologies 

like machine learning are growing and developing, further 

studies must be done in this field. There are few studies 

about the failures and retrieval of remote communication 

systems and how their reliability depends on the stored 

energy in disasters (Kwasinski et al., 2006). Maximization 

of delivering cargo may seem a suitable objective, but this 

solution disrupts the area. Few logistic systems can manage 

a large volume of goods without having an appropriate 

infrastructure (Charles et al., 2016).  

 Although many studies were carried out about different 

disasters, none of them considered famine and starvation 

crises. Further studies can focus on famine and starvation 

crises in African countries. Moreover, crises caused by 

political changes can be an interesting subject for 

researchers. A few reviewed studies examined disasters 

caused by contagious diseases; hence, further studies on 

some crises, like the coronavirus, SARS, and other 

diseases. Another crisis that future studies can examine is 

the war crisis in some countries, such as Lebanon, 

Palestine, Iraq, and Afghanistan. Further studies can find 

how to evacuate people and provide medical items and 

food under such circumstances. Sanction is another crisis 

in that researchers can assess its impact on the industry and 

livelihood of people in the sanctioned country and find 

suitable solutions to cope with possible damages to 

industries. Facility location is another critical problem in 

crisis management issues. Hierarchical facility location 

was a model that was studied and used more than other 

location models. According to this systematic review, it is 

suggested that the researcher use center location models to 

build a shelter for immigrants from countries affected by 

war, food supply warehouses for countries with famine 

crisis problems, and deploy remote medical 

communication facilities. Covering location models can be 

used under epidemic circumstances (e.g., the Corona and 

SARS) that require reliving a large number of people and 

building field hospitals in the response phase. Researchers 

can use hub location models in problems associated with 

relief items collection and distribution in different 

countries and humanitarian organizations (Red Cross and 

Red Crescent Societies) and deliver them to the affected 

country. Furthermore, network location models can be 

employed to build temporary facilities, like hospitals, 

blood donation centers, and debris clearance equipment in 

the affected area. Further studies can examine a case in 

different disasters considered a cost-effective temporary 

facility location rather than fixed facilities. Future research 

can also investigate the different location models in studies 

on disasters to find their applications under various 

conditions. In reviewing studies, some parameters like 

demand, time, and cost were the most common uncertainty 

parameters. At the same time, the possible failure of debris 
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clearance equipment, road closing, and relief items theft 

was unexamined in these studies. The probabilistic 

approach was the most common method used in papers; 

hence, further studies can develop the research scope by 

examining critical factors affecting the selection of the 

uncertainty approach and finding the efficiency of each 

approach. Few studies focused on relief teams and patient 

classification in disaster in their models. These 

classifications can be used under humanitarian crisis 

conditions, such as epidemics, wars, and political changes, 

which is a good subject for further studies. Future studies 

must develop the mentioned methods due to advances in 

existing sciences and methods and diversity in crises. 

Further studies can use queueing systems and Markov 

chains to evacuate victims, deliver relief services to injured 

people, distribute relief items, and clear debris. Moreover, 

using machine learning techniques with queuing systems 

and Markov chains in victims' search processes under the 

rubble by employing rescue dogs can be another research 

topic for further studies. Because modern technologies like 

machine learning have become popular, further studies can 

compare machine learning techniques with metaheuristic 

algorithms in the case of time efficiency, objective function 

optimality, and detection of the effective method based on 

the problem's constraints. Future studies can also consider 

some assumptions, including removal of debris in an 

affected area with equipment shortages, search for victims 

under the rubble by using rescue dogs and agent-based 

optimization, victims' arrival at and departure from relief 

vehicles in queueing systems, and the arrival of vehicles 

based on Markov chains. Another recommendation for 

further studies is queuing systems in post-disaster relief 

service centers, calculating victims' waiting time to receive 

relief services and the probability of the victim’s death 

when waiting in queues or receiving relief services. 

Researchers can use simulation-based optimization by 

using queueing systems and machine learning to imagine 

real conditions, compare the results with metaheuristic and 

exact techniques' outcomes, and analyze the strengths and 

weaknesses of this optimization approach. Further studies 

can consider communicational technologies, like remote 

medicine, to develop the research literature in further 

studies. The reviewed studies, mostly focused on some 

objectives, such as cost minimization, serving time 

immunization, and demand fulfillment maximization; 

therefore, further studies can increase the reliability of 

crisis management systems, evaluate the performance and 

coordination of relief and rescue organizations, reduce risk 

when relieving emergency patients, enhance the flexibility 

of the humanitarian relief system and mitigate the influence 

of possible disruptions over the relief system. If 

transportation of a large volume of relief items is managed 

and planned effectively, the relief items will be delivered 

to injured people very rapidly. Therefore, further studies 

must be done in this field due to the current technologies 

developed for this case and examine the role of artificial 

intelligence and machine learning in transportation systems 

during disasters. As well as the mentioned subjects, pay 

attention to the role of the NGO/government/Red 

Cross/Red Crescent in the field of knowledge management, 

intelligence accumulation, and relief supply are 

undeniable. They can use IoT and improve the city 

structures to have better smartness. Furthermore, using 

optimization, simulation, big data and AI for their DSS can 

save time, money, and resources which are very valuable 

in disaster situations. 
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