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Abstract 

This paper presents a new decision-making method of stock portfolio optimization issues in different risk measures by using new 

evolutionary computing method and cardinality constrains which is mentioned as hybrid meta-heuristic algorithms. Based on Mean-

Variance (MV) Method by Markowitz we collected three risk levels; Mean-Absolute-Deviation (MAD), Semi-Variance (SV) and 

Variance-With-Skewness (VWS). The developed algorithms are Electromagnetism-like Algorithm (EM), Genetic Algorithm (GA), 

Genetic Network Programming (GNP), Particle Swarm Optimization (PSO) and Simulated Annealing (SA). Also, a diversification 

mechanism strategy is implemented and hybridized with the developed algorithms to increase the diversity and overcome local 

optimality. The sustainability of this proposed model is verified by 50 factories on the Iranian stock exchange. Finally, experimental 

results of proposed algorithms with cardinality constraint are compared with each other by four effective metrics in which the algorithms 

performance for achieving the optimal solution discussed. In addition, to verify the statistical validity and accurately analyze of the 

results, we have done the Analysis Of Variance (ANOVA) technique which the success of this method was proved. 

Keywords: Portfolio optimization; hybrid meta-heuristic algorithms; Iran Stock Exchange; mean–variance, mean absolute 

deviation, semi variance, variance with skewness. 
 

1. Introduction 

With the application of an Evolutionary Commutating 

named GNP, this article presents a decision-making 

model of stock portfolio optimization. On most portfolio 

selection issues, there should be a tradeoff between risk 

and return. Also, investors are looking for a set of the 

assets that have the optimal weight in the portfolio. By 

application of an Evolutionary Computation method, 

this article presents a new decision-making model of 

stock portfolio optimization named hybrid meta-

heuristic algorithms. The most notable parameters of 

portfolio optimization problems are the risk and the 

expected return (Mabu, Hirasawa, & Hu, 2007). Also, 

the return of the assets has a normal Distribution. At 

first, (Markowitz, 1952) who presented one of the main 

contributions of this problem named mean–variance 

model. According to the founding of standard mean–

variance model, the investors are avoiding from risk. 

(Jia & Dyer, 1996) demonstrated that these conditions 

are Sometimes to be located. Regarding the convenient 

risk measure, the mean–variance of objective function 

may not be the best selection of Shareholders. In 

addition, other risk measures may be more suitable. 

From a workable point of view, real world capitalists 

have to confront many restrictions in risk formulations, 

extent of portfolio, business constraint, etc. These 

restraints may be formulated in nonlinear programming 

models which are significantly difficult to answer than 

the main model. 

The mean–variance model proposed by (Markowitz, 

1952) which assumed that asset returns are a random 

variable that follows a normal distribution. On the other 

hand, the return on assets can be determined by means 

of variance properties which considers this variation 

here as a risk. Moreover, based on Markowitz model, 

other researchers have introduced other dimensions of 

the risks mentioned at the beginning of the paper. In the 

following, the risk measures for selecting and 

optimizing stock portfolios base on the math structure 

are shown. 

1.1. Mean–variance structure 

As stated, Markowitz is one of the leading researchers in 

the providing variance as a risk measure. The structure 

of the model formulation as follows. 
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N is the total assets are currently available, and 𝑤𝑖  is the 

part of the portfolio assigned to assets i,

0 1, 1,2,...,iw i N   . Here, the symbol 

𝜇𝑖 intend to return of the asset i. The parameter 𝜎𝑖𝑗 is the 

covariance between assets i and j. Correspondingly, the 

subsets i and j vary from 1 to N. In the first equation, the 

risk of the whole stock portfolio is minimized. In the 

second equation, the yield rate of 𝑅∗  is guaranteed on 

portfolio. The third equation states that the total weights 

are equal to one. In the fourth equation, the proportion 

of any stock in the portfolio is between zero and one. 

The equations (1)–(4) are quadratic programming (QP) 

that the optimal answer given by the current nonlinear 

programming methods and software. As long as the 

formulation is solved by different 𝑅∗ , a sequence of 

effective points will be created. This series creates the 

effective points of the optimization problem by the 

desirability of the shareholders. Also, this series has the 

lowest risk and the highest returns on portfolio. In other 

words, all portfolio selection issues need to look an 

effective rate of risk and return. 

Also, the weighting parameter 𝜆 (0 ≤ 𝜆 ≤ 1) proposes 

as follow 
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The symbol 𝑘  indicates the number of assets that the 

investor intends to keep in the portfolio. The parameters 

𝜀𝑖 and 𝛿𝑖 are a least and maximum proportion of those 

assets, respectively. These parameters must be held in 

the portfolio on asset 𝑖 ( 1,2,..., )i N . The parameter 

𝑧𝑖  is set to one as the asset 𝑖 ( 1,2,..., )i N ; 

otherwise, the parameter 𝑧𝑖  is set to zero. 

In the fifth equation, by putting the value between zero 

and one for  , all risk combinations and returns are 

achieved for the modeling. Also, the values of 𝜆  is 

between zero to one. In general, the case 𝜆 = 0 and 𝜆 =
1  demonstrate maximum return and minimum risk, 

respectively. Further, the sixth equation states that the 

total weights are equal to one. The seventh equation 

showed a limitation on the number of intended assets. It 

certifies that the total assets held must be equal to 𝑘 

assets. The eighth constraint explains the minimum and 

maximum share of each asset in the stock which can be 

held in the portfolio. It certifies that the ratio 𝑤𝑖  should 

be between 𝜀𝑖  and 𝛿𝑖 as asset is held in the portfolio 

( 𝑧𝑖 = 1 ). As none of asset i is held ( 𝑧𝑖 = 0 ) its 

proportion 𝑤𝑖  is zero on portfolio. The ninth equation 

indicates integer constraints regarding to 𝑧𝑖. At this time, 

by weighting the parameter 𝜆 (0 ≤ 𝜆 ≤ 1) and by using 

the mentioned equations above, we can draw the 

efficient boundary of these constraints. (T-J Chang, 

Meade, Beasley, & Sharaiha, 2000) used the heuristic 

methods to solve this model with constraints for the 

portfolio optimization. Also, the portfolio optimization 

with cardinality constraints efficient frontier and based 

on the hybrid differential evolution presented by other 

researchers (H.-H. Huang & Wang, 2013; Ma, Gao, & 

Wang, 2012; Mishra, Panda, & Majhi, 2016). The 

researchers (H.-H. Huang & Wang, 2013; Ma et al., 

2012; Mishra et al., 2016) used multi-objective 

evolutionary algorithms and predicted the expected 

returns. 

1.2. SV structure 

The mathematical structure of Standard mean–variance 

model is based on the principle. The return on assets is a 

variable that has a normal distribution. According to the 

definition of the risk, the investors are intrinsically risk 

averse (Frajtova-Michalikova, Spuchľakova, & 

Misankova, 2015). For this reason, there are new 

definitions of the math structure of the risk like semi-

variance. By these assumptions, the objective function 

and others component of model can be changed. Due to 

the symmetry of the return distribution, the initial model 

was not able to accurately estimate the stock portfolio 

behavior. For this reason, the above model was proposed 

by Markowitz (Markowitz, 1952) to escape this type of 

behavior in a time series.  

The semi-variance model for the cardinality constraints 

efficient frontier (CCEF) is as follow 
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The parameter r is the mean portfolio return through 

the time period 1,2, … , 𝑇 . Thus, semi-variance notices 

only downside risk and in other words considers returns 

below r that it is obtained from the following equation: 
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This means that risk is no longer symmetric, and time 

periods are not interested in which
tr r .  

In order to extend the relevant historical data, the 

symbol 𝑇 should be determined. The relevant historical 

data is reliable over time (𝑡 = 0, … , 𝑇) . Also, the 

parameter 𝑣𝑖𝑡 is the value of each unit of stock 𝑖 within 

the relevant time period. The symbol 𝑐𝑐𝑎𝑠ℎ  is stated that 

all cash of the investors to consider in portfolio. The 

parameter 𝑥𝑖  is the number of stocks 𝑖 that selected for 

hold in the portfolio. The parameter 𝑧𝑖  is set to one as 

the asset 𝑖 ( 1,2,..., )i N ; otherwise, the parameter 

𝑧𝑖  is set to zero. Also, the parameter 𝑤𝑖  is the weight of 

𝑐𝑐𝑎𝑠ℎ . This weight is related to the time 𝑇 in stock 𝑖.
 
