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Abstract 

In recent years, medical images have played an essential role in diagnosis, treatment, and training areas. Thus, any advancement in this 

field can help doctors in diagnosing. On the other hand, statistical process control (SPC) is now widely used in monitoring healthcare 

processes. In this research, using the image processing techniques and feature extraction methods (two-dimensional discrete wavelet), we 

propose some multivariate control charts to diagnose the type of bone marrow of the patients suspected of bone marrow metastasis in the 

pelvic region with early breast tumors. For this, 76 features (energy and histogram of oriented gradient) are extracted from the image. Next, 

using the GA, six features are selected and constitute a feature vector. Based on the feature vector, the Hotelling’s T2 multivariate control 

charts are developed. Moreover, considering the high sensitivity of the classic estimators to outliers and contaminated data, we provide a 

robust Hotelling’s T2 control chart. Finally, we compare the ARL performance of the robust and the classic Hotelling’s T2 control charts in 

Phase II in the presence of local outliers in the Phase I data. The results confirmed the superiority of the robust version. 

Keywords: Robust Hotelling’s T2 control chart; Average run length; Feature extraction; Bone marrow metastasis 
 

 
1. Introduction 

Hotelling’s multivariate T
2
 control chart is one of the most 

popular multivariate control charts. For the design of this 

chart, the estimation of the mean vector and variance-

covariance matrix are required. This estimation is usually 

done by classic estimators. However, they have some 

shortcomings, including their high sensitivity to outlier 

data. Changes, trends, and outliers in Phase I data have an 

undesirable impact on the performance of control charts in 

Phase II. This makes the control limits wider, which 

increases the type I error and reduces the power in 

detecting assignable causes in Phase II. To deal with these 

outliers, different methods have been used, among which 

robust estimators are one of the most widely used. These 

estimators are resistant to outliers and provide a better 

estimation of the parameters (Montgomery et al, 2015) 

(Huber,1981). These estimators have been used by many 

researchers in developing different Hotelling’s T
2
 control 

charts. (Williams et al, 2006) showed that the classic 

sample covariance-matrix estimator is not effective in 

detecting process changes, and proposed a more effective 

estimator based on sequential data differences. Using 

minimum covariance determinant (MCD) and minimum 

volume ellipse (MVE), (Vargas, 2006) proposed a robust 

control chart for multivariate individual observations and 

determined the control limits experimentally. (Jensen et al, 

2007) used MCD and MVE estimators to design a Phase-I 

T
2
 control chart for individual observations. (Variyath and 

Steiner, 2009) proposed a robust Hotelling’s T
2
 control 

chart for individual observations in Phase II by using a re-

weighted minimum covariance determinant (RMCD) 

estimator. (Alfaro and Ortega, 2009) compared the 

behavior of different robust Hotelling’s T
2
 control charts 

developed by the MCD, MVE, RMCD, and trimmed 

estimators. (Yanez et al, 2010) proposed a robust 

Hotelling’s T
2
 control chart for multivariate individual 

observations based on Tukey’s biweight function. (Abu-

Shawiesh et al, 2014) compared the performance of two-

variable Hotelling’s T
2
 control chart based on MCD, MVE, 

and MEDMad estimators in monitoring individual 

observations. (Wu et al, 2017) evaluated the properties and 

enhancements of robust likelihood CUSUM control charts 

in monitoring the mean of contaminated normally 

distributed processes. (Nasir, 2019) proposed a robust S
2
 

control chart for the case where the unknown parameters 

are estimated by Phase-I samples. (Maleki et al, 2020) 

proposed a T
2
 control chart using median-based estimators. 

Control charts are also widely used in healthcare areas. 

They are specifically beneficial in diagnosing cancer 

tumors and metastases in medical images since their early 

and in-time diagnosis is of special importance. However, 

the method used always for the final diagnosis is 

pathobiology. Despite the capability in diagnosing 

different types of diseases, it has some problems such as its 

aggressiveness (need to sample), relatively long response 

time, and the results whose interpretation is dependent on 

the experience of the pathologist (Crow et al, 2003). To 

overcome these deficiencies, several techniques have been 

proposed in the past years. Among these methods, 
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magnetic resonance imaging (MRI) techniques, due to their 

