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Abstract 

As air transportation has increased in recent years, it is necessary for airport planners to optimally manage aircraft ground traffic on stands, 

taxiways and runways in order to minimize flight delay and passenger dissatisfaction. A closer look at the literature in this area indicates 

that most studies have merely focused on one of these resources which in a macroscopic level may result in aircrafts’ collision and ground 

traffic at the airport. In this paper, a new bi-objective Mixed-Integer Linear Programming (MILP) model is developed to help airport 

management to integrate Gate Assignment Problem (GAP) and Runway Scheduling Problem (RSP) considering taxiing operation for 

departing flights. The proposed model aims to help airport planners to 1) minimize any deviation from preferred schedule and 2) minimize 

transit passengers’ walking distance. Due to the complexity of the research problem, a Normalized Weighted Sum Method (NWSM) is 

applied to solve small-sized problems and two meta-heuristics, namely NSGA-II and MOGWO, are used for large-scale instances to 

generate Pareto optimal solutions. The performance of these algorithms is assessed by well-known coverage and convergence measures. 

Based on the most criteria, the results indicate that MOGWO outperforms NSGA-II.   

Keywords: Airport Planning; Airport Schedule; Flight Delays; NWSM; NSGA-II; MOGWO  

1. Introduction 

Take-off/landing operation is considered as a continuous 

chain of resource assignment and resource scheduling. 

With the rise of air travel in recent decades, the problem 

of resource planning has been of great importance to 

reduce flight delay and increase airport profitability. 

Considering all airport ground assets including gates, 

runways, and taxiways is crucial to make an integrated 

plan for aircraft movements in landside area.  

Gate Assignment Problem (GAP) is defined as an issue of 

assigning a set of aircrafts to a set of gates and 

determining their sequence due to technical constraints 

such as impossibility of assigning more than one flight to 

one gate at the same time, limitation of some gates in 

servicing to the specific size of aircrafts, limitation of two 

adjacent gates in servicing to the flights that have same 

departure time, etc (Yu, 2015; Khakzar Bafruei et al., 

2018). The most common objective function of GAP is to 

minimize passenger walking distance to/between gates. 

Other objective functions that have been commonly used 

in the literature include minimization of gate idle time, 

number of ungated flights, and flight waiting time (Aktel 

et al., 2017; Nourmohammadzadeh, 2012).  

Another problem is to schedule runways which are 

usually considered as the system bottlenecks. Although a 

straightforward solution for this problem is to increase the 

number of runways, it is widely admitted that the 

effective use of current resources is more pragmatic than 

infrastructure development (Bennell et al., 2017). Runway 

Scheduling Problem (RSP) aims to assign an available 

runway to each aircraft (if there are several runways) and 

determine the optimal sequence of operations (Bennell et 

al., 2011). It is worth mentioning that the runway capacity 

of an airport is defined as the maximum possible rate of 

aircraft landings and take-offs which are supported by a 

single or multiple runway. Common objective functions 

in RSP include minimization of average tardiness, 

average completion time, completion time of the last 

operation (Makespan), and maximization of the runway 

throughput, etc. One of the most important constraints 

that has always been of interest on runway scheduling is 

Wake Vortex Effect (VWE). A wake vortex is a 

potentially hazardous effect that the rolling moment of a 

leading aircraft can impose on the any other aircraft 

behind. Therefore, the sequence-dependent WV 

separation time between consecutive aircrafts is necessary 

to be taken into account (Lieder and Stolletz, 2016). In 

this regard, International Civil Aviation Organization 

(ICAO) defined separation time standards between leader 

and follower aircrafts for approach, landing, and take-off 

to provide a safe condition at an airport area (See Table 

1). 
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Table 1 

Minimum separation time (in seconds) required between consecutive aircrafts on the same runway (Lieder and Stolletz, 2016) 

 Following aircraft 

Landing Take-off 

Small Large Heavy Small Large Heavy 

 

 

Leading  

aircraft 

 

Landing 

Small 82 69 60 75 75 75 

Large 131 69 60 75 75 75 

Heavy 196 157 96 75 75 75 

 

Take-off 

Small 60 60 60 60 60 60 

Large 60 60 60 60 60 60 

Heavy 60 60 60 120 120 90 

 

It should be noted that aircraft movement from gate to 

runway is operated on a set of routes which is called taxi-

network. Aircraft taxiing should be scheduled without any 

collision through the most efficient path. Hence, traffic 

controllers must consider the taxi routing problem as an 

indispensable link between GAP and RSP. The easiest 

way to determine an aircraft’s taxiway is to route it on the 

shortest path. Such route is usually considered to be fixed 

and independent of any immediate changes in traffic 

conditions. Although this approach is easy to use, it does 

not provide the optimal solution since airport traffic is 

constantly changing (See Figure 1).

