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 Abstract 

Availability and reliability of a manufacturing system are the most common indicators in the reliability engineering area to assess the 

quality and on-time deliveries of the products they produce. The purpose of this paper is to analyze the availability, reliability. failure 

metrics such as MTBF and MTTF, and also steady-state availability of a cooking oil production line using a Markov approach. The product 

line works in three consecutive shifts 24 hours a day, for which five main subsystems are identified for the analysis. The results show that 

the first shift has the best performance in terms of reliability while the second shift has the worst performance. To improve the reliability of 

the production line, a corrective maintenance policy is used. First, the critical components of the subsystems are identified using the Pareto 

charts, and then, by increasing the repair rates, the availability of the production line in all three shifts is increased.  
 

Keywords: Reliability; Availability; Markov process; Corrective maintenance; Pareto diagram. 

 

1. Introduction 

The world in the 21st century has become a very 

complicated realm in many dimensions including the 

technological scope (Blischke & Prabhakar Murthy, 

2003). With the advent of new technologies in different 

industries, one of the important goals of all companies is 

to raise or maintain their market shares in order to be 

competitive (Sharifi et al, 2014). To this aim, they need to 

provide high-quality products delivered to the customers 

on time. This becomes possible with the help of 

professional engineers and technical managers who are 

responsible for planning, operating, and designing 

systems (Billinton & Allen, 1992). They must design, 

plan, and operate appropriate systems with high 

maintainability and reliability. As many devices and 

machines are repairable in real-world systems, the most 

important tasks of professional engineers and technical 

managers are to design reliable repairable systems and to 

provide a proper plan for their maintenance, in order to 

produce products with desired qualities and to deliver 

them on time to the customers.  

Availability and reliability (A&R) are the most important 

parameters in assessing the quality of a product (Blischke 

& Prabhakar Murthy, 2003). The main basis of A&R 

calculations is the extraction of statistical properties of 

empirical data obtained from the maintenance sector. 

Then, modeling and analysis of the desired system come 

to the picture.  
Reliability analysis was initiated from the aerospace 

industry and military systems. Then it was expanded in 

many other industries such as the nuclear industry, power 

systems, manufacturing industries, and so forth (Billinton 

& Allen, 1992). For a non-repairable component or 

system, the reliability is defined as the probability that a 

component or a system operates successfully in a given 

period. The mean time to failure (MTTF) is another 

measure to assess the reliability of a component, a 

subsystem, or a system composing of some subsystems. 

However, for a repairable component or system, there is 

another parameter called availability. It is defined as the 

probability that a component or a system will be 

operational at any specific time (Rausand & Høyland, 

2004). As determining the availability function of a 

system is very difficult most of the time, an alternative 

index called the steady-state availability is used instead. 

Steady-state availability is the horizontal asymptote of the 

availability function. Another measure to assess the 

availability of a repairable system is called the mean time 

between failures (MTBF). 

The major part of the current work that is carried out to 

analyze the availability and reliability of a system is the 

use of the Markov process. This well-known approach has 

been frequently employed in the literature to illustrate the 

concepts of repairability and accessibility.  For example, 

Gupta & Tewari (2011) determined the long-term 

availability of a power system in a thermal power plant. 

Kumar & Ram (2013) investigated a coal transportation 

system in a thermal power plant in terms of its reliability 

using the Markov model. Amiri & Přenosil (2014) 

calculated the meantime to failure and availability of an 

N-modular redundancy (NMR) system using Markov 

models. Using the Markov model, Zaidi & Goyal (2014) 

examined the availability of a pulping system in the paper 
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industry. Gupta et al. (2015) performed A&R analyses on 

a lathe machining system using Markov models. 

Khalilnejad et al. (2016) examined the long-run reliability 

of the components of a photovoltaic system. Tan & Feng 

(2016) calculated the reliability of an unmanned aerial 

vehicle using the Markov degradation process. Zare 

(2016) assessed the availability and reliability of a nuclear 

energy-based combined cycle power plant with the 

Markov method. Wang et al. (2017) computed the 

reliability of a 6-component star system via the Markov 

processes. Zhou et al. (2018) assessed the reliability of a 

flight control system under two redundancy modes using 

homogeneous Markov processes. Wang et al. (2018) 

examined the availability and reliability of a biomass 

combined cooling, heating, and power (CCHP) system 

using the Markov approach. Yang and Tsao (2019) 

evaluated the availability and reliability of a repairable 

system using the Markov method. Wang et al. (2019) 

reported the availability and reliability of a hybrid cooling 

system using the Markov method. In line with the above 

work, availability and reliability of a cooking oil 

production line are studied using the Markov method. 