𝑟𝑡  is 

the rate of return within a time period given by the 

portfolio at time 𝑡 (𝑡 = 1,2, … , 𝑇) . Based on the 

variables presented above, the values 𝑤𝑖  and 𝑟𝑡  are 

calculated. The seventh constraint explains that the 𝑤𝑖  is 

the weight of the asset 𝑖 in the portfolio at the time 𝑡. 

Moreover, the total value of the portfolio at time 𝑡  is

1

n

it i

i

v x


 .  The twelfth constraint explains
 tr  to be the 

return on the portfolio. 

In terms of discrete time, the following constraints are 

assigned to the problem: 
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After some simplification mathematical, the above 

equations can be converted to Eqs (13-19).  

In addition, (Jaaman, Lam, & Isa, 2011) considered 

about portfolio optimization models and evaluated the 

implementation, as well as portfolio composition of the 

mean-variance model with other downside risk models, 

which are conditional value at risk models, semi-

variance, and below target semi-variance. They showed 

that the conditional value at risk is effective to control 

downside risk and is a better option for risk opposing 

investors. A new definition of semi variance for 

portfolio selection suggested by (Yang, Lin, Chang, & 

Chang, 2011) about investing on military area. 

According to their suggestion, a semi-variance model is 

assigned as objective function and to create efficient 

frontier a measure of risk containing cardinality 

constraints is supplied for portfolio optimization. 

Moreover, genetic algorithm has been used to obtain 

optimal weights of assets. According to stability on the 

results of the experiment, the designed algorithms are 

appropriate to investing at military assets and a model 

with this formulation is impressive for resolving the 

portfolio selection problem. 

1.3. MAD structure 

(Konno & Yamazaki, 1991) based on standard deviation 

parameter of normal distribution introduced the first 

idea of MAD portfolio optimization model. Their model 

is an alternating to the Markowitz mean–variance 

portfolio selection model. Their idea is the linear 

programming to resolve the portfolio optimization 

problem. (Konno & Yamazaki, 1991) showed in their 

work that the MAD model results were equivalent to the 

results of the Markowitz mean–variance model. Unlike 

the mean-variance model, the MAD model can solve 

this problem by using linear programing. The following 

form is the mean absolute deviation model for the 

CCEF: 
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One of the researchers who solved the MAD model by 

using the classical approach was (Liu, 2011) that 

presented the computing profits of the MAD model and 

solving it by that techniques over the Markowitz mean–

variance model. To calculate the lower and upper 

bounds of the investment return of the portfolio 

selection problem, they constructed a pair of two-level 

mathematical programming models.  Results illustrated 

that the return of the portfolio problem was certainly in a 

range. A new model for portfolio optimization at 

cardinality constraint mean-absolute semi-variance 

(MASV) presented by (Vercher & Bermúdez, 2015). 

They presented acceptable results based on the 

assumptions of the relevant model in portfolio 

optimization. 
 

1.4. Variance with skewness 

First idea of variance with skewness portfolio 

optimization model as supplementary option to the 

Markowitz mean–variance portfolio selection model 

suggested by (Samuelson, 1958) . According to many 

experimental studies, portfolio returns are usually 

asymmetric. In this case, the investors would choose a 

portfolio return with larger degree of asymmetry as the 

mean value and variance are similar (Jiang, Ma, & An, 

2016).  

(Canela & Collazo, 2007) studied about different parts 

of industry analysis on the impacts of portfolio selection 

when the skewness on the desired variables is taken into 

account as a risk measure. To prioritize the objectives of 

the investor on emerging industries at stock market, they 

applied multiple goals programming to select the most 

optimal portfolio. The main idea of their research at the 

time of selecting optimal portfolio was that the best type 

of skewness of parameters considered. In this way, the 

optimal decision will take place where in portfolio 

selection will be done by specify effective range of 

skewness. At this time, investors can be done sensitivity 

analysis. (Konno & Yamamoto, 2005) applied the 

integer programming idea to solve a mean–variance 

skewness portfolio optimization model. 

Follow is the Variance with skewness model for the 

CCEF:
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St to Eqs. (13) – (19).  

Parameter   is a weighting factor of statistical society. 

The amount of its variance skewness must be measured 

for continue the solution. This parameter states its 

weights in Eq. (27) which is famous as the coefficient of 

skewness. Eq. (27) balances variance, expected return 

and skewness simultaneously. For a specific value of , 

we can produce an efficient frontier which mirrors 

attitude of skewness. Hence, the downside risk will be 

decrease when considering positive skewness in 

portfolio returns. This is favorable to investors. As is 

clear from the Eq. (27), the coefficient of skewness is 

impressed by changing the returns. Thus, it is possible to 

have portfolios with a like skewness but quite different 

downside behavior. 

2. Literature Review 

By a variety of methods about portfolio optimization, 

various the authors have attempted to find solution to 

these problems. To solve of the problem in large scale, 

accurate models cannot be most successful. In order to 

solve portfolio problems, many authors tried to find 

solution by using mathematical programming model. 

(Aguilar-Rivera, Valenzuela-Rendón, & Rodríguez-

Ortiz, 2015) investigated the performance of multi-

objective evolutionary algorithms (MOEA), GA and 

genetic programming (GP) as a techniques to select the 

optimal portfolio (Macedo, Godinho, & Alves, 2017) 

studied in the field of MOEA. 

 A new MOEA with name non-dominated sorting and 

Local search (NSLS) proposed by (B. Chen, Lin, Zeng, 

Xu, & Zhang, 2017). This method has a new 

convergence approach. This is because that this 

algorithm is capable to change the solution space to 

create a better generation. Comparison results of NSLS 

with other algorithms show a better performance in term 

of the diversity and convergence to CCEF. 

 (Tun-Jen Chang, Yang, & Chang, 2009) considered GA 

to solve hard portfolio optimization problems with 

various risk measures. They also presented some cases 

of optimization models with cardinality limitations to 

select portfolio. For portfolio optimization with 

cardinality constraints, (Ma et al., 2012) applied hybrid 

Differential Evolution (DE). The amount of risk on their 

paper was taken as the objective function. In addition, 

they pointed that the gained numerical results were 

logical and the given algorithm was practical. (X. 

Huang, 2008) expressed a new description of risk for the 

portfolio selection. According to that description, Huang 

introduced a new optimization model. The suggested 

hybrid intelligent algorithm was offered as a good 

alternate to resolve the optimization problem in intricate 

cases. (K. Anagnostopoulos & G. Mamanis, 2011) 

introduced Computational collation of the multi-purpose 

evolutionary process for portfolio optimization models 

based on the problems that defined on mean–variance 

cardinality limitations.  

By utilizing mathematical programming methods and 

mean absolute deviation risk as functional constraints, 

(Liu, 2011) distinguished a model. That model detected 

the upper and lower ranges of the return from the 

portfolio. Another scale of risk is Semi-variance that 

employed by (Yang et al., 2011). They used Genetic 

Algorithm as a heuristic method to provide an 

impressive weighting ratio to purchasing on assets. 
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Also, Tabu Search was utilized as a meta-heuristic 

method by them. By using the results of the above 

algorithms, their experiments indicated that consistency 

to invest on assets for solving the portfolio optimization 

models. 

A comprehensive survey about abilities of swarm 

intelligence (SI) for portfolio optimization presented by 

(Ertenlice & Kalayci, 2018). This algorithm had a 

significant application in terms of the researchers' 

attention to solving portfolio optimization problems. In 

that research, they used different risk measure such as 

Variance with skewness (VWS), Value-at-Risk (VAR), 

Conditional Value-at-Risk (CVAR) and etc. In that 

research, the constraints were cardinality constraints 

(CC), transaction costs (TC) and transaction lots (TL). 

By this risk measure and constraints, exact method 

cannot able to determine the optimal efficient frontier. 

This type of problems can only be solved through 

heuristic or Meta heuristic algorithms that Evolutionary 

Algorithms (EA) and SI are two main approaches to 

solve them. with improved constraint (Deng, Lin, & Lo, 

2012) presented a new particle swarm optimization 

method (PSO) to identify efficient frontier at portfolio 

optimization.  