 

 

This paper formulates a MILP model in order to integrate 

gate assignment and runway scheduling while considering 

aircraft taxiing. The aim of the proposed model is to 

minimize two objective functions: 1) deviation of 

preferred scheduling, and 2) transit passenger 

dissatisfaction because of long walking distance between 

gates. 

2. Literature Review 

Given the sharp increase in air transportation over recent 

years, providing an optimal gate assignment plan is a 

crucial decision that traffic control tower faces every day. 

Lee et al. (2016) tried to determine departing and arriving 

passengers’ gates at an airport using a single objective 

mixed integer programing model. They aimed to assign 

given aircrafts to available gates while keeping the 

passengers’ flow balanced. They also performed a 

simulation experiment to verify the effect of their 

proposed model on the internal gate efficiency. The 

results indicated that the passenger processing time was 

reduced considerably. Aktel et al. (2017) tried to 

minimize both the number of flights assigned to the apron 

(ungated flights) and total passenger walking distance as a 

bi-objective MIP model. They proposed a new Tabu 

Search (TS) algorithm, a Simulated Annealing (SA) 

algorithm and a greedy algorithm to address the problem 

Fig. 1. Transfer flow at an airport 
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and find the optimal Pareto front. Khakzar Bafruei et al. 

(2018) stated that the gate processing time is not a fixed 

parameter in real-world planning and should be 

considered continuously controllable in a given interval. 

They proposed a bi-objective mixed-integer model to 

minimize 1) the total cost of delay and 2) the passenger 

overcrowding. The problem was solved by the 

implementation of a Multi-Objective Harmony Search 

Algorithm (MOHSA) and a Non-dominated Sorting 

Genetic Algorithm II (NSGA-II). In a recent research 

conducted by Das et al. (2020), the past studies on GAP 

reviewed to clarify various types of formulations, 

objectives, and solution methods . They indicated that 

there was not a standard problem formulation for GAP 

due to the multitude of stakeholders, feasibility 

requirements, and objective functions. However, they 

showed that the passenger-oriented objectives were most 

common among past research. In addition, they reported 

that most studies employed multi-objective functions and 

heuristic/metaheuristic approaches.  

On the other hand, many studies have been focused on 

RSP which is widely known as the bottleneck of the 

whole air transportation system. Atkin et al. (2007) 

focused on RSP and proposed an automated advisory 

system to aid runway controllers obtain optimal take-off 

orders on a single departure runway. The aim was to 

reduce the total separations and increase runway 

throughput. They presented a hybrid meta-heuristic 

system that took account of more aircrafts than a human 

controller. In the real world, however, many congested 

airports have more than a single runway for 

arriving/departing aircrafts. Consequently, Messaoud et 

al. (2017) presented a MILP model for the aircraft landing 

problem on a pair of runways. However, they did not 

consider the WV effect on adjacent runways. They 

generated some small-sized problems and solved them 

using Lingo. Pohl et al. (2020) presented a single 

objective MILP model for multiple runway scheduling 

problem under the consideration of snow removal slots. 

They assumed that all runways could be used by both 

arrivals and departures without any limitation. To 

improve the computational tractability of Branch and 

Bound (B&B) algorithm, they developed pruning rules 

and valid inequalities. The computational results of this 

study indicated that their solution approach caused less 

delay cost compared to the previous common approaches. 

According to the literature, most studies on GAP and RSP 

have been carried out as separate independent problems. 

Although rare, there are some studies which consider 

these two areas of airport scheduling together. 

Nourmohammadzadeh (2012) studied integrated GAP and 

RSP and presented a bi-objective mathematical model 

aiming to 1) minimize the total waiting time at both gate 

and runway and 2) minimize the passenger walking 

distance at the airport terminal area. He compared the 

performance of three metaheuristics (NSGA-II, Pareto 

Simulating Annealing (PSA) and a hybrid of NSGA-II 

and PSA) on generated large-scale problems and came to 

the conclusion that the proposed hybrid algorithm showed 

a better performance. He assumed a fixed and 

predetermined taxi time between gates and runways 

without considering the possibility of ground traffic. 

Guepet et al. (2016) presented a MIP model to formulate 

single path Ground Routing Problem (GRP) and 

generalized it to include alternative paths. They 

considered an objective function that included average 

delay and the percentage of flights having a delay less 

than 15 minutes. Clare and Richards (2011) proposed a 

novel method to combine taxiway and runway scheduling 

elements in one optimization problem. They solved a 

mixed-integer linear programming model, and results 

demonstrated that the average taxi time could be reduced 

by half, compared to the First-Come-First-Served 

approach (FCFS). Yu et al. (2017) investigated gate 

reassignment and taxiway scheduling, simultaneously. 