Furthermore, the critical components of the production 

line are determined by a Pareto diagram in order to 

employ a proper corrective maintenance plan to increase 

system availability in different shifts. 

The paper is organized as follows. In the next section, the 

production line is specified, the problem is defined, the 

notations are given, and the assumptions are stated. The 

Markov method is employed in Section 3 to analyze the 

reliability and availability of the production line. A&R 

analysis of the considered production line is presented in 

Section 4. Experimental results are presented in Section 5 

to demonstrate the applicability of the methodology. 

Finally, the paper is concluded in Section 6, where some 

future research recommendations are provided. 
  
2. Problem Statement  

 

This section is devoted to defining the production line 

under investigation, the problem, the notations used 

throughout the paper alongside the assumptions made. 

Figure 1 shows the steps involved to solve the problem at 

hand. 

 

Fig. 1. The solution steps 

 

 

 
 

2.1. The cooking oil production line 

 

The production line consists of five subsystems including 

Posimat (𝑋1), Filler (𝑋2), Labellers (𝑋3), Shirring (𝑋4), 

and Pallet (𝑋5) that are arranged in a series configuration 

operating three shifts a day, each 8 working hours. In case 

each of the subsystems fails to operate properly, the 

whole line stops producing oil. In this production system, 

empty bottles stored in a container are first fed to the 

Posimat by a conveyor belt that brings them in a line. 

Then, the empty bottles go to the Filler through an air 

tunnel. In this subsystem, oil in a specific volume is fed 

into empty bottles. The bottles are capped at the end of 

this subsystem. Next, the filled-in bottles go to the 

Labeling machine by a conveyor belt where they are 

labeled. Afterward, the labeled bottles go to 𝑋4 where 

they are packed in a set of 12. Finally, the packs go to 𝑋5 

by a conveyor belt, where they are gathered in pallets 

using robots and go to the storage area by lift-trucks. As 

this production line had some problems in terms of the 

reliability and on-time delivery of demands in the past, 

the reliability and availability of this system are analyzed 

in this paper using available historical data. 

 
2.2. Notation 
 

The notations used throughout the paper are as follows: 

The failure rate of ith subsystem 𝜆𝑖:  
Repair rate of ith subsystem 𝜇𝑖: 
ith Subsystem 𝑋𝑖 

Vector of failure rates, 𝜆 = [𝜆1, 𝜆2, … , 𝜆𝑛] 𝜆: 
Vector of repair rates, 𝜇 = [𝜇1, 𝜇2, … , 𝜇𝑛] 𝜇: 
Probability of the system being in the ith 

state at time 𝑡 

𝑃𝑖(𝑡) 

Derivative of 𝑃𝑖(𝑡) �̇�𝑖(𝑡) 

Laplace transform of 𝑃𝑖  𝑃𝑖(𝑠) 

Laplace transform variable 𝑠 
System availability 𝐴𝑆𝑦𝑠. 
System reliability 𝑅𝑆𝑦𝑠. 

Steady-state subsystem availability 𝑎𝑠𝑠 

Steady-state system availability 𝐴𝑆𝑆 
Mean time between failure 𝑀𝑇𝐵𝐹 
Mean time to failure 𝑀𝑇𝑇𝐹 

 
2.3. Assumptions 

In the considered oil production line, the subsystems 

• can be repaired during their missions 

• are independent (i.e., their failures do not affect 

each other) 

• are binary (operational or failing) 

• have constant failure and repair rates. 

In the next section, the Markov method is used to assess 

the long-run availability of the system under 

investigation. 

 

 
  

 

3. Markov Method 
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As a well-known, useful, and common method, the 

Markov approach has been widely used by analysts and 

researchers in the field of system reliability, particularly 

for the analysis of repairable systems. More details on this 

method can be found in many books such as (Billinton & 

Allen, 1992 and Rausand & Høyland, 2004 as well as in 

many works like Gupta et al., 2015; Saidi-Mehrabad et 

al., 2015; Khalilnejad et al., 2016; Zhou et al., 2018 and 

Yaghoubi et al., 2020).  
The first stage to apply the Markov method is to 

determine the failure and the repair rates of the 

subsystems. The failure rate for each subsystem is equal 

to the number of its failures divided by its total operating 

time. Meanwhile, the repair rate means the number of 

repairs on a subsystem, divided by its total repair time 

(Billinton & Allen, 1992). Mathematically speaking, 

Equations (1) and (2) are used to determine the failure and 

the repair rates of subsystem i. 