As a new computationally method, the Artificial Neural 

Network (ANN) is an important Achievement at the 

Artificial Intelligence field. The ANN is able to predict 

financial performances and caught a lot of desirability in 

the last years. The ANN was used by (Atiya, 2001) to 

determine and to predict risk.  Also, (Dropsy, 2011) 

used ANN as a nonlinear predicting tools. Those results 

showed that the prediction was accepted in comparison 

with other random methods. (Lam, 2004) utilized neural 

networks (NN) to integrate fundamental and technical 

analysis for financial performance prediction. Based on 

NN methodology, (L. Yu, Wang, & Lai, 2008) 

introduced  a new unnatural intelligent technique that  

the technique used fast and capable radial basis function 

(RBF) for portfolio selection. Likewise artificial neural 

network, other methods were used to solve monetary 

problems (Holland, 1975). 

Based on prediction of future returns of stocks and 

optimization of portfolio, a new method introduced by 

(Mishra et al., 2016). They used the heuristic functional 

link-artificial neural network (HFL-ANN) to predict 

futures return and portfolio optimization. One of the 

reasons for predicting future returns is the unreliability 

of past returns as criteria for portfolio optimization 

(PO). The result demonstrated that Pareto optimal 

solutions preserve desired diversity and comparable with 

other models.   

(Can B Kalayci, Okkes Ertenlice, Hasan Akyer, & 

Hakan Aygoren, 2017) presented artificial bee colony 

(ABC) algorithm to solve cardinality constrained 

portfolio optimization (CCPO) problem. In that paper, 

by using repair mechanism (effective limitation on the 

solution space) and feasibility enforcement along with 

infeasibility tolerance (temporary violation of 

constraint) presented a fast and efficient way to achieve 

optimal solution. Also, (Baykasoğlu, Yunusoglu, & 

Özsoydan, 2015) presented a greedy randomized 

adaptive search procedure (GRASP) to solve CCPO. 

The GRASP has two phases, selection level (to ensure 

cardinality constraints) and determining the proportions 

(to remove redundant constraint) of stocks. Another 

study to cardinality constraint portfolio optimization 

(CCPO) with nonlinear mixed quadratic programming 

problem presented by (Woodside-Oriakhi, Lucas, & 

Beasley, 2011). Their results were compared with (T-J 

Chang et al., 2000). In that paper, three Meta heuristic 

approaches such as genetic algorithm (GA), tabu search 

(TS) and simulated annealing (SA) were used and 

corresponding results were compared separately.  

 GA is a good tool for Meta heuristic algorithm. This 

technique is an acceptable tool for optimization. The 

multi-purpose genetic algorithm discussed by (D. Lin, 

Wang, & Yan, 2001) as an appropriate option for 

portfolio selection problem. (Oh, Kim, Min, & Lee, 

2006) suggested another portfolio optimization 

algorithm based on portfolio beta and GA. Also, (C.-C. 

Lin & Liu, 2008) discussed Markowitz’s model with 

least iteration lots and they introduced three other 

models using GA.  Development of GA can be studied 

by GP, which has been recommended by (Koza, 1992).  

In financial markets, the structural frameworks of 

phenotypes are the important interest of GP in stating 

business rules. Capabilities of GP as a creative approach 

are an efficient method to automatically develop 

technical trading principles. Therefore, GP as a good 

artificial intelligence tool has been used to a vast area of 

financial markets.  (Esfahanipour & Mousavi, 2011) 

presented a new model by using adjusted risk which has 

been used GP. (Aguilar-Rivera et al., 2015) introduced 

evolutionary computing methods to resolve financial 

problems that include problems which were not 

discussed by others. They used many techniques in their 

paper such as GP, GA, learning classifier systems and 

etc. 

(Jalota & Thakur, 2018) presented a new method based 

on one of new coded GA for constrained portfolio 

optimization at budget constraint (ensure that available 

money is utilized completely), cardinality constraints 

(introduce integer variables in addition to money 

proportion variables) and lower/upper bound constraints 

(restrict the allocation of proportion of the budget). This 

method was named as bounded exponential crossover-

power mutation-repair mechanism (BEXPM-RM) by 

(Thakur, Meghwani, & Jalota, 2014). This research 

introduced an effective method for searching the 

solution space based on the repair mechanism which 

was presented by (T-J Chang et al., 2000). 

 GNP as the expanded method of GA, which proposed 

by (Golberg, 1989), and GP, which proposed  by (Koza, 

1992), developed by researchers (Y. Chen, Mabu, 

Hirasawa, & Hu, 2007; Eguchi, Hirasawa, Hu, & Ota, 

2006; Hirasawa et al., 2008; Mabu et al., 2007). GNP is 

a capable method mainly for difficult problems such as 

portfolio optimization. GNP is used to solve the difficult 

problems because the graphical structure is used in the 

method. It keeps up all the past operations during the 
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network stream in the memory. Multi-method search 

Algorithm to portfolio selection introduced by (Yuen, 

Chow, Zhang, & Lou, 2016). As there is a dynamic 

condition  in the optimal stock selection, a new model 

was introduced that was named time adapting genetic 

network programming (TA-GNP) (Y. Chen, Mabu, & 

Hirasawa, 2010).  

In order to adapt to immediate and dynamic 

environmental changes, Online learning of GNP was 

proposed by (Mabu, Hirasawa, Hu, & Murata, 2002). In 

order to interact with the environment in an effective 

way, they used Q learning to improve situational 

processes. GNP was used to develop a more impressive 

evolutionary optimization technique (Katagiri, 

Hirasawa, Hu, Murata, & Kosaka, 2002). They 

illustrated the detailed description about GNP and 

remarked the differences among GNP, GP and other 

conventional graph. To compare the range of 

capabilities, the result of GNP will be compared with the 

result of GA on efficient frontier to select optimum 

algorithm (Yuen et al., 2016). 

The most obvious difference between GNP and GP is in 

the presence of a network structure rather than a tree 

structure. Boot up of GNP is from the start node and 

because it has no end node; so, the active node does not 

need to return to the start node (unlike other methods) as 

GP executes from the root node at each phase. 

Therefore, due to such a structure, it may be caught up 

in undesired situations. Also, one of the major problems 

is creating a bloat of the tree in GP and this problem will 

be greater when multi branch tree used. Then, its 

performance to achieve searching the solution space is 

strongly affected. Due to the presence of large branches 

at GP root, evolutionary operators may not have the 

desired performance; unless, randomly desired initial 

generation happened from the beginning of the program. 

GNP with network structure, developed to overcome 

above inefficiency of GP. Because of the structure of the 

network at GNP, as well as the type of its nodes 

(judgment nodes and processing nodes) opposite of 

other methods like GP, there is no need to define many 

transaction functions (Hirasawa, Okubo, Katagiri, Hu, & 

Murata, 2001; Katagiri et al., 2002). 

Mabu et al. (Mabu, Hirasawa, & Hu, 2004) presented a 

new evolutionary programming named GNP with 

reinforcement learning that due to the use of information 

obtained, the speed of searching solution space is very 

quickly. In addition to changing the connections, GNP 

with RL can be changed function nodes which in turn 

can lead to reduced memory and operating time.  

In Table 1, research on solving cardinality constrained 

portfolio optimization (CCPO) problem is shown. 

 

Table 1 

 Attempts on solving cardinality constrained portfolio optimization problem. 

Authors Exact attempt Heuristic attempt 

(Gunjan & Bhattacharyya, 2023) * * 

(X. Wang, Wang, Li, Li, & Watada, 2023) Fuzzy - 

(Ahmad, Hasan, Shahid, Imran, & Alam, 2023) - GEO 

(Lim, 2024) covariance matrix - 

(Feng, Zhang, & Peng, 2023) NLP - 

(Kandakoglu, Walther, & Ben Amor, 2024) MCDM - 

(Jawad, Naz, & Muqaddus, 2024) Fuzzy-AHP - 

(T-J Chang et al., 2000) T. J. Chang et al. (2000) - GA, TS, SA 

(Maringer & Kellerer, 2003) Maringer & Kellerer (2003) - SA, EA 

(Fieldsend, Matatko, & Peng, 2004) Fieldsend et al. (2004) - MOEA 

(Busetti, 2006) Busetti (2006) - GA, TS 

(Tian et al., 2006) D. Li et al. (2006) Lagrangian - 

(Moral-Escudero, Ruiz-Torrubiano, & Suárez, 2006) Moral-Escudero et al. 