They proposed a new heuristic approach to solve the 

integrated problem. Results highlighted their method’s 

strength compared to a sequential method which solved 

gate reassignment and taxiway scheduling problem 

separately. For the first time, Sama et al. (2018) 

considered the integrated problem of scheduling ground 

and air operations in an airport maneuvering area. To 

address the problem, they presented an alternative MILP 

graph formulation aiming to minimize the maximum 

delay and three other objective functions, separately. 

They proposed a heuristic procedure based on FCFS 

sequence of landing/take-off operations as well, and 

showed the method’s strength compared to the common 

policies. 

To the best of our knowledge, there was no research in the 

literature that integrated GAP and RSP considering 

multiple taxiways. In the real world, however, a hub-

airport usually possesses a complex taxi-network with a 

number of alternative paths. Therefore, taxiway selection 

is another crucial task for traffic controllers, which must 

be consistent with gate and runway assignment. In this 

paper, a multi-objective MILP model is proposed to 

consider GAP, RSP and taxiway selection, 

simultaneously. This model provides traffic controllers 

with an integrated plan for a set of departing aircrafts. 

3. Problem Formulation 

3.1. Problem Definition 

This paper is supposed to plan departing aircrafts’ 

movements in a Terminal Maneuvering Area (TMA). 

Needless to say, the more efficient the plan, the lower the 

flight delay and the higher the utilization rate of ground 

facilities.  
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First, each aircraft must park in the ramp area in front of a 

gate a few minutes before take-off to be loaded, refueled 

and boarded. In this procedure, long walking distance 

from gate to gate should be prevented by planners in order 

to reduce transit passengers’ dissatisfaction. It is assumed 

that the minimum time required for each aircraft to 

occupy a gate is predefined, and any deviation from that 

would be undesirable. Once gate operations have been 

completed, the aircraft should push-back and enter the 

taxi-network. Traffic controllers prefer to navigate the 

airplane through the shortest ground route, but sometimes 

this path is occupied and the aircraft is diverted to a 

longer taxiway, which consequently leads to additional 

fuel and environmental costs. After a while, the aircraft 

reaches its assigned runway and take-off operation takes 

place. The most important goal for runway planners is to 

minimize take-off tardiness considering the minimum 

separation time between successive take-offs. 

In this paper, an integrated mathematical model is 

proposed in order to cover all abovementioned aspects of 

the problem. This model can deal with a wide range of 

multi-gate, multi-taxiway and multi-runway problems. It 

is assumed that gates, runways and taxi routes for 

departures are exclusive and separate from arrivals. 

Furthermore, more than one aircraft cannot be assigned to 

a gate/runway/taxiway at the same time. Most parameters 

and variables which are used in this model can be found 

in previous studies related to GAP or RSP 

(Nourmohammadzadeh, 2012; Aktel et al., 2017; Guepet 

et al., 2016). However, some novel notions related to the 

variability of taxi routing and availability of multiple 

taxiways are also proposed for the first time. 

3.2 Mathematical Model 

In this section, a MILP model is developed to help airport 

planners optimally assign ground resources, i.e., gates, 

runways and taxiways. This model is an extension of the 

model presented by Nourmohammadzadeh (2012). He 

considered GAP and RSP with a fixed taxi time. To 

modify the model and make it closer to what happens in 

practice, the parameters of taxi routing problem are 

identified from the literature and added to the model 

(Organisation de l'aviation civile international, 2004). 

The notations including indices, parameters, and decision 

variables are as follows: 

Indices 

                                               

                                          

                                              

                                              

                                             

Parameters 

                      (1=Small, 2=Medium, 3= Large) 

                                                     

(1=Low,2=Average,3=High) 

                                                         

        

                                                        

                                  

                                         

                                                        

                                       

                                                     

                                                    
 

        

                                                       

                

                                                   
                                

                                                        

                                                         

                                                   

                                                        
                                                     

                                

Decision Variables 
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Bi-objective GRP model 
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∑      

       

               (22) 

∑      

       

               (23) 

∑ ∑      

       

 ∑   

 

  

 

      (24) 

                        
    

 (25) 

                                    
    

 (26) 

                                       (27) 

                              {   }               (28) 

Objective (1) is to minimize any deviation from 

predefined schedule. Objective (2) is to minimize 

passenger dissatisfaction due to the transfer walking 

distance between gates. Constraint (3)-(5) indicate that 

each aircraft can be assigned to only one gate; one path 

and one runway, respectively. Constraint (6) ensures that 

an aircraft cannot release its gate sooner than the 

predefined time. Constraint (7) calculates the time each 

aircraft leaves the gate. Constraint (8) notices minimum 

taxi time which is possible for aircraft i considering its 

taxiway. Constraint (9) and (10) define the start and finish 

time for each aircraft’s take-off. Constraint (11) 

guarantees that no flight takes off sooner than the pre-

scheduled time. Constraints (12)-(15) determine aircrafts’ 

sequence at gates. Constraint (16) depicts that no two 

flights are assigned to the same gate at the same time. 