𝜆𝑖 = (𝑀𝑇𝑇𝐹𝑖)−1 (1) 

𝜇𝑖 = (𝑀𝑇𝑇𝑅𝑖)
−1 (2) 

where, 𝜆𝑖 and 𝜇𝑖 are the failure and repair rate of the ith 

subsystems, respectively. Besides, MTTFi and MTTRi are 

the mean time to failure and the mean time to repair of the 

ith subsystems, respectively. 

Having 𝑁(𝑡) as the state of a system with five 

independent binary (operational and failing) subsystems 

at time t, {𝑁(𝑡);   𝑡 ≥ 0} is a continuous-time Markov 

process with state space 𝜲 = {1,2, … , 25}. Therefore, the 

number of total possible states for this system is 32, which 

are arranged in Table 1. 
 

Table 1 

Possible states of the production line 
# of failures 
in the system 

𝜲 Possible states 
of the system 

System 
states 

0 1 𝑋1𝑋2𝑋3𝑋4𝑋5 G* 

1 2 �̅�1𝑋2𝑋3𝑋4𝑋5 B** 

1 3 𝑋1�̅�2𝑋3𝑋4𝑋5 B 

1 4 𝑋1𝑋2�̅�3𝑋4𝑋5 B 

1 5 𝑋1𝑋2𝑋3�̅�4𝑋5 B 

1 6 𝑋1𝑋2𝑋3𝑋4�̅�5 B 

2 7 �̅�1�̅�2𝑋3𝑋4𝑋5 B 

2 8 �̅�1𝑋2�̅�3𝑋4𝑋5 B 

2 9 �̅�1𝑋2𝑋3�̅�4𝑋5 B 

2 10 �̅�1𝑋2𝑋3𝑋4�̅�5 B 

2 11 𝑋1�̅�2�̅�3𝑋4𝑋5 B 

2 12 𝑋1�̅�2𝑋3�̅�4𝑋5 B 

2 13 𝑋1�̅�2𝑋3𝑋4�̅�5 B 

2 14 𝑋1𝑋2�̅�3�̅�4𝑋5 B 

2 15 𝑋1𝑋2�̅�3𝑋4�̅�5 B 

2 16 𝑋1𝑋2𝑋3�̅�4�̅�5 B 

3 17 �̅�1�̅�2�̅�3𝑋4𝑋5 B 

3 18 �̅�1�̅�2𝑋3�̅�4𝑋5 B 

3 19 �̅�1�̅�2𝑋3𝑋4�̅�5 B 

3 20 �̅�1𝑋2�̅�3�̅�4𝑋5 B 

3 21 �̅�1𝑋2�̅�3𝑋4�̅�5 B 

3 22 �̅�1𝑋2𝑋3�̅�4�̅�5 B 

3 23 𝑋1�̅�2�̅�3�̅�4𝑋5 B 

3 24 𝑋1�̅�2�̅�3𝑋4�̅�5 B 

3 25 𝑋1�̅�2𝑋3�̅�4�̅�5 B 

3 26 𝑋1𝑋2�̅�3�̅�4�̅�5 B 

4 27 �̅�1�̅�2�̅�3�̅�4𝑋5 B 

4 28 �̅�1�̅�2�̅�3𝑋4�̅�5 B 

4 29 �̅�1�̅�2𝑋3�̅�4�̅�5 B 

4 30 �̅�1𝑋2�̅�3�̅�4�̅�5 B 

4 31 𝑋1�̅�2�̅�3�̅�4�̅�5 B 

5 32 �̅�1�̅�2�̅�3�̅�4�̅�5 B 
 

*G=Good (Operational) state; **B=Bad (Failed) state; �̅�𝑖: i
th failed 

subsystem 

According to Table 1, the state transition diagram of the 

production line is illustrated in Figure 2. Besides, 

historical maintenance data on the number of stops (each 

stop due to one failure), on the uptimes and the 

downtimes of the line for 12 months in three consecutive 

shifts of a day are given in Tables 2-4. 

 
Fig. 2. State transition diagram of the production line 

 
Table 2 

The data on the first shift of the production line 

Downtime 
(Min.) 

Uptime 
(Min.) 

No. of 
Failures 

Subsystem 

1,006 154,119 419 𝑋1 
5,438 149,687 1,117 𝑋2 
5,486 149,639 1,045 𝑋3 

5,991 149,134 1,825 𝑋4 
1,601 153,524 336 𝑋5 

 
Table 3 

The data on the second shift of the production line 
Downtime 

(Min.) 
Uptime 

(Min.) 