non-aggressive and non-destructive nature in providing 

multispectral images, have been of special interest. Due to 

the complexity of body tissues, the manual detection of 

tissues like those of the pelvic region and metastases is 

time-consuming and depends on the conditions of the 

operator. Besides, the need for experts who can diagnose 

these is vital and makes the usual and old methods 

inefficient in the absence of such experts. To overcome 

this, the use of computer-aided medical image processing 

techniques and algorithms is very helpful. In this regard, 

some useful works have been done on different methods of 

feature extraction, classification, and clustering. (Rouhi et 

al, 2015) proposed two automatic methods for diagnosing 

benign and malignant breast tumors in mammography. In 

the first one, the classification was based on an automated 

region growing whose threshold was obtained by a trained 

artificial neural network (ANN). In the second one, the 

samples were classified by a cellular neural network 

(CNN) whose parameters were determined by a genetic 

algorithm (GA). (Öztürk and Akdemir, 2018) compared 

the results obtained from different feature extraction and 

classification methods for histopathological images. They 

used the Gray-Level Co-Occurrence Matrix (GLCM), 

Local Binary Patterns (LBP), Local Binary Gray Level Co-

occurrence Matrix (LBGLCM), Gray Level Run Length 

Matrix (GLRLM), and Segmentation-based Fractal Texture 

Analysis (SFTA) for feature extraction, and Support 

Vector Machine (SVM), K-nearest neighbors (KNN), 

linear discriminant analysis (LDA), Boosted Tree for the 

classification. (Al Ghayab et al, 2018) proposed a new 

feature extraction technique based on tunable Q-factor 

wavelet transform (TQWT) for the analysis of 

electroencephalograms (EEGs). To evaluate their proposed 

technique, they transmitted the extracted features to a 

bagging tree (BT), k nearest neighbor (K-NN), and support 

vector machine (SVM). To diagnose patients suspected of 

bone marrow metastasis, (Shahrabi et al, 2019), (Shahrabi 

et al, 2020) used a control chart using wavelet 

transformation, fuzzy clustering, and GA for feature 

extraction, classification, and selection. (Maharjan et al, 

2020) used convolutional deep neural networks (CNN) to 

improve the classification accuracy and support multi-class 

classification. Using a hybrid deep auto-encoder, (Raja et 

al, 2020) segmented brain tumors by a Bayesian fuzzy 

clustering approach. (Hashemzehi et al, 2020) applied a 

hybrid model of CNN and neural autoregressive 

distribution estimation (NADE) methods to detect brain 

tumors in MRI images. 

In this paper, due to the interdependence of the extracted 

features and the need for their simultaneous control, we 

propose a new robust Hotelling’s T
2
 control chart instead 

of the usual methods of the literature (clustering and 

classification methods). The proposed robust control chart, 

which is not much sensitive to outlier data, is designed 

based on the non-metastasized data in Phase I. Then, by 

adding bone marrow metastasized samples (local 

contamination) and introducing different shifts in the 

mean, we compare the ARL performance of the classic and 

robust methods in Phase II. 

The remainder of this paper is organized as follows. In 

Section 2, the proposed methodology is described step by 

step. Section 3 includes the simulation studies and the 

results. Section 4 provides a discussion and analysis of the 

results. Finally, in Section 5, the paper is concluded and 

some research areas are suggested.  

 

2. Proposed Method 

 

Fig. 1 illustrates our proposed methodology. We describe 

its steps here in detail. 
 

2. 1. Image acquisition 

 

The proposed methods are applied to ADC (Apparent 

diffusion coefficient), T1-weighted with resolution 

256×256, digital imaging and communications in medicine 

(DICOM) format, and 16-bit MRI images of a healthy 

person and a patient with breast cancer or bone marrow 

metastasis in the pelvic region. 

 

2.2. Two-dimensional discrete wavelet transformation 
 

Wavelet transformation is one of the most powerful 

techniques in texture analysis. It does this by decomposing 

a texture image into a set of frequency channels. There are 

two wavelet structures (Garnavi et al, 2010): 1) pyramid-

structured wavelet transform, which is out of our scope; 

and 2) tree-structured wavelet analysis, which makes 

possible the decomposition of the low, medium, and high 

frequencies. In the analysis of MRI images from the pelvic 

region, low-frequency components provide information 

about the general characteristics (shape), which are 

important clinically, and high-frequency components 

provide information about the texture details and region of 

interest, which are important for correct diagnosis. Thus, 

the decomposition of all ranges of frequency is helpful for 

this purpose. In this regard, tree-structured wavelet 

analysis can be more appropriate for this research. The 

low-frequency spectrum is the approximation signal and 

the high-frequency spectrum is the detail signal (Beylkin et 

al, 1991). Therefore, the wavelet transformation of an 

image with M×N resolution is  
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, where j0 is an arbitrary initial scale and   