Constraints (17)-(20) specify aircrafts’ sequence on 

taxiways. Constraint (21) shows that it is impossible for 

two aircrafts to use the same taxi path at the same time. 

Constraints (22)-(25) specify aircrafts’ sequence on 

runways. Constraint (26) ensures separation requirements 

for all pairs of take-offs. Constraints (27) and (28) define 

the domains of decision variables. 

4. Solution Approach 

In this section, a classic multi-objective optimization 

method is first presented to cope with the proposed 

model. Since this model is NP-hard, two meta-heuristic 

algorithms are also provided to solve large scale test 

problems. 
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4.1. Normalized weighted sum method 

Objective functions in a Multi-Objective Optimization 

Problem (MOOP) generally contradict each other. So, it is 

impossible to obtain a single solution which optimizes all 

objectives at the same time. To deal with such problems, 

many classic methods have been introduced to transform 

a MOOP to a single objective problem. Normalized 

Weighted Sum Method (NWSM) is one of these methods 

which combines all objectives into one objective function 

using weighting coefficients. Therefore, the mathematical 

model of a minimizing problem can be transformed as 

follows. 

    ∑  

     

        

 

   

 

 

(29) 

S.t:                           

                        

    

   [   ]                              ∑  

 

   

   

where    is the weight assigned to the objective function 

 
 
, and   

   
 is the normalizing factor which can be 

considered as  
 
    (the upper bound of the j

th
 objective 

function). It is worth mentioning that every single 

simulation run in which a specific combination of 

coefficients is used, usually contributes to a unique 

solution. Therefore, changing weights in consecutive 

iterations results in detecting different parts of an optimal 

Pareto front (Hwang and Masud, 2012; Kim and Weck, 

2005; Ryu et al., 2009).  

4.2. Meta-heuristics 

On the contrary, Multi Objective Evolutionary 

Algorithms (MOEA) are directly used to find the Pareto 

solutions in a single simulation run. In this paper, we have 

utilized two population-based meta-heuristic algorithms, 

namely NSGA-II and MOGWO, for large-scale instances 

and compared them using performance measures of 

MOOP. According to the studies on transportation 

planning problems, NSGA-II is one of the most well-

known and widely used meta-heuristic algorithms, and 

MOGWO is one of the most efficient algorithms which its 

outperformance has been reported in many studies 

(Maadanpour Safari et al., 2021). Since our solution 

representation and the fitness function utilized in both 

algorithms are exactly the same, they are first presented in 

the following sub-section. 

4.2.1. Solution representation and fitness function 

The structure that represents each individual of the 

population consists of 5 rows (see Figure 2). The number 

of genes in each row is equal to the number of departing 

flights. Three first rows determine gate, runway and path 

assigned to each departing flight, respectively. Each gene 

of these three vectors must be generated as an integer 

number in their feasible range. The fourth row refers to 

the priority of each aircraft to operate. Genes in this part 

are scaled to a discrete number in [1, nflight]. The last 

row of the solution structure represents waiting 

coefficient and specifies the time during which aircrafts 

occupy gates. Each gene in this part takes a value in [0,1], 

so   
 
 is calculated as                             

 

 

Fig. 2. Solution representation in meta-heuristic algorithms 

 

Although this representation satisfies most constraints, it 

cannot fully guarantee the feasibility of a solution. With 

this representation, the problem of aircrafts’ collision at 

gate/taxiway/runway still remains to be checked. To cope 

with this weakness, a penalty should be applied in fitness 

functions to penalize infeasible solutions based on the 

degree of violation. Therefore, in order not to assign 

aircrafts to the same resources at the same time, fitness 

function calculation for each individual is calculated as 

below. 

1. Generate a random solution    

row 1

row 2

row 3

row 4

row 5
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2. Flights assigned to the same gate are scheduled 

based on their priority one after another. 

Actually, an aircraft is authorized to park in front 

of a gate when the previous aircraft has spent the 

defined time and released the gate. If two flights 

have the same priority, the aircraft with lower 

flight number is first placed. 

3. After each aircraft spends specific time in front 

of a gate, it is headed to a taxi path and then to a 

runway which are chosen for it. 

4. Since some aircrafts have been directed to the 

same taxiway, it is crucial to determine whether 

the solution    violates taxi safety requirement. 

Therefore, as many times as concurrent usage of 

routes has been occurred, Deviation1 must be 

counted. The same procedure is applied for 

checking separation constraint on runways and 

Deviation 2’s calculation. 