(2006) 
QP GA 

(Streichert & Tanaka-Yamawaki, 2006) Streichen &Tanaka-Yamawaki 

(2006) 
QP MOEA 

(S. C. Chiam, Al Mamun, & Low, 2007) Chiam et al. (2007) - MOEA 

(Fernández & Gómez, 2007) Fernández & Gómez (2007) - NN 

(Skolpadungket, Dahal, & Harnpornchai, 2007) Skolpadungket et al. (2007) - VEGA, SPEA 

(S. Chiam, Tan, & Al Mamum, 2008) Chiam et al. (2008) - MOEA 

(Golmakani & Alishah, 2008) H. R. Golmakani & Alishah (2008) - IA 

(Shaw, Liu, & Kopman, 2008) Shaw et al. (2008) Lagrangian - 

(Branke, Scheckenbach, Stein, Deb, & Schmeck, 2009) Branke et al. (2009) - MOEA 

(Tun-Jen Chang et al., 2009) T. J. Chang  et al. (2009) - GA 

(Cura, 2009) Cura (2009) - PSO 

(J.-S. Chen, Hou, Wu, & Chang-Chien, 2009) J. Li (2009) - GA 
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(Soleimani, Golmakani, & Salimi, 2009) Soleimani et al. (2009) - GA 

(Le Thi, Moeini, & Dinh, 2009) Le Thi et al. (2009) - DCA 

(Deng & Lin, 2010) Deng & Lin (2010a) - ACO 

(S.-Y. Lin et al., 2010) Deng & Lin (2010b) - PSO 

(Ruiz-Torrubiano & Suárez, 2010) Ruiz-Torrubiano & Suarez (2010) QP GA, SA, EDA 

(Thomaidis, 2010) Thomaidis (2010) - SA, GA, PSO 

(K. P. Anagnostopoulos & G. Mamanis, 2011a) Anagnostopoulos  & 

Mamanis (2011a) 
- 

NPGA, NSGA, 

SPEA, MOEA 

(K. P. Anagnostopoulos & G. Mamanis, 2011b) Anagnostopoulos  &  

Mamanis (2011b) 
 

NSGA-II, PESA, 

SPEA2 

(Golmakani & Fazel, 2011) Golmakani  &  Fazel (2011) - PSO 

(Mozafari, Jolai, & Tafazzoli, 2011) Mozafari et al. (2011) - SA 

(Z. Wang, Liu, & Kong, 2012) Wang et al. (2012) - ABC 

(A. H. Chen, Liang, & Liu, 2012) A. H. L. Chen et al. (2012) - ABC 

(Deng et al., 2012) Deng, Lin, & Lo (2012) - PSO 

(Murray & Shek, 2012) Murray and Shek (2012) 
Local Relaxation, 

CPLEX 
- 

(Sadigh, Mokhtari, Iranpoor, & Ghomi, 2012) Sadigh et al. (2012) - PSO,NN 

(Sadjadi, Gharakhani, & Safari, 2012) Sadjadi et al. (2012) - GA 

(Cesarone, Scozzari, & Tardella, 2013) cesarone et al. (2013) QP, CPLEX - 

(A. H. Chen, Liang, & Liu, 2013) A. H. L. Chen  et al. (2013) - ABC 

(X. Cui, Zheng, Zhu, & Sun, 2013) X. T. Cui et al. (2013) 
Convex Relaxation, 

QP 
- 

(Fogarasi & Levendovszky, 2013) Fogarasi & Levendovszky (2013) - SA 

(Hajnoori, Amiri, & Alimi, 2013) Hajnoori et al. (2013) - IWO 

(Kao & Cheng, 2013) Kao & Cheng (2013) - BFO 

(Lwin & Qu, 2013) K. Lwin & Qu (2013) - PBIL+DE 

(Zhang & Zhang, 2014) P. Zhang & W. G. Zhang (2014) 

discrete approximate 

iteration method 

(NLP) 

- 

(Ackora-Prah, Gyamerah, Andam, & Gyamfi, 2014) Ackora-Prah et al. 

(2014) 
- GA 

(T. Cui, Cheng, & Bai, 2014) T. Cui et al. (2014) - PSO 

(Konstantinos Liagkouras & Metaxiotis, 2014) Liagkouras & Metaxiotis 

(2014) 
- NSGA, SPEA 

(Lwin, Qu, & Kendall, 2014) Khin Lwin et al. (2014) - MOEA 

(Mishra, Panda, & Majhi, 2014) Mishra, et al. (2014) - BFO 

(Mishra et al., 2014) Sabar & Song  (2014) - GA 

(Tuba & Bacanin, 2014) Tuba & Bacanin (2014a) - ABC+FA 

(Bacanin & Tuba, 2014) Tuba & Bacanin (2014b) - FA 

(Bastiani, Cruz-Reyes, Fernandez, Gómez, & Rivera, 2015) Bastiani et al. 

(2015) 
- ACO 

(W. Chen, 2015) W. Chen (2015) - ABC 

(J. Yu, Ge, Heuveling, Schneider, & Yang, 2015) Ge (2015) - ABC 

(KAMILI & RIFFI, 2015) Kamili & Riffi (2015) - CSO 

(Vercher & Bermúdez, 2015) Vercher & Bermúdez  (2015) - MOEA 

(Yin, Ni, & Zhai, 2015) Yin et al. (2015) - PSO 

(Baykasoğlu et al., 2015) Baykasoğlu et al. (2015) - GRASP+QP 

(Zhang, 2016) , (Zhang, 2015) P. Zhang (2015), (2016) CPLEX - 

(Ni, Yin, Tian, & Zhai, 2017) Ni et al. (2016) - PSO 

(Saborido, Ruiz, Bermúdez, Vercher, & Luque, 2016) Saborido et al. (2016) - MOEA 

(Suthiwong & Sodanil, 2016) D. Suthiwong & M. Sodanil (2016) - iqABC 
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(K Liagkouras & Metaxiotis, 2016) K. Liagkouras & K. Metaxiotis (2016) - EEMPOS 

(Jin, Qu, & Atkin) Y. Jin et al. (2016) CPLEX - 

(Suthiwong & Sodanil, 2016) Suthiwong  &  Sodanil (2016) - ABC 

(Jimbo, Ngongo, Andjiga, Suzuki, & Onana, 2017) H.C. Jimbo et al. (2017) - GA 

(Monge, 2017) J.F. Monge (2017) QP - 

(Kessaci, 2017) Y. Kessaci (2017) - 
multi-objective 

continuous GA 

(Ahmadi & Davari-Ardakani, 2017) A. Ahmadi et al  . (2017)   

(Zhang & Li, 2017) P. Zhang   &  B. Li (2017) dynamic programming - 

(Hardoroudi, Keshvari, Kallio, & Korhonen, 2017) N.D. Hardoroudi et al 

.(2017) 
MILP - 

(Can B Kalayci et al., 2017) C.B. Kalayci  et al. (2017) - ABC 

(B. Chen et al., 2017) B. Chen et al. (2017) - MOEA 

(Can Berk Kalayci, Okkes Ertenlice, Hasan Akyer, & Hakan Aygoren, 2017) 

C.B. Kalayci et al . (2017) 
- GA 

(Ni et al., 2017) Q. Ni et al .(2017) - PSO 

(K Liagkouras & Metaxiotis, 2018) K. Liagkouras & K. Metaxiotis (2018) - MOEA 

(Sabar, Turky, Leenders, & Song, 2018) Nasser R. Sabar et al .(2018) - MPGA 

(Zhang, 2018) P. Zhang (2018) CPLEX. - 

(Guijarro, 2018) F. Guijarro (2018) - GA 

(Zhou, Jin, Xiao, Wu, & Liu, 2018) Z. Zhou et al .(2018) DEA - 

(Branda, Bucher, Červinka, & Schwartz, 2018) M. Branda et al .(2018) Local Relaxation - 

(Mutunge & Haugland, 2018) P. Mutunge & D. Haugland (2018) CPLEX - 

(Zhou, Liu, Xiao, Wu, & Liu) Z. Zhou et al. (2018) DEA MOEA 

(W. Chen, Wang, Gupta, & Mehlawat, 2018)  W.chen et al. (2018) - FA-GA 

(W. Chen & Xu) W.chen et al. (2018) - BA–DE 

(W. Chen, Li, & Liu, 2018),(W. Chen, Li, Lu, & Liu, 2018) W.chen et al. 