 (     ) 
collects horizontal, vertical, and diagonal details for scales 

j ≥ j0. We usually set j0=0 and select N=M=2
J
 such that 

j=0, 1, …, 2
J-1

 and m=n=0, 1, …, 2
j
. Thus, the proposed 

method of this research is based on a two-dimensional 

wavelet transform. To obtain this two-dimensional 

transform, we perform a one-dimensional transform on the 

rows and columns of the image matrix and combine the 

elements of the two transformed matrices. Fig. 2 displays 

this process. 
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Fig. 1. The schematic diagram of the proposed method 

2.3. Feature extraction and selection 
 

In recent years, texture analysis has played an important 

role in different applications, especially in analyzing 

medical images. Texture features are used for the diagnosis 

and discrimination between the different textures of 

medical images. For this, two types of features are 

extracted from images: energy and histograms of oriented 

gradients (HOG). The energy has three features: horizontal 

channel energy, vertical channel energy, and the energy of 

the image itself (Walvick et al, 2004). The second group of 

features includes 16 types of features (we describe them 

later). First, by applying the wavelet transform, each input 

image is transformed into a wavelet space. Then, the 

energy and the HOG at each component of the image are 
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calculated. Accordingly, the image’s energy is calculated 

as follows: 
 

  P (i,j) = 
  (   )

  
 ,   i = 0,1,…,G-1,      j = 0,1,…,G-1                (3) 

 

  (Energy): ∑ ∑   (   )     
   

   
   ,                                            (4) 

 

, where P(i,j) is the probability density of occurrence of the 

intensity levels, h(i, j) is the value of intensity level 

histogram, NM is the total number of pixels, with M as the 

resolution at the vertical axis and N at the horizontal axis, 

and G is the total grey level of the image (Ain et al, 2014).  

HOG was first introduced by (Dalal and Triggs et al, 

2005). The gradient of an image is easily calculated by 

filtering the intensity data and using two one-dimensional 

filters along the x and y axes, [-1,0,1] and [-1,0,1]
T
 (Cai et 

al, 2018): 
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, the amplitude and 

orientation of each pixel are given as follows: 
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John proposed two methods for feature selection: the 

filtering method, which uses no classification functions and 

is out of the scope of this research; and the wrapper 

method, known as the black-box method, which uses a 

classification function for the fitness evaluation of the 

feature subset. In this paper, a genetic algorithm (GA) has 

been used for searching valid features since it can do a 

random search and is not prone to get stuck in a local 

minimum (Mitchell, 1996),(Jarmulak and Craw, 1999). In 

this stage, after applying the two-dimensional wavelet 

transform on the overall image, the Demy wavelet 

transform is used for texture analysis. To have the features 

of the region of interest, 76 features (19 ones from each of 

the four images obtained in the previous stage) were 

extracted from the images of the pelvic region. First, we 

took a two-dimensional gradient of the wavelet and 

calculated its energy one time along the x-axis and one 

time along the y-axis, and obtained the energy of the 

wavelet image as well. Then, we calculated the angle 

between the horizontal and vertical gradients (from –π to π 

divided by 16) and took its normalized histogram. That is, 

we took the oriented gradient and calculated its histogram. 

Those 16 angles were considered as the histogram 

boundaries, resulting in 16 normalized histograms with a 

probability between 0 and 1. Next, we calculated 19 (16 + 

3) features for each one of the approximation channel ILL, 

horizontal channel ILH, vertical channel IHL, and diagonal 

channel IHH, and extracted the similarity matrix from the 

comparison of the extracted features. Finally, using the 

GA, whose objective is to obtain the minimum value (a 

chromosome with the minimum weighted sum of the 

features), six features were selected (Rouhi et al, 2015), 

(Shahrabi et al, 2020). 
 

 
Fig. 2. The block diagram of the discrete two-dimensional wavelet transform 

 

2.4. The design of the control chart and parameter 

estimation in Phase I 
 

First, using the classic Hotelling’s T
2
 control chart, a 

control chart is designed for the individual observations for 

the non-metastasized data (38 initial data). Then, by 

estimating the parameters, calculating the control limits, 

and obtaining in-control data (34 in-control data), the final 

control chart is designed. 
 