No. of 

Failures 
Subsystem 

1,196 142,979 468 𝑋1 
6,121 138,054 1,247 𝑋2 
6,004 138,171 1,204 𝑋3 

6,637 137,538 2,056 𝑋4 
1,717 142,458 420 𝑋5 

 
Table 4 

The data on the third shift of the production line 

Downtime 
(Min.) 

Uptime 
(Min.) 

No. 
Failures 

Subsystem 

1,027 146,798 445 𝑋1 
5,676 142,149 1,286 𝑋2 
5,445 142,380 1,122 𝑋3 

6,393 141,432 2,182 𝑋4 
1,750 146,075 361 𝑋5 

 

According to the data shown in Tables 2 to 4, the failure 

and repair rate of each subsystem are determined using 

Equations (1) and (2) for three shifts. Table 5 contains the 

results. 

 
Table 5  
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Estimated failure and repair rates of the subsystems in different 

shifts 

Shift Subsystem 

(𝑋𝑖) 

Failure rate (𝜆𝑖) 

(per minute) 

Repair rate (𝜇𝑖) 

(per minute) 

First 𝑋1 2.72 × 10−3 4.17 × 10−1 
 𝑋2 7.46 × 10−3 2.05 × 10−1 
 𝑋3 6.98 × 10−3 1.90 × 10−1 
 𝑋4 1.22 × 10−2 3.05 × 10−1 
 𝑋5 2.19 × 10−3 2.10 × 10−1 

Second 𝑋1 3.27 × 10−3 3.91 × 10−1 
 𝑋2 9.03 × 10−3 2.04 × 10−1 
 𝑋3 8.71 × 10−3 2.01 × 10−1 

 𝑋4 1.49 × 10−2 3.10 × 10−1 
 𝑋5 2.95 × 10−3 2.45 × 10−1 

Third 𝑋1 3.03 × 10−3 4.33 × 10−1 
 𝑋2 9.05 × 10−3 2.27 × 10−1 
 𝑋3 7.88 × 10−3 2.06 × 10−1 
 𝑋4 1.54 × 10−2 3.41 × 10−1 

 𝑋5 2.47 × 10−3 2.06 × 10−1  
 

In the Markov method, the first-order differential 

equations of the system can be first derived based on 

Table 1 and Figure 2. Then, using the Laplace and inverse 

Laplace transforms, all of the states of the system are 

determined (Billinton & Allen, 1992). However, given the 

serial configuration of the production line under 

investigation, State 1 is the sole operational state of the 

production line. Hence, the corresponding differential-

difference equation for State 1 is: 
𝑃1(𝑡 + ∆𝑡) = 𝑃1(𝑡)[1 − (∑ 𝜆𝑖

5
𝑖=1 )∆𝑡]  

+𝑃2(𝑡)𝜇1∆𝑡 + 𝑃3(𝑡)𝜇2∆𝑡 + 𝑃4(𝑡)𝜇3∆𝑡 

+𝑃5(𝑡)𝜇4∆𝑡 + 𝑃6(𝑡)𝜇5∆𝑡  

 

 

(3) 

Similarly, the other 31 equations are derived for the other 

31 possible states, based on their first-order differential 

equations shown in Appendix A.  

Regarding �̇�1(𝑡) = lim
∆𝑡→0

𝑃1(𝑡+∆𝑡)−𝑃1(𝑡)

∆𝑡
, Equation (3) can be 

rewritten as follows 

�̇�1(𝑡) = − (∑ 𝜆𝑖

5

𝑖=1

) 𝑃1(𝑡) + 𝜇1𝑃2(𝑡) + 𝜇2𝑃3(𝑡) 

+𝜇3𝑃4(𝑡) + 𝜇4𝑃5(𝑡) + 𝜇5𝑃6(𝑡) 

 

 

 

 

(4) 

Now, taking the Laplace transform and applying the 

initial condition 𝑃1(0) = 1, Equation (4) is rewritten as 

𝑃1(𝑠) =
1 + ∑ 𝜇𝑖𝑃𝑖+1(𝑠)5

𝑖=1

𝑠 + 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5

 

 

 

(5) 

In Equations 3-5, 𝑃𝑖(𝑡) is the probability of the system 

being in the ith state at time 𝑡, �̇�𝑖(𝑡) is the derivative of 

𝑃𝑖(𝑡), 𝑃𝑖(𝑠) is the Laplace transform of 𝑃𝑖  and s is the 

Laplace transform variable.  
 