5. Finally, the j
th

 cost function for solution    is 

calculated as below, where W is the weight of 

deviations. 

 

       

{
 

 
                                                                             

                     

                                  

                     

 

 

4.2.2. NSGA-II algorithm 

The Non-dominated Sorting Genetic Algorithm (NSGA) 

was first introduced in 1995 by Srinivas and Deb. the 

most important criticisms about this algorithm refer to 1) 

high computational complexity, 2) lack of elitism, and 3) 

need for identifying the shared parameter. So, Deb et al. 

(2002) added two operators to NSGA and introduced a 

new version called NSGA-II. These two operators are fast 

non-dominated sorting and crowding distance to check 

quality and diversity, respectively. In fact, solutions 

should be sorted based on non-domination rank (     ) 

and crowding distance (         ). NSGA-II procedure is 

explained step by step as follows: 

1. Generate a random population of N 

chromosomes,   , and calculate the rank and 

crowding distance for every single solution 

2. Set t=0 

3. Implement the strategy of selecting parents, cross 

over and mutation on    to create offspring 

population,  
 
 

4. Create    Merging    with  
 
 

5. Implement non-dominated sorting on    to 

recreate a new population of size N,      (See 

Figure 3) and immediately calculate       and 

          for all solutions in this new population. 

6. If stopping criterion is satisfied, report all 

solutions in       with      =1 as   , otherwise 

set t=t+1 and return to the step 3.

 

 

 

Fig. 3. Procedure of recreating a new population in NSGA-II (Deb et al., 2002) 

 

In this paper, we assume that parents should be selected 

by binary tournament selection. Uniform and arithmetic 

crossovers are also designated for integer genes (rows 1 to 

4) and continues genes (row 5) of chromosome (solution 

representation), respectively. The mechanism of uniform 

approach for row 1 (as the same way for rows 2, 3 and 4) 

is illustrated as follows. 
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{
 
 

 
 

                  (                   )                                                    

                  (                   )                                                     

     (                )              {   }                                                   

                                                       

 

                                                         

  

 

Note that there is a same procedure for row 5 except that 

     [   ].
 

In order to run mutation, some genes in each row should 

be selected and replaced by a new value in a feasible 

range. The procedure of the algorithm should be 

continued to reach maximum iteration as the stopping 

criteria.

 

4.2.3 MOGWO algorithm

 

Mirjalili et al. (2014) proposed Grey Wolf Optimizer 

(GWO) algorithm based on the mathematical model of 

grey wolves’ behavior and their hunting method. Grey 

wolves generally live in the groups of 5 to 12 animals, 

and a social hierarchy is clearly seen in their group life. 

The wolf whose decision is a major determinant of 

hunting is the leader of the group and is called “Alpha 

wolf”. “Beta wolf” is at the next level of the power 

pyramid. He helps Alpha wolf in his decisions, obeys 

him, and transmits Alpha’s commands to the other 

wolves. The lowest

 

level of the pyramid belongs to 

“Omega wolves” which are always surrendering to 

wolves with a higher social hierarchy. They play the role 

of scapegoats in hunting process and are the last wolves 

allowed to eat preys. If a wolf

 

is not an Alpha, Beta or 

Omega, it is considered a “Delta wolf”. The Delta wolves 

have to submit to Alpha and Beta but are superior to 

Omega wolves and also are considered as scouts, 

sentinels, elders, hunters, and caretakers of the group. 

In 

order to convert an optimization problem into a hunting 

process, we must consider the fittest solution as Alpha 

and the second and third best solutions as Beta and Delta, 

respectively; the rest of the candidate solutions are named 

Omega.

 

In GWO algorithm, hunting (optimization) is 

guided by Alpha, Beta, and Delta wolves, while Omega 

wolves follow these three wolves. 

 

Grey wolves encircle preys during the predation. 

Following equations are proposed to mathematically 

model encircling behavior in a hunt.

 

 ⃗⃗  |               |

 

(30)

 

                   ⃗⃗   

 

(31)

 

             

 

(32)

 

        

 

(33)

 

where  

 

shows the current iteration and  ⃗⃗ 
 

and  ⃗ 
 

stand for 

coefficient vectors.  ⃗⃗     

 

and  ⃗⃗ ( ) are the position 

vectors of the prey and a gray wolf, respectively. 

Components of vector  ⃗ 

 

linearly decrease from 2 to 0 

over the consecutive iterations, and,    

 

and    

 

are random 

vectors in [0,1].

 

It is worth noting that in an optimization problem we have 

no idea about the location of the optimum solution (prey). 

Therefore, three best solutions have obtained so far are 

saved as Alpha, Beta and Delta and other search agents 

(Omegas) are obliged to update their positions according 

to the positions of the best solutions. Following equations 

are presented in this regard.