(2018) 
- ICA-FA, ICA 

 

ABC: Artificial Bee Colony, ACO: Ant Colony 

Optimization, BFO: Bacterial Foraging Optimization, 

CSO: Cat Swarm Optimization,  DCA: Difference 

Convex Algorithms, DE: Differential Evolution, EA: 

Evolutionary Algorithms, EDA: Estimation of 

Distribution Algorithm, FA: Firefly Algorithm, GA: 

Genetic Algorithm, GRASP: Greedy Randomized 

Adaptive Search Procedure, IA: Immune Algorithm 

IWO: Invasive Weed Optimization, MOEA: Multi-

Objective Evolutionary Algorithms, NN: Neural 

Networks, NPGA: Niched Pareto Genetic Algorithm, 

NSGA: Non-dominated Sorting Genetic Algorithm, 

NSGA-II: Non-dominated Sorting Genetic Algorithm II, 

PBIL: Population Based Incremental Learning, PESA: 

Pareto Envelope-based Selection Algorithm, PSO: 

Particle Swarm Optimization, QP: Quadratic 

Programming, SA: Simulated Annealing, SPEA: 

Strength Pareto Evolutionary Algorithm, SPEA2: 

Strength Pareto Evolutionary Algorithm 2, TS: Tabu 

Search, VEGA: Vector Evaluated Genetic, MPGA: 

Multi-population Genetic Algorithm, MILP: mixed 

integer linear programming, DEA: Data Envelopment 

Analysis, iqABC: improved quick Artificial Bee 

Colony, EEMPOS: efficiently encoded multi objective 

portfolio optimization solver, BA: bat algorithm , ICA: 

imperialist competitive algorithm. 

 

3. Proposed Algorithms 

3.1. Solution representation and constraint handling 
 

The feasible solutions are generated by two phases: the 

selection of 𝑘  assets from a universe of 𝑁  available 

assets and the determination of weights to those selected 

assets. To select 𝑘  assets, random real numbers (𝑟𝑖) 

between zero and one are generated for each asset. By 

descending sorting of the value corresponding to each 

asset, their preference is obtained and 𝑘  assets which 

have the highest random real numbers or preference are 

selected. Eq. (28) shows that after having a set of 𝑘 

assets, we can use their generated random real numbers 

to compute the corresponding weight values as follows: 
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𝑤𝑖 = 𝜀𝑖𝑧𝑖 +
1 − ∑ 𝜀𝑖𝑧𝑖

𝑁
𝑖=1

∑ (𝛿𝑖 − 𝜀𝑖)𝑧𝑖𝑟𝑖
𝑁
𝑖=1

(𝛿𝑖 − 𝜀𝑖)𝑧𝑖𝑟𝑖      𝑖

= 1, … , 𝑁                                                                          (28) 

 

3.2. Genetic algorithm (GA) 

GA is a meta-heuristic algorithm inspired in the 

Darwin’s theory of evolution, using concepts such as 

reproduction, natural selection, crossover and mutation. 

An initial random population is first generated. Once the 

initial population is generated, all the solutions in the 

current population are ranked based on their objective 

values and then, the first 𝑝𝑟% of them are transferred to 

the next iteration. Once the initial population is 

generated, two solutions as the parents are selected and 

recombined to generate the offspring by selection and 

crossover operators respectively. The last operator used 

in constructing the new generation is the mutation 

operator. Finally, objective function evaluation of the 

new generation should be carried out.  Fig. 1 presents 

the pseudo code. 

 

Procedure 

Initialization 

Fitness evaluation 

Xbest = Update 

While stopping criterion is not met do 

     Reproduction (pr%) 

     Crossover (pc%=1- pr%) 

     Mutation (All offspring produced by crossover, pm) 

     Fitness evaluation 

     Xbest = Update 

End while 

Fig. 1. The pseudo code of GA algorithm. 
 

3.3. Genetic network programming (GNP) 

(Katagiri et al., 2002) illustrated that Genetic network 

programming (GNP) is a development of GP (GP) at the 

category of meta heuristic algorithms in terms of 

genotype structures. In the field of meta heuristic 

algorithms a large number of researches have been made 

on the evolutionary optimization techniques like Genetic 

Algorithm and its specially optimization structure by 

(Holland, 1975), GP with optimization encoding 

structure by (Koza, 1992) and evolutionary 

Programming algorithms. 

GNP is combined of many and different nodes. The 

division of nodes is done in two main categories: 

Judgment node and processing node. Judgment nodes 

match to some concrete functional nodes which work as 

judgments. They match almost to GP's elementary 

functions. Operations are performed by processing 

nodes. They correspond almost to GP's terminal signs. 

The individuals are displayed by connecting these nodes 

with each other. In GNP structure like GP, all tree 

structure rules are used such as functions and terminal 

signs which this expression is represented by 

1 2 , 1 2, ,s s s sJ J P P  in the network structure. Both referred 

nodes (Judgment and Processing nodes) are critical 

components of GNP. Also, GNP algorithm is beginning 

with Start node which in turn is important that with the 

sign S is shown which equivalent to root node on GP. 

GP begins by Start node and then proceeds to 

assessment and examine the subcategory nodes 

accordingly. In this article, the rules used for Judgment 

nodes are if-then kind decision making functions. When 

GNP is run at first, the operation will begin from the 

first defined node, and in the following the next node to 

be performed is specified based on the initial 

communication from the node that is active in operation. 

There are two modes, if Judgment node is currently 

active node; absolutely the next node will be determined 

by the defined rules at the activated Judgment node. 

When processing node is performed, surely in these 

circumstances, the single connection from processing 

nodes specifies the next nodes. The obvious difference 

between GNP and other methods is that opposite of their 

rules, activating nodes on GNP have authority to move 

to the start node. For example, GP Algorithm doing 

process review from root node of tree after integrating 

the interpretation, also PADO algorithm components 

that illustrated by (Katagiri et al., 2002)  have both a 

Start node and an End node in its structure. When GNP 

is booted up for the first time; According to the 

operation that occurs in GNP algorithm, the sequential 

of GNP system is done according to the circular grid, for 

this reason, no end nodes are considered in GNP. 

Genotypic structure of nodes in GNP is schematically 

shown at Fig. 2. All the variables listed in the genes will 

be integer.
 
For example this figure introduced gene of 

node i  and more a set of these genes will lead to the 

introduction of the desired genotype of individuals. In 

this figure, 
iNT Characterizes the Judgment or 

processing node type, thus 0iNT   or 1iNT 

respectively represents the node i is Judgment or 

processing node. Also, the parameter
 iID  is a unique 

identification number for nodes. For example, as the 

parameters 
iNT and

iID  are 0 and 1, respectively, it 

means that the node i is 𝐽1. The parameters
1 2, ,...i iC C , 

are defined according to the Judgment rules on node i. 

The genes are connected to each other based on the type 

of function that the gens are defined in the nodes. The 

parameter 𝑑𝑖  indicated the time required to do 

processing on the node i and ijd  is delay time spent at 

action from node i to node ijC .Of course, by adjusting 

these delay times GNP will have a better performance 

than the past. 
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Fig. 2. Genotype structure of node i. 
 

This section indicates genetic operators that applied in 

GNP. At first mutations operator occur in chromosomes, 

which may result in better future generations. The 

mutation is that some genes change completely 

randomly. GNP also solves the problem using this idea 

So that affects one after another of the genes needs to be 

change connection randomly from mutation probability 

of mp . After that crossover operator must be done. 

Here, Two-point Crossover is used among existing 

methods. In this phase; we select two locations of 

individuals randomly and move the values between 

these two points. For all of link in two-point crossover, 

nodes in two positions are randomly selected, and all 

genes between these two positions are displaced in the 

parent chromosomes by crossover Probability of cp

between the two parents. According to the presented 

operators, GNP only uses a number of nodes for 

evolution; crossover is used to the corresponding nodes 

chose uniformly in two parents. For this reason, these 

GNP' operators do not change the functions of any of 

the nodes; According to their nature, the nodes' 

connection location is changed in the selected parent by 

them. In general, GNP focuses only on the connections 

of evolution and does not carry out any activity on 

function' nodes. 