4. Availability and Reliability (A&R) Analysis 

 

Applying the inverse Laplace transform on Equation (5), 

the system availability (the reliability of a repairable 

system) for the first possible state of the production line at 

time t is obtained as 

 

𝐴𝑆𝑦𝑠. (𝑡; 𝜆, 𝜇) = ℒ−1{𝑃1(𝑠)} = 𝑃1 (𝑡; 𝜆, 𝜇) (6) 

where, 𝜆 and 𝜇 are the vectors of failure and repair rates, 

respectively, and 𝐴𝑆𝑦𝑠.(. ), is system availability. 

Moreover, ℒ−1 is the inverse Laplace operator. 

Another important measure is the steady-state availability 

defined as the horizontal asymptote of the availability 

function. Mathematically, it is the limit of the availability 

function when t approaches infinity (Grosh, 1989; 

Yaghoubi et al., 2020), i.e.  

 

𝐴𝑆𝑆 = lim
𝑡→∞

𝐴𝑆𝑦𝑠. (𝑡; 𝜆, 𝜇)
        
= 𝐴𝑆𝑦𝑠.

(∞; 𝜆, 𝜇) (7) 

 

According to Smith (2014), the long-run availability of a 

system with n independent subsystems in series is a 

function of the steady-state availabilities of its subsystems 

shown in Equation (8).  

 

𝐴𝑆𝑆 = ∏ 𝑎𝑠𝑠.𝑗
𝑛
𝑗=1  ; 𝑎𝑠𝑠.𝑗 =

𝜇𝑗

𝜆𝑗+𝜇𝑗
, (8) 

 

where 𝐴𝑆𝑆 is the steady-state or long-run system 

availability and 𝑎𝑠𝑠.𝑗 is the steady-state availability of jth 

subsystem. Note that in Equation (6) when the vector 𝜇 =

0, the system availability is reduced to the reliability of 

non-repairable systems as 

 

𝑅𝑆𝑦𝑠.(𝑡; 𝜆) = 𝐴𝑆𝑦𝑠.(𝑡; 𝜆, 0) =  𝑃1(𝑡; 𝜆) (9) 

in which 𝑅𝑆𝑦𝑠.(. ) is system reliability. 

 

Other useful indicators to analyze the reliability of the 

production line are the meantime between failures 

(MTBF) and the meantime to failure (MTTF). MTBF is 

equal to the average time the production line is 

operational in its operating time interval (Gupta et al., 

2015). In other words  

 

𝑀𝑇𝐵𝐹 = ∫ 𝑃1 (𝑡; 𝜆, 𝜇) 𝑑𝑡
∞

0

 
 

(10) 

 

Besides, MTTF is the average of the time intervals the 

production line is operational, i.e. 

 

𝑀𝑇𝑇𝐹 = ∫ 𝑃1(𝑡; 𝜆)𝑑𝑡
∞

0

 
 

(11) 

 

In what follows in the next section, we investigate the 

applicability of the model.  

 
5. Experimental Results 

  
In this section, the availability of the considered cooking 

oil production line is analyzed using failure and repair 

data. Equations (6)-(11) alongside Table 5 are used for the 

reliability analysis of the considered cooking oil 

production line in all three shifts. The mission time for 

each shift is 6,000 minutes (100 hours). The reliability 

diagrams of the cooking oil production line under 

repairable and non-repairable conditions are drawn 

respectively in Figures 3 and 4 for each shift.  
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Fig. 3. Availability diagram of different shifts with repairable subsystems 

 
Fig. 4. Reliability diagram of different shifts with non-repairable subsystems 

 

The long-run system availabilities (𝐴𝑆𝑆) of the production 

line are obtained using Equation (8) for the first, the 

second, and the third shift as 0.8799, 0.8582, and 0.8696, 

respectively. Besides, the MTBFs and MTTFs of the 

production line in each of the shifts are also calculated 

using Equations (10) and (11) and are arranged in Table 6. 

 
Table 6 

MTBF & MTTF in the different shifts 
MTTF (Min.) MTBF (Min.) Shift 

30.30 274,940 1 
23.09 184,590 2 
24.21 190,670 3 

 

 

As seen in Figures 3 and 4, as well as in Table 6, it is 

clear that the production line in Shift 1 has the best 

performance, where Shift 2 performs the worst. Based on 

the results shown in Tables 2-4, the Pareto diagrams of 

the three shifts are shown in Figure 5 to identify the most 

critical subsystem in a shift. It can be seen from the 

diagrams that the subsystem with the most failures in the 

first shift is 𝑋4, which represents 39.76% of the failures. 