 

 ⃗⃗   |          | 

 

  ⃗⃗   |          |  

 

 ⃗⃗   |          |

 

 (34)

 

            ( ⃗⃗  )  

 

             ( ⃗⃗  )               ( ⃗⃗  )

 

(35)

 

where

 

 ⃗⃗ 

 

is a random value in the interval [      ]

 

and  

 

decreases from 2 to 0 over the course of iterations. So, the 

fluctuation range of  ⃗⃗ 

 

is affected by  ⃗ . |A| < 1 forces 

wolves to attack towards the prey (exploitation) and |A| > 

1 forces them to diverge from the prey in order to search 

for a fitter prey (exploration).  ⃗ 

 

is another component 

which contains random values in [0,2] and provides 

random weights for the prey to emphasize exploitation 

(    

 

or exploration (    

 

.  ⃗ 

 

helps the algorithm to 

attain a more random behavior not only during 

preliminary iterations, but also at all times. 

 

In order to perform a multi-objective optimization by 

GWO, two new operators were considered by Mirjalili et 

al. (2016) and Multi-Objective Grey Wolf Optimizer 

(MOGWO) was presented. The first one is called 

“archive” which sorts non-dominated Pareto optimal 

solutions obtained so far. The second operator is a “leader 

selection strategy” to select Alpha, Beta and Delta from 

solutions in the archive in each iteration. In this paper, we 

consider the maximum number of iteration (MAXIT) as 

stopping criterion. The procedure of MOGWO is depicted 

in Figure 4.
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Fig. 4. Multi-objective Grey Wolf optimizer flowchart 

5. Computational Results 

In order to validate the suggested model, we consider the 

test problem No. 1 consisting of 7 flights, 3 gates, 2 paths, 

and 1 runway. The values of the model parameters have 

been generated according to Table 2. First, NWSM (using 

w1=0.6 and w2= 0.4) is considered to exert using GAMS 

24.1.3 software on an Intel core™ i5, 1.6 GHz laptop with 

4 GB RAM. The results represented in Table 3 validate 

that there is not any conflict in resource usage and model 

works properly. To attain the optimal Pareto front, various 

weighting vectors have been applied in NWSM. In 

addition, the assumed problem has been solved by 

NSGA-II and MOGWO in MATLAB R2013b and all 

obtained fronts is illustrated in Figure 5. As it can be seen, 

the metaheuristics generated fronts converged to the 

optimal Pareto front. Given that run time increases 

exponentially with the size of problems, NWSM is no 

more applicable for large-scale instances and the meta-

heuristics are suggested to use.

 
Table 2  

Input values of parameters in test problems 

Parameters Range Parameters Range 

    Discrete.U[1,6]        U[120,480] 

    Discrete.U[1,3]     U[60,120] 

     Discrete.U[1,10]      U[1800,3600] 

     Discrete.U[0,20]      Discrete.U[1,6] 

      U[1500,2100]    Discrete.U[1,6] 

     U[10,30]  

 

Table 3  

NWSM results using w1=0.6 and w2=0.4 for the problem No. 1 

First 

objective 

Second 

objective 
Flight ID Gate Entering gate 

Gate departing 

~Taxi starting 
Path 

Taxi finishing 

~Take-off starting 
Runway Taxi finishing 

207.92 430 

1 2 8:00:31 8:35:17 2 8:38:46 1 8:39:26 

2 2 8:35:17 9:09:29 2 9:12:31 1 9:13:21 

3 3 8:00:00 8:32:42 2 8:35:17 1 8:35:40 

4 1 8:31:54 9:00:53 2 9:04:36 2 9:05:15 

5 3 8:32:42 9:00:05 1 9:02:45 1 9:03:10 

6 3 9:00:05 9:28:52 1 9:30:48 1 9:32:05 

7 1 8:00:00 8:31:54 1 8:35:07 2 8:36:50 
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Fig. 5. NWSM comparison with NSGA-II and MOGWO on the problem No. 1 
 

5.1. Performance measures 

In the studies on MOOP, there are examples of efforts 

made to provide useful tools for assessing and comparing 

the performance of meta-heuristics. In this paper, three 

well-known measures are considered to quantify obtained 

Pareto fronts. The first criterion is Inverted Generational 

Distance (IGD) proposed by Sierra and Coello (2005) for 

measuring convergence. Note that the less IGD value, the 

better the performance. 

    

√∑   
  

   

 
   

(36) 

where n is the number of Pareto optimal solutions and 

   

    √   
        

 
            

        
 
                    

       . Note that m is the number of objective functions. 