3.4. Simulated annealing (SA) 

SA is a probabilistic meta-heuristic algorithm, proposed 

by (Černý, 1985; Kirkpatrick, Gelatt, & Vecchi, 1983) , 

which inspired by the annealing process used in 

metallurgy based on principles of thermodynamics. It 

starts the search with an initial solution and iteratively 

moves towards other existing solutions to find a better 

solution. The algorithm generates a solution s  using 

any kind of neighborhood search structure around the 

candidate solution s . Then, the change between the 

objective function values,
, ( ) ( )s s f s f s

   , is 

computed. In case of 0,  ss , solution s  is accepted. 

Otherwise, solution s  is accepted with a probability 

equal to exp Tss  , . However, it is probable to 

move to an inferior solution, this happens because of 

reducing the chance of getting stuck or escaping from 

local optima. This acceptance probability is controlled 

by ss  ,  and temperature (𝑇) that is decreased gradually 

from an initial temperature ( 0T  ) during the SA 

procedure. Search is carried out for a fixed number of 

neighborhood searches in each temperature ( maxn ). 

While the procedure proceeds, the temperature is 

gradually lowered under the law of cooling schedule. In 

this study, we use an exponential cooling strategy, 

ii TT 1
, where )1,0(  is the temperature 

decreasing rate and iT represents the temperature of 

iteration 𝑖 of algorithm. The loop is repeated till a 

stopping criterion is satisfied. The pseudo-code of the 

algorithm is presented in Fig. 3. 

 

Initialization:  Select an initial solution (s0), an initial temperature (T0), Number of neighborhood search in each temperature 

nmax, and termination 

Set  T ← T0 and s ← s0; 

Repeat 

            Repeat  

                       Randomly select )(sNs  ; 

                       Calculate )()(, sfsfss    

                       if 0,  ss
 then ;ss   

                      else generate random R uniformly in the range (0, 1); 

                       if )/exp( , nss TR   then ;ss   

           Until iteration_countre = nt 

                   Decrease of the temperature T; 

until the stopping criterion is met 

Fig. 3. The pseudo code of SA algorithm. 

d1nC1n…d12C12d11C11d1ID1Nt1Node 1

d2nC2n…d22C22d21C21d2ID2Nt2Node 2

d3nC3n…d32C32d31C31d3ID3Nt3Node 3

d inC in…di2Ci2di1Ci1d iID iNt iNode i

d NnC Nn…dN2CN2dN1CN1d NID NNt NNode N

…
…
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3.5. Particle swarm optimization (PSO) 

PSO is a population based meta-heuristic algorithm, 

proposed by (Kennedy & Eberhart, 1942), which 

inspired by the collective behavior of bird flocks. So, the 

solutions are taken as particles. In each iteration t, the 

𝑖 th particle is associated with two vectors, i.e., a 

position vector or a solution 𝑥𝑖 ,𝑡  and a velocity or 

movement vector𝑣𝑖 ,𝑡. The personal best position of the 

particle 𝑖is 𝑃𝑏𝑒𝑠𝑡𝑖 , while 𝐺𝑏𝑒𝑠𝑡 is referred to as global 

best position  The new position, the velocity of the 

particle and inertia weight at iteration 𝑡 are given as: 

𝑣𝑖 ,𝑡+1 = 𝜔𝑖 . 𝑣𝑖 ,𝑡 + 𝑐1 . 𝑟1 . (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖,𝑡) +

𝑐2 . 𝑟2 . (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖 ,𝑡)                  (29) 

𝑥𝑖 ,𝑡+1 = 𝑥𝑖 ,𝑡 + 𝑣𝑖 ,𝑡+1                                                                                            

(30)  

𝜔𝑡 =  𝜔𝑚𝑎𝑥 −
(𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛)∗𝑡

𝑡𝑚𝑎𝑥
                                                                               

(31) 

Where 𝑐1 and 𝑐2 are the cognitive, and social weights, 

respectively; 𝑟1 and 𝑟2 are two random numbers 

generated in the range (0, 1). The algorithm is illustrated 

in Fig. 4. 

  

Procedure 

Initialization 

Fitness evaluation 

Gbest = Update 

Pbest = Update 

While stopping criterion is not met do 

     Velocity calculation 

     Move 

     Fitness evaluation 

     Gbest = Update 

     Pbest = Update 

End while 

Fig. 4. The pseudo code of PSO algorithm. 
 

3.6. Electromagnetism-like algorithm (EM)  

The electromagnetism-like algorithm (EM) is a 

population-based meta-heuristic algorithm proposed 

by (Birbil & Fang, 2003). EM imitates the attraction-

repulsion mechanism of electromagnetic charged 

particles and, these particles will gradually move 

towards the global optimal solution through some 

iterative operations. The particles and their charge are 

taken as the solutions and objective function value in 

a population. The magnitude of the attraction or 

repulsion force among these particles depended to 

their objective function value. The move of particles 

is specified by the resultant force which is the 

summation of all the forces exerted by on the particle 

by other particles. The resultant force also is based on 

Coulomb’s law, which is directly proportional to the 

product of their individual charges and inversely 

proportional to the square distance between them. 

There are four phases in EM: initialization, local 

search, calculation of resultant force and 

determination of moving distance, which are 

represented as Initialize (popsize), Local search 

(LSITER, 𝛿 ), Calculate Forces and Move, 

respectively. The pseudo-code of the EM is presented 

in Fig. 5. 

 

Initialize (popsize) 

iteration ← l 

While termination criterion are not satisfied do 

          Local search (LSITER, 𝛿) 

          Calculate Forces 

          Move 

          iteration ← iteration + l 

End while 

Fig. 5. The pseudo code of EM algorithm. 

 

 

Local search: 

The procedure that generates a temporary neighborhood 

then finds its related objective value. This new 

neighborhood solution replaced when its objective value 

is better than the current one. This procedure is shown in 

Fig. 6. 

 

counter ←1 

for i = 1 to popsize do 

       for k = 1 to n do 

              λ1 ← U (0, 1) 

              while counter <LSITER do 

                          Y ← Xi 

                          λ2 ← U (0, 1) 

                          if λ1 > 0.5 then 

                             Yk ← Yk + λ2 𝛿 

                          else 

                                 Yk ← Yk − λ2 𝛿 

                          end if 
                          if f (Y) < f (Xi) then 

                              Xi ← Y 

                              counter ← LSITER − 1 

                          end if 
                          counter ←counter + 1 

              end while 

       end for 

end for 

Fig. 6. The pseudo code of Local (LSITER,𝛿). 

Total forces Computation: 

Obviously, iq  is positive and a particles with better 

objective value has higher charge. In addition, a good 

solution attracts others in its direction to converge its 

valley. On the contrary, a bad solution discourages the 

others to move toward its region by repulsion. The 
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charge qi, the components )( JjF i

j   of the resultant force exerted on each solution Xi are obtained as follow: 
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                                                 (32) 

Where,  Xbest is the current best solution in the population. 
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Movement procedure: 

After evaluating
iF , the all particles but the best are 

moved in the direction of the force by a random step 

length λ, uniformly distributed between 0 and 1. The 

calculation for the movement is as follows: 
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Where  

 

 
21

2

 


Jj

i

j

i FF                                  (36) 

 

Where (
i

jj xu  ) and ( j

i

j lx  ) denotes the amount of 

feasible movement toward upper boundary ( ju ) and 

lower boundary ( jl ). 

3.7. Hybrid algorithms 

One of the key issues in developing a hybrid meta-

heuristic algorithm that attempt to find optimum 

solutions is the diversification capability to explore new 

unvisited regions of the solution space. Some meta-

heuristic algorithms suffer from loss of variation results 

in low exploration, leading the search to converge 

prematurely to a local optimum. Without such 

diversification mechanism, these algorithms may 

become trapped in a local optimum valley, eliminating 

the chance of exploring the global optimum valleys. 

In our procedure the diversification mechanism is 

applied when the best objective function does not 

change during the number of pre-specified consecutively 

iterations (no change) in the algorithm. Diversification 

refers to perturbation of the current population by 

removing a number of inferior solutions and replacing 

new randomly generated solutions. 

4. Computational Experiments 

4.1. Instance 

In this part, the computational results on various risk 

measures are noticed. A historical daily data collected was 

applied in the Tehran with costs' data of 50 companies. 