In this shift, subsystems 𝑋2 and 𝑋3 with 22.92% and 

22.09% of the failures, respectively, are the next. Thus, an 

overall 84.64% of the failures are related to the fourth, the 

second, and the third subsystems. In the second shift, the 

shares of the second to the fourth subsystems are 21.98%, 

21.78%, 40.5% of total failures, respectively, that lead to 

a total of 85.17% of the system failures. In the third shift, 

22.6% of the failures belong to the second subsystem, 

20.37% failures belong to the third subsystem, and 

42.13% of the failures come from the fourth subsystem 

and show a total of 85.10% of the failures. This implies 

that most of the failures in all shifts result from 

subsystems 2, 3, and 4. 

 

 

 



Afshin Yaghoubi and et al. / Availability analysis of a cooking oil… 

6 

 

(a) 

(b) 

(c) 
Fig. 4. Pareto diagrams (a: first shift, b: second shift, c: third shift) 

 

As mentioned previously, the parametric calculation of 

the availability function is typically very complicated. 

Therefore, the long-run availability can be used as a 

proper index for it. The 𝐴𝑆𝑆 of a system consisting of one 

subsystem is expressed as  

 

𝐴𝑆𝑆.𝑗 =
𝜇𝑗

𝜆𝑗 + 𝜇𝑗

;             𝑗 = 1,2,3,4,5 
(12) 

 

Having ρ = λ / μ, the Relation (12) is rewritten as 

 

𝐴𝑆𝑆.𝑗 =
1

1 + ρ
𝑗

;          𝑗 = 1,2,3,4,5 
 

(13) 

Hence, the 𝐴𝑆𝑆 of the production line, which consists of 

five subsystems in series is derived as 

 

𝐴𝑆𝑆 = ∏ 𝐴𝑆𝑆.𝑗
5
𝑗=1 , (14) 

 

There are many ways to improve the performance of 

repairable systems. One of these ways is to implement a 

proper maintenance plan by the maintenance department. 

Maintenance refers to any kind of action taken for a 

system in order to maintain their functionality (Blischke 

& Prabhakar Murthy, 2003). There are two major types of 

maintenance policies for repairable systems called 

preventive maintenance and corrective maintenance. 

Preventive maintenance regularly checks system 

components and prevents them from failing. The 
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corrective maintenance comes to the picture to repair a 

failed system component (Billinton & Allen, 1992; 

Blischke & Prabhakar Murthy, 2003). Here, the corrective 

maintenance policy is considered. 

 To enhance the availability of the production line, one 

may improve the performance of the corresponding repair 

facility by either increasing the number of repairmen or 

increasing its efficacy, both of which lead to an 

improvement in the repair rate. Now, according to Table 

5, for the subsystems 2-4 with 𝜇𝑖 > 0.2; 𝑖 = 2,3,4, the 𝐴𝑆𝑆 

diagram in terms of ρ (Eq. 14) is shown in Figure 6 for 

the three shifts. 

 

 
Fig. 6. Steady-state availability diagram of the shifts vs. ρ 

As seen in Figure 6, when the repair rate increases for the 

second, third, and fourth subsystems, their 𝐴𝑆𝑆s gradually 

increase, which in turn will increase the overall system 

availability. Thus, with the improvement in the technical 

and operational sections of the maintenance department, 

the performance of the production line also increases in 

terms of availability. 
 

6. Conclusion 
 

In this paper, the availability, reliability, and failure 

metrics such as MTBF and MTTF of a cooking oil 

production line in three consecutive shifts were analyzed 

using the Markov process. The results show that the first 

shift had the best performance in terms of reliability while 

the second shift had the worst performance. Employing 

the Pareto diagram in each of the shifts resulted in 

recognizing the most critical subsystems of the production 

line. This recognition helps the engineer and the 

practitioner to raise the reliability and availability of the 

production line by improving the maintenance policy used 

for the most critical subsystems. For instance, it was 

observed that when the repair rates of the critical 

subsystems increase, their availabilities in each of the 

three shifts also increase. 