Next criteria are the spacing measure (SP) proposed by 

Coello et al. (2004) and maximum spread (MS) by Zitzler 

and Thiele (1999) to quantify the coverage of a Pareto set.  
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where         |  
        

     |    |  
      

  
     |                       , and  ̅ is the average of all 

  s. It is worth mentioning that the lower value of SP 

shows the better performance of the algorithm. 

   √∑             

 

   

 (38) 

where               is the Euclidean distance between the 

maximum and minimum values of the i
th

 objective 

function. The more the maximum spread, the better the 

algorithm performance. 

In order to generate more accurate Pareto fronts and have 

a fair comparison, the parameters of these algorithms 

should be tuned. 

5.2. Parameter tuning 

The performance of a meta-heuristic algorithm is to some 

extent sensitive to the setting of adjustable parameters 

affecting coverage and convergence behavior. In order to 

achieve the best performance of the proposed meta-

heuristics, Taguchi’s method is employed in this paper; 

L9 design for NSGA-II and L27 design for MOGWO. To 

attain more accuracy and precision, each experiment is 

repeated 5 times and the average of performance 

measures is considered. In the next step, performance 

measures (i.e., IGD, SP and MS) are normalized by 

related percentage deviation (RPD) formula. Then, a 

weighted linear combination of these measures is set as 

the main response. For both NSGA-II and MOGWO, 

parameters and their levels are given in Table 4. These 

levels were chosen based on the trial and error. Figures 6 

and 7 show the results of Taguchi’s method based on the 

signal to noise (S/N) ratio approach. For each factor, the 

optimal and appropriate level is the one with higher (S/N) 

value. It means that the larger value of S/N is better.
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Table 4  

Meta-heuristics parameters 

 

Level 

NSGA-II MOGWO 

Npop Maxit Pc Pm Archive size Maxit α β γ 

1 40 100 0.7 0.1 40 100 0.06 2 1 

2 70 150 0.8 0.15 70 150 0.1 4 2 

3 100 200 0.9 0.2 100 200 0.14 6 3 
 

 

Fig. 6. S/N chart for NSGA-II parameters setting 
 

 

Fig. 7. S/N chart for MOGWO parameters setting 
 

5.3. Algorithm analysis and comparisons 

Since there was not any benchmark available in the 

literature, 25 test problems are designed according to 

Copenhagen (CPH) airport to analyze the performance of 

the presented meta-heuristics on large-scale problems as 

well. These generated instances are coded and carried out 

in MATLAB software using NSAGA-II and MOGWO 

algorithms. In all cases, the average results of 5 times run 

under three predefined performance criteria as well as 

CPU time are reported in Table 5. The characters in the 

column of problem feature from left to right present the 

number of flights, gates, paths and runways, respectively. 

For these cases, all metrics are plotted and graphically 

compared in Figures 8 and 9. As mentioned before, the 

lower the values of IGD and SP, the better the algorithm’s 

performance. This is also true for CPU time criterion. 

Besides, we know that the more value of MS indicates the 

better quality of a solution set. As depicted in Figures 9 

and 10, MOGWO in almost all cases generated lower 

value of IGD, SP and CPUT compared to NSGA-II. On 

the contrary, NSGA-II had a better performance in terms 

of MS. Broadly defined, MOGWO is superior to NSGA-

II in coverage, convergence and time measures in our test 
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problems. In order to assess the importance of the number 

of resources in an optimial planning, Pareto fronts of the 

test problems number 15 and 16 which have a remarkable 

difference in available resources are selected to be shown. 

As depicted in Figure 8, a greater number of gates, paths 

and runways contributes to a dramatic decrease in 

objective functions value. It is crucial for the airport 

management to make a trade-off between the cost of 

increasing resources and the cost of flight delays and 

passenger dissatisfaction. In addition, each of these Pareto 

optimal fronts illustrates a unique trade-off between the 

cost of schedule deviation and the undesirability of 

passenger walking distance. It is eventually up to the 

managerial viewpoint to select a plan from the Pareto 

optimal solutions. It depends on whether resource 

efficiency is a management priority or passenger 

dissatisfaction. 

 