The cardinality constraint 𝑘 is set from 10 to 30 which 
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expanded by 10 per time. The problem resolved by using 

EM, HEM, GA, HGA, PSO, HPSO,  GNP, HGNP, SA, 

HSA and coding in Matlab 2015b and running on a 

personal computer. The companies of the suggested 

portfolio optimization for various number of assets (𝑘 =

10 𝑡𝑜 30) are reported at Table 2. As Table 2 indicates 

this research includes of 50 companies from Tehran stock 

market. The table consists of two columns; numbers and 

abbreviated name of company at stock market. 

 

Table 2 

 The fifty companies selected at Tehran stock market. 

Stock. no Stock. Abbreviation name Stock. no 
Stock. Abbreviation 

name 
Stock. no Stock. Abbreviation name 

𝑠1 vnowin 𝑠18 Kasafa 𝑠35 sshomal 

𝑠2 vmelli 𝑠19 Fanaval 𝑠36 sshargh 

𝑠3 Vmellat 𝑠20 Falooleh 𝑠37 sroud 

𝑠4 Vmaaden 𝑠21 Fajoosh 𝑠38 sdour 

𝑠5 Vliz 𝑠22 Fajr 𝑠39 skhazar 

𝑠6 Vsana 𝑠23 Fapanta 𝑠40 skhash 

𝑠7 Vsepah 𝑠24 Faahwaz 𝑠41 steranh 

𝑠8 Vpars 𝑠25 Ghadam 𝑠42 steran 

𝑠9 Vbimeh 𝑠26 Ghabehnoosh 𝑠43 sepaha 

s10 Vbouali 𝑠27 Ghalber 𝑠44 deyran 

s11 Vbeshahr 𝑠28 Shoush 𝑠45 delghamah 

s12 Valbarah 𝑠29 Shpars 𝑠46 delghama 

s13 Mdaran 𝑠30 Sfars 𝑠47 deler 

s14 Lmokhaber 𝑠31 Sfar 𝑠48 dekimi 

s15 Lkhazar 𝑠32 Sgharb 𝑠49 dekosar 

s16 Kafara 𝑠33 Ssoufi 𝑠50 defara 

s17 Kadama 𝑠34 Ssefha … … 

 

4.2. Performance metrics 

 In this paper, four performances metric introduced to 

compare efficiency and effectiveness of suggested 

algorithms as bellow: 

1) Quality metric (QM): To calculate the value of this 

criterion, first, the net non-dominated solutions (NDS) 

are generated by a set of all non-dominated solutions 

obtained from all algorithms (whose members should be 

also non dominated in relation to one another) and then 

the percentage of non-dominated solutions of each 

algorithm in NDS to the number of NDS is calculated. 

The larger the number, the better the performance of the 

algorithm will be. 

2) Mean ideal distance (MID): This measure presents the 

closeness between Pareto solution and ideal point in NDS 

which can be shown as Eq. (37). 

𝑀𝐼𝐷

=

∑ √(
𝑓1,𝑖−𝑓1,𝑏𝑒𝑠𝑡

𝑓1,𝑤𝑜𝑟𝑠𝑡−𝑓1,𝑏𝑒𝑠𝑡
)

2

+ (
𝑓2,𝑖−𝑓2,𝑏𝑒𝑠𝑡

𝑓2,𝑤𝑜𝑟𝑠𝑡−𝑓2,𝑏𝑒𝑠𝑡
)

2
𝑛
𝑖=1

𝑛
 

 

(37) 

 

In the above equation, n is the number of Pareto solutions 

while 𝑓𝑗,𝑏𝑒𝑠𝑡 and 𝑓𝑗,𝑤𝑜𝑟𝑠𝑡  are the best and the worst value 

of the objective function among all the algorithms 

objective functions values. The less value of MID 

indicated better algorithm’s performance. 

3) Spacing metrics (SM): This metrics demonstrate the 

uniformity of Pareto solutions in solution space: 

𝑆𝑀 =
∑ |�̅�−𝑑𝑖|𝑛

𝑖=1

(𝑛−1)�̅�
                                            (38) 

In Eq. (38) di  is the Euclidean distance of two 

neighboring Pareto solutions in solution space, d̅  is the 

average of all 𝑑𝑖 . Lower amounts of SM shows more 

uniform non-dominates solutions and therefore a better 

algorithm. 

4) Diversification Metric (DM): This metric shows the 

spread of the Pareto solutions set and is measured by Eq. 

(39). 

𝐷𝑀 = √(
𝑓1,𝑚𝑎𝑥−𝑓1,𝑚𝑖𝑛

𝑓1,𝑤𝑜𝑟𝑠𝑡−𝑓1,𝑏𝑒𝑠𝑡
)

2

+ (
𝑓2,𝑚𝑎𝑥−𝑓2,𝑚𝑖𝑛

𝑓2,𝑤𝑜𝑟𝑠𝑡−𝑓2,𝑏𝑒𝑠𝑡
)

2

 

  

 

(39) 
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Where 𝑓1,𝑚𝑎𝑥  and 𝑓1,𝑚𝑖𝑛  are the maximum and the 

minimum value of the objective function from an 

algorithm. The higher value of DM demonstrated better 

performance. 

4.3. Parameter setting 

It is absolutely clear that the different levels of the 

parameters by a random search algorithm strongly affect 

the quality of the solutions. Most users adjust parameters 

manually by using the reference values that refers on the 

previous literatures. So, we investigate the behavior of the 

suggested algorithms in different levels of parameters and 

find the best level of these parameters and operators by 

using trial-and-error method. The optimum levels of 

parameters and operators used in all algorithms are shown 

in Table 3. 

 

Table 3 

 Best level of parameters for the algorithms. 

EM & HEM GA & HGA GNP & HGNP PSO & HPSO SA & HSA 

popsize = 30; 

LSITER = 10; 

𝛿 = 0.05; 

no_change = 20; 

popsize = 80;  

pc = 0.8;    

pm = 0.4; 

no_change = 30; 

popsize = 301;  

crossover size=120; 

mutation size=180; 

Pm = 0. 1; 

Pm = 0. 1; 

NO of nodes=60; 

no_change = 20; 

popsize = 100; 

𝜔𝑚𝑎𝑥  = 0.9; 

𝜔𝑚𝑖𝑛  = 0.4; 

𝑐1 = 2; 

𝑐2 = 2; 

no_change  = 50; 

T0 = 1000; 

𝛼 = 0.98; 

nmax = 500; 

no_change = 50; 

 

 

4.4. Experimental results 

To be fair in comparison, we consider the same time as a 

stop criterion for all algorithms. Also, the search time for 

all algorithms is considered to be 1500 seconds. As shown 

in Fig. 7, the convergence is suitable for all algorithms. 

So, by increasing the time, there is not any improvement 

in solution will be observed. In other words, each 

algorithm achieved to the best solution. 

 

 

Fig. 7. Convergence plot for the proposed algorithms. 

 

Due to the high competition between algorithms to 

achieving the optimal solutions, we plot the pareto 

optimal solutions at Figs. 8-10. Each figure plotted at cost 

function ( ,1 4Fcn   ) and 𝑘 number ( 10,20,30k   ), 

respectively. 

As shown in Figs. 8-10, due to existing competition at 

multi objective problem, visual judgment about the 

performance of each algorithm is so difficult. For this 

reason, quantitative and qualitative metrics should be 

investigated. So in the following, by using the evaluation 

metrics and analysis of variance, we discuss about 

performance of the algorithms.  
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According to the cardinality constraint at different cost 

functions, Tables 4-15 showed performance evaluation 

metrics for all algorithms at bellow by different 𝑘 number 

( 10,20,30k   ). As previously mentioned, (QM, DM) 

and (MID, SM) respectively are positive and negative 

metrics. The optimum number is marked at each of the 

following tables. As shown in the results, by considering 

the cost functions and changing the 𝑘  number, the 

different metrics indicate the superiority of the algorithms. 

So, we find all possible solutions in the optimal portfolio 

selection based on the level of acceptable risk by 

investors. For example when 1f  is a cost function 

and  𝑘 = 10 , EM has a good performance by negative 

metrics. Also in the same conditions, GNP and SA 

respectively have best performance on QM and DM 

metrics.  