2.5. Contaminating the data 
 

Two types of data contamination are possible: global and 

local. Local contamination affects the data of one or 

multiple sub-groups (Maronna et al, 2006). It is assumed 

that, with probability ε, some data have a distribution 

different from the basic distribution. The data generated 

from this different distribution are contaminated data or 

outliers. If X comes from a process that has distribution 

G(x) with probability (1-ε) and has distribution H(x) with 

probability ε, it has the following combined distribution: 
 

        1F x G x H x    ,                                      (10)                                                  

  

A special type of contamination is when the density 

functions G(x) and H(x) are both normal. In this case, data 

follows a contaminated normal distribution. Therefore, 

whenever only local contamination exists in the process, 

the density function of the output is a contaminated normal 

distribution with the following combined density: 
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     1 , ,6 0 6 10 0
X N N        ,                   (11) 

 

Global contamination, on the other hand, refers to 

contamination that occurs with an equal probability for all 

data. It is out of our scope. In this paper, for data 

contamination, we used 10 metastasized data inserted into 

the non-metastasized data (34 data) with four different 

frequencies: two data (5% contamination), four data (10% 

contamination), seven data (20% contamination), and 10 

data (30% contamination). 
 

2.6. Parameter estimation in Phase II and ARL1 

calculations 
 

The average run length (ARL) is one of the most widely 

used and valid measures in evaluating control charts in 

Phase II. It is the average of the points plotted on a chart 

until a point places out of the control limits. Thus, in 

control and out of control ARL values are calculated by 

 
1

0
ARL


 ,                                                                  

                                                                                              (12) 

1

1
1

ARL





, 

respectively. 

 

After introducing the contamination into the data, for both 

the classic and robust Hotelling’s control charts, we 

estimate the parameters, calculate ARL0, set UCL, 

introduce a shift in the mean, and calculate the ARL1.  
 

2.7. The robust Hotelling’s T
2
 control chart 

 

Hotelling’s control chart is the most famous for monitoring 

the mean vector of multivariate processes. Control charts 

are designed in two phases. The objective of the first phase 

is to achieve a dataset of in-control data. Assuming that the 

process has been in-control in Phase I, it is evaluated to see 

whether the process is in-control or not in Phase II using 

new observations. However, the existence of outlier data in 

Phase I can have a non-desirable effect on the control 

limits of Phase II. These data are the contaminated data 

that dramatically affect classic estimators. Instead of 

removing outliers, it is better to use robust estimators for 

parameter estimation. The control charts based on this 

concept, which was first introduced by Box (Box, 1979), 

have the required sensitivity for detecting out-of-control 

states although they are subject to outlier data. (Williams et 

al, 2006) showed that classic estimators of the sample 

variance-covariance matrix are not effective in detecting 

process changes. Thus, they proposed the use of the 

difference between the successive observations (

1i i iv x x  , i= 1,2,…,n-1) for the estimation of the 

covariance matrix. The location and dispersion estimators 

for this method are: 
 

     2 1
T jj j

 
  X X S X X ,                                   (13)   

  
1

1

n

jjn



X X ,                                                            (14)     

  
11

12( - 1)

n

i iin





S V V ,                                               (15)  

                                                                                                                                                                                                              

Finally, they showed that the T
2
 control chart with the 

sample mean vector and mean square vector of successive 

differences has the highest sensitivity in detecting mean 

changes. (Masson and Yang, 1946) considered the 

following Phase I control limits of the T
2
 control chart for 

individual observations: 

 
 
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2
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1
, ,
2 2

m
UCL

m ppm




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                                   (16) 

                                                  

LCL=0 
 

, where  1
, ,
2 2

m pp



  is the α

th
 value of the Beta 

distribution. It should be noted that parameter S of the 

classic estimators in Eq. (13) (the sample variance-

covariance matrix) should be replaced by the following 

covariance matrix (Keramatpour et al, 2014). 