Table 5  

Computational results of multi-objective metrics for NSGA-II and MOGWO 

Problem 

NO 
Feature 

NSGA-II MOGWO 

IGD SP MS CPUT IGD SP MS CPUT 

1 6,3,4,1 28.33 28.28 17.2 196.02 13.56 23.11 11.43 72.72 

2 6,3,3,2 30.16 16.23 14.78 199.34 14.38 28.08 11.49 118.82 

3 6,3,3,1 28.54 12.59 14.33 193.82 14.36 28.01 11.49 115.02 

4 6,2,2,2 67.26 65.69 33.59 188.67 23.37 53.61 27.63 141.25 

5 6,3,2,1 36.57 17.07 16.01 188.01 14.12 27.27 11.40 152.36 

6 6,2,2,1 61.06 84.23 34.155 188.03 23.37 53.61 27.63 143.611 

7 7,3,3,2 62.85 90.71 45.33 203.18 30.69 65.66 32.05 117.05 

8 7,3,3,1 32.71 69.06 45.97 205.63 28.94 58.23 33.02 105.83 

9 7,2,2,2 48.57 98.36 41.89 202.89 34.33 78.57 35.38 127.28 

10 7,2,3,1 84.20 135.53 44.35 204.91 35.67 76.83 35.69 126.13 

11 7,4,3,1 68.47 182.04 59.57 206.23 30.9 89.1 47.33 96.44 

12 7,3,2,2 66.04 133.52 52.32 206.86 33.4 83.03 42.37 119.27 

13 8,4,1,2 76.42 114.97 55.22 194.73 41.18 63.83 40.89 137.12 

14 8,4,4,2 96.42 142.53 55.18 191.81 40.44 99.03 41.61 113.09 

15 8,4,4,1 92.11 135.42 55.36 191.18 43.03 91.41 43 101.44 

16 8,8,8,2 56.66 203.2 77.63 191.02 23.4 67.78 41.94 115.66 

17 9,5,5,1 45.03 136.97 63.03 193.46 27.79 69.68 44.86 104.52 

18 9,9,9,3 32.82 122.37 58.38 196.52 14.71 54.9 38.5 96.77 

19 9,9,9,1 32.4 98.95 57.44 203.74 27.25 66.25 41.73 105.01 

20 10,10,2,1 30.7 112.28 72.68 200.34 18.56 44.98 39.46 108.12 

21 10,10,5,2 58.32 202.03 66.84 202.83 18.63 65.76 37.04 107.82 

22 10,10,10,1 23.59 99.07 59.76 202.19 36.45 145.97 52..28 95.5 

23 15,10,10,l 44.84 217.03 109.73 222.21 27.39 107.64 55.05 126.19 

24 15,15,15,1 22.97 91.75 92.27 225.67 33.9 91.21 53.66 119.29 

25 15,15,15,2 47.25 206.22 93.37 230.83 148.68 618.50 80.25 128.55 

 

 

Fig. 8. The impact of resource number on objectives range using a) MOGWO and b) NSGA-II 
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Fig. 9. Box-plot comparisons of meta-heuristics in terms of performance measures 

 

Fig. 10. NSGA-II and MOGWO performance on different test problems 
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6. Conclusion 

In this paper, a new mathematical model is developed to 

integrate GAP and RSP considering alternative taxiways 

for departing aircrafts. The main contribution of this study 

is to take into account the crucial concept of taxi routing 

in airport planning as a key operation between gate and 

runway. A feasible taxi planning has a significant effect 

on preventing surface traffic at the airport and is 

considered as a preparation operation for takeoff. In our 

model, it is assumed that the airport network consists of 

multi-gates, multi-independent runways and also multi-

heterogeneous taxiways. To meet international airport 

safety requirements, a sequence-dependent separation 

time is also considered between consecutive take-offs on 

the same runway. The proposed model has two 

conflicting objectives: 1) minimizing the cost of deviation 

from the preferred plan and 2) minimizing passenger 

walking distance between gates in TMA. The problem is 

first formulated in the framework of a constrained bi-

objective mixed integer linear programming model. In 

order to find Pareto optimal fronts, the proposed bi-

objective MILP is solved for small-sized problems by 

NWSM on Gams software. Given that the model 

developed in this study is computationally complex, two 

multi-objective evolutionary algorithms, namely NSGA-II 

and MOGW are employed to find Pareto fronts in large-

sized test problems. Since the performance of meta-

heuristic algorithms is sensitive to the setting of 

adjustable parameters, in order to achieve the best 

performance, Taguchi’s designing method is utilized and 

parameters get fixed on their best levels. Results indicates 

the better performance of MOGWO compared to NSGA-

II. MOGWO in almost all cases generates lower value of 

IGD, SP and CPUT in comparison to NSGA-II. However, 

NSGA-II shows a better performance in terms of MS. The 

impact of the number of resources on the costs related to 

delays and passenger dissatisfaction is also discussed. 

There are several recommendations for future works as 

follows: 

 considering simultaneous arriving and departing 

aircrafts using shared resources 

 considering domestic airline private resources in 

assigning gates to aircrafts 

 considering WV effect on operations of 

different runways 

 paying attention to the permitted level of noise 

pollution related to the aircraft operations at an 

airport near a residential area 

 analyzing the problem under the uncertainty 

 analyzing the optimal number of resources to 

design new airports according to the average 

number of flights 

 developing the proposed model for an airport 

with multi-crossroads on taxiways 
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