Further research is recommended to observe the actual 

reliability improvement of the line. This of course 

requires managerial agreement to implement a better 

preventive maintenance policy. Besides, having the 

system availability function, a cost analysis can be 

performed to investigate its effect on the reliability of the 

system. 
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Appendix A 

The other first-order differential-difference equations (31-equation) are derived as follows: 
 

𝑃2(𝑡 + ∆𝑡) = 𝑃2(𝑡)[1 − (𝜇1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5)∆𝑡] + 𝑃1(𝑡)𝜆1∆𝑡 + 𝑃7(𝑡)𝜇2∆𝑡 + 𝑃9(𝑡)𝜇4∆𝑡 + 𝑃10(𝑡)𝜇5∆𝑡 

𝑃3(𝑡 + ∆𝑡) = 𝑃3(𝑡)[1 − (𝜆1 + 𝜇2 + 𝜆3 + 𝜆4 + 𝜆5)∆𝑡] + 𝑃1(𝑡)𝜆2∆𝑡 + 𝑃7(𝑡)𝜇1∆𝑡 + 𝑃12(𝑡)𝜇4∆𝑡 + 𝑃13(𝑡)𝜇5∆𝑡 

𝑃4(𝑡 + ∆𝑡) = 𝑃4(𝑡)[1 − (𝜆1 + 𝜆2 + 𝜇3 + 𝜆4 + 𝜆5)∆𝑡] + 𝑃1(𝑡)𝜆3∆𝑡 + 𝑃8(𝑡)𝜇1∆𝑡 + 𝑃14(𝑡)𝜇4∆𝑡 + 𝑃15(𝑡)𝜇5∆𝑡 

𝑃5(𝑡 + ∆𝑡) = 𝑃5(𝑡)[1 − (𝜆1 + 𝜆2 + 𝜆3 + 𝜇4 + 𝜆5)∆𝑡] + 𝑃1(𝑡)𝜆4∆𝑡 + 𝑃9(𝑡)𝜇1∆𝑡 + 𝑃14(𝑡)𝜇3∆𝑡 + 𝑃16(𝑡)𝜇5∆𝑡  

𝑃6(𝑡 + ∆𝑡) = 𝑃6(𝑡)[1 − (𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜇5)∆𝑡] + 𝑃1(𝑡)𝜆5∆𝑡 + 𝑃10(𝑡)𝜇1∆𝑡 + 𝑃15(𝑡)𝜇3∆𝑡 + 𝑃16(𝑡)𝜇4∆𝑡  

𝑃7(𝑡 + ∆𝑡) = 𝑃7(𝑡)[1 − (𝜇1 + 𝜇2 + 𝜆3 + 𝜆4 + 𝜆5)∆𝑡] + 𝑃2(𝑡)𝜆2∆𝑡 + 𝑃3(𝑡)𝜆1∆𝑡 + 𝑃18(𝑡)𝜇4∆𝑡 + 𝑃19(𝑡)𝜇5∆𝑡 

𝑃8(𝑡 + ∆𝑡) = 𝑃8(𝑡)[1 − (𝜇1 + 𝜆2 + 𝜇3 + 𝜆4 + 𝜆5)∆𝑡] + 𝑃2(𝑡)𝜆3∆𝑡 + 𝑃4(𝑡)𝜆1∆𝑡 + 𝑃20(𝑡)𝜇4∆𝑡 + 𝑃21(𝑡)𝜇5∆𝑡 

𝑃9(𝑡 + ∆𝑡) = 𝑃9(𝑡)[1 − (𝜇1 + 𝜆2 + 𝜆3 + 𝜇4 + 𝜆5)∆𝑡] + 𝑃2(𝑡)𝜆4∆𝑡 + 𝑃5(𝑡)𝜆1∆𝑡 + 𝑃20(𝑡)𝜇3∆𝑡 + 𝑃22(𝑡)𝜇5∆𝑡 

𝑃10(𝑡 + ∆𝑡) = 𝑃10(𝑡)[1 − (𝜇1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜇5)∆𝑡] + 𝑃2(𝑡)𝜆5∆𝑡 + 𝑃6(𝑡)𝜆1∆𝑡 + 𝑃19(𝑡)𝜇2∆𝑡 + 𝑃21(𝑡)𝜇3∆𝑡 + 𝑃22(𝑡)𝜇4∆𝑡 

𝑃11(𝑡 + ∆𝑡) = 𝑃11(𝑡)[1 − (𝜆1 + 𝜇2 + 𝜇3 + 𝜆4 + 𝜆5)∆𝑡] + 𝑃3(𝑡)𝜆3∆𝑡 + 𝑃4(𝑡)𝜆2∆𝑡 + 𝑃17(𝑡)𝜇1∆𝑡 + 𝑃23(𝑡)𝜇4∆𝑡 + 𝑃24(𝑡)𝜇4∆𝑡  