                             
11

1- 1

n

i iin





S V V ,                        (17) 

 

3. Simulation Studies And Results Analysis 
 

In this section, we evaluate the performance of the classic 

(sample variance-covariance matrix) and robust (Williams 

et al.) methods in detecting different shifts, different 

changes in the mean of different variables, and different 

contamination percentages. We used a multivariate control 

chart model in the simulation studies. We used six features 

of the ones extracted from the MRI images of ADC and T1 

of the pelvic region. In the model, the features of the non-

metastasized bone marrow cases (i.e. those who have 

primary breast tumors but do not have bone marrow 

metastasis) were monitored. Therefore, the values of the 

model variables for the multivariate control chart are as 

shown in Table 1.  

 

   

         Table 1 

         The initial values of the model variables 
X6 X5 X4 X3 X2 X1 Row 

0.066665996 0.062569547 0.131176561 0.064178588 0.02142874 5.919813946 1 

0.066329435 0.048385115 0.11271181 0.073042113 0.030231337 5.869353826 2 

0.053778866 0.057397257 0.112002221 0.060010829 0.039201508 5.841597042 3 

0.070884468 0.04844576 0.104525783 0.066435405 0.045593849 5.847457199 4 

0.067518893 0.058966878 0.123612372 0.054041111 0.046361829 5.826309248 5 
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0.064514142 0.058785578 0.111000031 0.063719281 0.05788451 5.844333553 6 

0.055402921 0.05649185 0.11343288 0.075802638 0.043748337 5.92015725 7 

0.085313156 0.056535296 0.131724219 0.057791863 0.041706905 5.850744704 8 

0.067971312 0.057328182 0.107251676 0.06226029 0.047537117 5.872261135 9 

0.065446348 0.047693571 0.095286344 0.072754004 0.038093417 5.846610505 10 

0.075599691 0.056616337 0.131945799 0.059443323 0.03589725 5.864832954 11 

0.056330412 0.042757914 0.085590351 0.070437816 0.05565261 5.905473213 12 

0.072077184 0.052928806 0.119320553 0.057998885 0.044375049 5.884325897 13 

0.055223491 0.055736399 0.138989187 0.057656086 0.035500277 5.820621814 14 

0.063688683 0.061813528 0.109395234 0.060402796 0.046144386 5.877048536 15 

0.048396266 0.066562435 0.140805198 0.063680216 0.02622502 5.781977943 16 

0.06870885 0.032804197 0.113384879 0.045761225 0.049059666 5.8173167 17 

0.073203687 0.064734929 0.106845756 0.054539942 0.047202488 5.692943267 18 

0.077804754 0.04132866 0.119582478 0.054098726 0.034888683 5.750525058 19 

0.066159541 0.059701893 0.138617898 0.044857918 0.022970202 5.84689565 20 

0.073088146 0.05093953 0.132917952 0.048245872 0.044838296 5.711903156 21 

0.079682747 0.068966186 0.105327841 0.075302982 0.03922384 5.850986619 22 

0.095324885 0.055247337 0.12619151 0.044446413 0.036322732 5.854795707 23 

0.078135068 0.052874249 0.10173152 0.060174718 0.054068992 5.777463257 24 

0.082133973 0.058097416 0.091106438 0.068657151 0.047176119 5.777542277 25 

0.067708643 0.047809382 0.101411477 0.061347731 0.063702124 5.772785925 26 

0.079115023 0.051220505 0.101730225 0.043022865 0.041061926 5.824385442 27 

0.07147278 0.063159129 0.129892151 0.052065922 0.03587255 5.765395263 28 

0.07702632 0.048997139 0.099975748 0.061340866 0.067682085 5.7333196 29 

0.082958883 0.077881845 0.119846423 0.06496847 0.041800998 5.731926419 30 

0.071211671 0.058897602 0.10956261 0.060256249 0.033046301 5.715501029 31 

0.085733897 0.048183076 0.121470456 0.031293694 0.044308017 5.699493677 32 

0.076140183 0.042489126 0.114833332 0.051090522 0.03939764 5.77010524 33 

0.068261133 0.069474408 0.142293041 0.075028654 0.039503385 5.919627265 34 

0.051434953 0.075548337 0.122731014 0.047116568 0.045982275 5.764294385 35 

0.080223086 0.058200383 0.096864257 0.036133437 0.028870428 5.807337803 36 

0.08791703 0.034785324 0.078100768 0.065998095 0.047222793 5.704451638 37 

0.057436184 0.053740563 0.116562095 0.026883375 0.020292981 5.922324515 38 
 

Using R software, we design a classic Hotelling control 

chart for the individual data for the metastasized data given 

in Table 1 (38 initial data). Then, by estimating the 

parameters and having data within an in-control state, the 

final control chart (34 in-control data) is developed. Then, 

to have locally contaminated data, we add the bone marrow 

metastasized data to the in-control chart and performed the 

simulation studies in MATLAB software. To introduce 

some shifts into the parameters, we considered the range 

from 0.01 to 0.1 with step 0.01. In this research, the 

number of the bone marrow metastasized samples is 

denoted by ε, which determines the percentage of 

contamination in the data (0%, 5%, 10%, 20%, and 30%). 

The control limits of the proposed methods obtained by 

10000 simulation runs for an ARL0=200 are given in Table 

2. The ARL1 results display the ability of the robust 

Hotelling’s T
2
 control chart in detecting the changes made 

in the parameters.   

Based on the literature of robust control charts, the 

performance of the control charts depends on the 

identification of outliers in Phase I. That is, if the number 

of outliers and contaminated data increase, the estimates 

will be more accurate, and as a result, the control chart 

performance improves. Accordingly, in this paper, we 

evaluated the performance under different percentages of 

contamination. According to these percentages, we 

considered respectively 0, 2, 4, 7, and 10 outlier data. The 

simulation results in Tables 2, 3, and 4, which respectively 

show the changes in one, two, and all the six variables, 

indicate that the performance of the robust control chart 

improves for the higher values of ε and gives out-of-

control signals sooner.  

 
 

Table 2 

 The ARL1 values of the classic and robust control charts in detecting the changes introduced into the mean of one variable 

Percent of 

Contaminatio

n 

UCL 
Control 
Chart 

d 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.100 

0% 

18.57

5 
Classic T2 196.60 168.69 141.94 111.45 82.69 61.52 46.11 33.84 23.85 18.09 

27.59

5 
Robust  T2 188.03 163.34 130.83 100.35 74.57 55.91 41.34 30.69 22.69 17.42 

5% 

16.86

5 
Classic  T2 196.78 196.49 193.61 188.38 182.66 172.94 166.38 160.46 151.31 139.64 

19.85 Robust  T2 194.41 191.71 185.42 175.24 167.09 159.20 148.41 141.20 130.15 120.14 
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It is obvious that for all values of ε, the robust control chat 

outperforms significantly the classic chart in detecting the 

small, medium, and large shifts in the mean of one 

variable. 
 

 
 

  Table 3

 

  The ARL1

 

values of the classic and robust control charts in detecting the changes introduced into the mean of two variables.

 

Percent of 

Contamination

 

UCL

 

Control Chart

 

d

 

0.01

 

0.02

 

0.03

 

0.04

 

0.05

 

0.06

 

0.07

 

0.08

 

0.09

 

0.100

 

0%

 
18.575

 

Classic T2

 

44.78

 

5.87

 

1.69

 

1.08

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

27.595

 

Robust T2

 

73.92

 

11.40

 

2.53

 

1.23

 

1.02

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

5%

 
16.865

 

Classic T2

 

42.53

 

5.84

 

1.73

 

1.09

 

1.01

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

19.858

 

Robust T2

 

55.92

 

7.96

 

2.11

 

1.17

 

1.01

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

10%

 
17.399

 

Classic T2

 

41.97

 

5.93

 

1.74

 

1.10

 

1.01

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

20.650

 

Robust T2

 

53.58

 

7.63

 

2.08

 

1.16

 

1.01

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

20%

 
18.049

 

Classic T2

 

46.25

 

6.44

 

1.81

 

1.11

 

1.01

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

23.335

 

Robust T2

 

66.80

 

9.26

 

2.34

 

1.21

 

1.02

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

30%

 
18.190

 

Classic T2

 

54.13

 

7.87

 

2.07

 

1.15

 

1.01

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

25.146

 

Robust T2

 

67.74

 

11.09

 

2.69

 

1.28

 

1.03

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

 

In detecting the changes in two variables, with the increase 

of ε, the classic control chat only performs better for the 

small shifts while both control charts have the same 

performance for the medium and 

 

large shifts. 

 

Finally, according to Table 4, for all values of ε, the robust 

and classic control methods have the same performance in 

detecting the changes made in all six variables.

 
 

4.