𝑃12(𝑡 + ∆𝑡) = 𝑃12(𝑡)[1 − (𝜆1 + 𝜇2 + 𝜆3 + 𝜇4 + 𝜆5)∆𝑡] + 𝑃3(𝑡)𝜆4∆𝑡 + 𝑃5(𝑡)𝜆2∆𝑡 + 𝑃18(𝑡)𝜇1∆𝑡 + 𝑃23(𝑡)𝜇3∆𝑡 + 𝑃25(𝑡)𝜇5∆𝑡  

𝑃13(𝑡 + ∆𝑡) = 𝑃13(𝑡)[1 − (𝜆1 + 𝜇2 + 𝜆3 + 𝜆4 + 𝜇5)∆𝑡] + 𝑃3(𝑡)𝜆5∆𝑡 + 𝑃6(𝑡)𝜆2∆𝑡 + 𝑃19(𝑡)𝜇1∆𝑡 + 𝑃24(𝑡)𝜇3∆𝑡 + 𝑃25(𝑡)𝜇4∆𝑡 

𝑃14(𝑡 + ∆𝑡) = 𝑃14(𝑡)[1 − (𝜆1 + 𝜆2 + 𝜇3 + 𝜇4 + 𝜆5)∆𝑡] + 𝑃4(𝑡)𝜆4∆𝑡 + 𝑃5(𝑡)𝜆3∆𝑡 + 𝑃20(𝑡)𝜇1∆𝑡 + 𝑃23(𝑡)𝜇2∆𝑡 + 𝑃26(𝑡)𝜇5∆𝑡 

𝑃15(𝑡 + ∆𝑡) = 𝑃15(𝑡)[1 − (𝜆1 + 𝜆2 + 𝜇3 + 𝜆4 + 𝜇5)∆𝑡] + 𝑃4(𝑡)𝜆5∆𝑡 + 𝑃6(𝑡)𝜆3∆𝑡 + 𝑃21(𝑡)𝜇1∆𝑡 + 𝑃24(𝑡)𝜇2∆𝑡 + 𝑃26(𝑡)𝜇4∆𝑡 

𝑃16(𝑡 + ∆𝑡) = 𝑃16(𝑡)[1 − (𝜆1 + 𝜆2 + 𝜆3 + 𝜇4 + 𝜇5)∆𝑡] + 𝑃5(𝑡)𝜆5∆𝑡 + 𝑃6(𝑡)𝜆4∆𝑡 + 𝑃12(𝑡)𝜆1∆𝑡 + 𝑃27(𝑡)𝜇4∆𝑡 + 𝑃28(𝑡)𝜇5∆𝑡 

𝑃17(𝑡 + ∆𝑡) = 𝑃17(𝑡)[1 − (𝜇1 + 𝜇2 + 𝜇3 + 𝜆4 + 𝜆5)∆𝑡] + 𝑃7(𝑡)𝜆3∆𝑡 + 𝑃8(𝑡)𝜆2∆𝑡 + 𝑃11(𝑡)𝜆1∆𝑡 + 𝑃27(𝑡)𝜇4∆𝑡 + 𝑃28(𝑡)𝜇5∆𝑡 

𝑃18(𝑡 + ∆𝑡) = 𝑃18(𝑡)[1 − (𝜇1 + 𝜇2 + 𝜆3 + 𝜇4 + 𝜆5)∆𝑡] + 𝑃7(𝑡)𝜆4∆𝑡 + 𝑃9(𝑡)𝜆2∆𝑡 + 𝑃12(𝑡)𝜆1∆𝑡 + 𝑃27(𝑡)𝜇3∆𝑡 + 𝑃29(𝑡)𝜇5∆𝑡 
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𝑃31(𝑡 + ∆𝑡) = 𝑃31(𝑡)[1 − (𝜆1 + 𝜇2 + 𝜇3 + 𝜇4 + 𝜇5)∆𝑡] + 𝑃23(𝑡)𝜆5∆𝑡 + 𝑃24(𝑡)𝜆4∆𝑡 + 𝑃25(𝑡)𝜆3∆𝑡 + 𝑃26(𝑡)𝜆2∆𝑡 + 𝑃32(𝑡)𝜇1∆𝑡 

𝑃32(𝑡 + ∆𝑡) = 𝑃32(𝑡)[1 − (𝜇1 + 𝜇2 + 𝜇3 + 𝜇4 + 𝜇5)∆𝑡] + 𝑃27(𝑡)𝜆5∆𝑡 + 𝑃28(𝑡)𝜆4∆𝑡 + 𝑃29(𝑡)𝜆3∆𝑡 + 𝑃30(𝑡)𝜆2∆𝑡 + 𝑃31(𝑡)𝜆1∆𝑡 