 

Discussion

 
 

To be comparable, control charts are generally designed 

such that their type I error,

 

equivalently their ARL0

 

values 

is almost equal. In this way, the control chart that is more 

sensitive in detecting out-of-control states is more 

desirable. In other words, for a certain change in the 

process parameters, the chart with probability of type II 

error (smaller ARL1s) is more desirable since it detects 

out-of-control states sooner

 

on average. Accordingly, we 

evaluated the ARL1

 

performance of the robust and classic 

control charts when there is local

 

contamination. We did 

this for different changes made in the mean of one, two, 

and all six variables of the process. The results, in general 

(for example, those illustrated in Fig.s 4 and 5) confirm the 

better performance of the robust version. 

 

 

As can be seen, in the case of contamination in the Phase I 

data, the performance of both charts is almost the same in 

Phase II (for the changes in the mean of one variable).

 
 

 
 

 

 

 

   

 
 

 

 

          

             

8 

10% 

17.39

9 
Classic  T2 197.75 195.89 189.64 187.59 179.68 170.09 165.03 157.84 150.58 138.90 

20.65

0 
Robust  T2 190.83 183.92 175.63 162.58 153.44 138.39 130.43 118.31 111.78 99.42 

20% 

18.04

9 
Classic  T2 196.73 195.34 189.56 188.99 178.39 170.96 165.79 157.98 148.51 139.78 

23.33

5 
Robust  T2 186.06 171.97 161.59 145.88 134.26 120.34 111.14 98.07 86.93 76.68 

30% 

18.19

0 
Classic  T2 198.73 194.51 187.24 179.09 176.74 171.33 157.59 149.46 142.11 132.44 

25.14

6 
Robust  T2 179.49 164.48 147.96 131.18 114.99 102.11 88.24 77.58 65.56 58.60 
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27.595

 

Robust T2

 

6.83

 

1.06

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

5%

 

16.865

 

Classic T2

 

3.35

 

1.01

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

19.858

 

Robust T2

 

3.68

 

1.02

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

10%

 

17.399

 

Classic T2

 

3.29

 

1.01

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

20.650

 

Robust T2

 

3.64

 

1.02

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

20%

 

18.049

 

Classic T2

 

3.39

 

1.02

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

23.335

 

Robust T2

 

4.75

 

1.03

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

30%

 

18.190

 

Classic T2

 

4.32

 

1.03

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

25.146

 

Robust T2

 

8.43

 

1.09

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

1.00

 

 

 
 

 

 
 

 

Fig. 3. The schematic diagram of the extracted, and then selected features

 

 

 
 

   Table 4

  The ARL1 values of the classic and robust control charts in detecting the changes introduced into the mean of all six variables.

Percent of 

Contamination
UCL

Control 

Chart

d

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.100

0% 18.575 Classic T2 4.09 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Fig. 4. The ARL1

 

values for the classic and robust Hotelling’s T2

 

control charts with ε=0%.

 
 

Fig. 5. The ARL1 values for the classic and robust Hotelling’s T2 control charts with ε=30%. 

 

As can be seen in Fig. 5, in the case of contamination in 

the Phase I data, the robust control chart has a better 

performance than the classic one in Phase II (for the 

changes in the mean of one variable). 
 

 

5. Conclusion And Suggestions For Future Research 
 

In this paper, we proposed a procedure based on 

multivariate control charts for the diagnosis of bone 

marrow metastasis in medical images. Then, we designed a 

classic and a robust Hotelling’s T
2
 control chart for the 

monitoring of patients suspected of bone marrow 

metastasis in the pelvic region. The proposed control charts 

have acceptable performance in parameter estimation 

under the presence of contaminated data. These estimators 

are robust estimators of the mean vector and variance-

covariance matrix. We evaluated the ARL1 performance of 

the classic and robust control charts in detecting changes of 

different magnitudes in the mean of different variables and 

under different percentages of data contamination. The 

simulation results showed that the robust method had a 

better performance than the classic one. In this research, 

for the first time, instead of traditional clustering and 

classification methods, a multivariate control chart with 

Hoteling T
2
 statistic was used for bone marrow diagnosis 

of people suspected to bone marrow metastasis. This 
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robust method, which has low sensitivity to outliers, can 

simultaneously control the interdependent features. 

For further research in this context, the development of 

self-starting robust and fuzzy self-starting control charts, 

the use of other robust estimators instead of the proposed 

method, and the use of skewed and non-normal 

distributions for the contaminated data can be some 

potential areas.  
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