 
 

 
 

Fig. 8. Comparison of 10 algorithms on efficient frontiers, Fcn 1-4, K=10. 

Table 4 

 The performance evaluation metrics for different algorithms at f1 and K=10. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0 0 0.001 0.0003 0.0045 0.0179 0.3777 0.0034 0.5951 0.0001 

MID 0.6824 0.6998 0.79 0.7856 0.7916 0.7952 0.7925 0.774 0.8214 0.7947 

SM 1.2372 1.306 1.7075 1.7329 1.6716 1.4349 1.4294 1.5273 1.4582 1.4065 

DM 0.3392 0.3465 1.0165 1.0312 1.1571 1.0253 0.4875 0.7122 0.8776 0.9214 

 

Table 5 

The performance evaluation metrics for different algorithms at f1 and K=20. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0.7093 0 0.0116 0.0233 0.25 0 0 0.0058 0 0 

MID 0.0207 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0003 

SM 1.9342 1.2998 1.6129 1.7135 1.52 1.4455 1.918 1.8693 1.1606 1.3637 

DM 1.4141 0.0003 0.0003 0.0004 0.0003 0.0004 0.0002 0.0003 0.0005 0.0004 
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Fig. 9. Comparison of 10 algorithms on efficient frontiers, Fcn 1-4, K=20. 

 

Table 6 

 The performance evaluation metrics for different algorithms at f1 and K=30. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0 0.0241 0.0002 0.0002 0.0389 0.0039 0 0 0 0.9327 

MID 0.6547 0.639 0.7108 0.715 0.7069 0.7086 0.5429 0.6873 0.6897 0.7314 

SM 1.4877 1.4336 1.6562 1.5696 1.447 1.4904 1.924 1.763 1.3138 1.4238 

DM 0.773 0.7414 1.5061 1.181 1.1161 1.3233 0.693 0.853 1.0654 1.0122 

 

 

Table 7 

The performance evaluation metrics for different algorithms at f2 and K=10. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0.0002 0 0.0187 0.0004 0.0056 0.0085 0 0 0.9665 0 

MID 0.7535 0.8515 0.921 0.9063 0.9077 0.9282 0.9 0.9498 0.9042 0.8519 

SM 1.2315 1.3806 1.6731 1.6773 1.3473 1.5225 1.7544 1.5718 1.0705 1.1073 

DM 0.8416 0.8969 1.1678 1.2197 1.2744 1.4191 0.9722 1.033 1.1245 1.2813 
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Fig. 10. Comparison of 10 algorithms on efficient frontiers, Fcn 1-4, K=30. 

 
Table 8 

The performance evaluation metrics for different algorithms at f2 and K=20. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0 0 0 0.0002 0.0064 0.1229 0 0 0.8692 0.0012 

MID 0.7773 0.6285 0.8512 0.9511 0.9501 0.9202 0.8678 0.786 0.9079 0.959 

SM 1.3457 1.1882 1.2437 1.352 1.3307 1.2682 1.9198 1.8692 1.1322 1.2466 

DM 0.7438 0.6613 1.1357 1.3441 1.3942 1.3207 0.8599 0.8711 1.0617 1.3444 

 
Table 9 

The performance evaluation metrics for different algorithms at f2 and K=30. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0 0 0 0 0.113 0.0288 0 0 0 0.8582 

MID 0.9375 0.6833 0.9659 0.9619 1.0964 1.0294 0.9787 0.5976 0.8998 0.946 

SM 1.4798 1.5886 1.4028 1.3497 1.4943 1.2985 1.9632 1.6386 1.0056 1.0927 

DM 1.2776 0.7248 1.2375 1.3966 1.6668 1.7601 0.9862 0.4791 1.1948 1.3057 

 
Table 10 

 The performance evaluation metrics for different algorithms at f3 and K=10. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0.7409 0 0.0763 0 0.009 0.1231 0 0.0485 0 0.0023 

MID 0.3989 0.4051 0.4944 0.6355 0.5495 0.6054 0.5852 0.58 0.5119 0.4248 

SM 1.6752 1.5409 1.519 1.7432 1.4127 1.5264 1.321 1.2795 1.6578 1.2191 

DM 0.6225 0.7708 0.9517 0.8629 1.093 1.4288 0.4056 0.9607 0.6488 1.0089 
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Table 11 

 The performance evaluation metrics for different algorithms at f3 and K=20. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0.4665 0 0.1423 0.3841 0.0004 0 0 0 0.0067 0 

MID 0.584 0.5413 0.4403 0.6781 0.5862 0.5888 0.5945 0.5888 0.7496 0.5724 

SM 1.8306 1.7073 1.3791 1.7464 1.4702 1.4989 0.8514 0.827 0.7664 1.1722 

DM 0.9146 0.6023 1.1824 1.2852 0.875 0.9851 0.7446 0.573 0.5042 0.8936 

 

Table 12 

 The performance evaluation metrics for different algorithms at f3 and K=30. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0 0 0.1243 0 0.051 0.1297 0 0 0.6951 0 

MID 0.651 0.5349 0.8164 0.8006 0.6294 0.835 0.6662 0.421 0.7482 0.5026 

SM 1.6957 1.6403 1.5958 1.5013 1.2935 1.3107 1.0875 1.3496 1.0748 1.3584 

DM 0.1492 1.3442 1.4014 1.1349 1.442 1.196 0.9228 0.6033 0.532 0.8699 

 

Table 13 

 The performance evaluation metrics for different algorithms at f4 and K=10. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0.05 0 0.0917 0.3417 0.0833 0.2667 0 0 0.075 0.0917 

MID 0.6131 0.6388 0.6436 0.5948 0.5789 0.538 0.6979 0.6835 0.7186 0.6223 

SM 1.011 1.1463 1.023 1.0705 0.9995 0.8884 0.9816 1.0807 1.6125 1.1894 

DM 0.716 0.5926 1.1463 1.3926 1.199 1.0822 0.4258 0.8254 1.0441 0.9603 

 

Table 14 

 The performance evaluation metrics for different algorithms at f4 and K=20. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0 0 0 0 0.2619 0.7381 0 0 0 0 

MID 0.8297 0.7443 0.7947 0.6418 0.6818 0.6842 0.7635 0.7584 0.8386 0.854 

SM 1.3627 1.0794 0.8329 0.7356 0.7717 0.6913 0.9259 0.9836 1.3891 1.592 

DM 1.0723 0.8532 1.3925 1.0543 1.7214 1.4142 0.9306 1.3185 0.9654 1.3433 

 

Table 15 

The performance evaluation metrics for different algorithms at f4 and K=30. 

Metrics 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

QM 0 0 0.0034 0 0 0.0387 0 0 0.9512 0.0067 

MID 0.7085 0.5265 0.6541 0.5614 0.6009 0.6835 0.735 0.6573 0.7091 0.7109 

SM 1.225 1.203 0.7274 0.6145 0.7308 0.7425 1.2935 0.9641 1.6397 1.2991 

DM 1.1582 0.8877 1.2754 1.0637 1.4132 1.4142 1.0727 0.8351 1.0354 1.0331 

 

Because the scale of performance evaluation metrics is 

different, they must be normalized. In order to make the 

comparison easy and comprehensive, we use the 

normalized metrics as a common measure of comparing 

algorithms for each objective function and 𝑘 as follow: 

𝐶1 = 𝑄𝑀                                                                    (40) 

𝐶2,𝑗 =
(𝑀𝐼𝐷𝑗)

−1

∑ (𝑀𝐼𝐷𝑗)
−1𝑚

𝑖=1

              𝑗 = 1, … , 𝑚                     (41) 

𝐶3,𝑗 =
(𝑆𝑀𝑗)

−1

∑ (𝑆𝑀𝑗)
−1𝑚

𝑖=1

                𝑗 = 1, … , 𝑚                    (42) 

𝐶4,𝑗 =
𝐷𝑀𝑗

∑ 𝐷𝑀𝑗
𝑚
𝑖=1

                     𝑗 = 1, … , 𝑚                (43) 

Comparison of all algorithms at 4 normalized metrics has 

been showed in Tables 16-19 for different 𝑘 number (𝑘 =
10, 20, 30). Also after each table, mean plot and least 

significant difference (LSD) intervals at the 95 % 

confidence level for all the algorithms at every metrics 

shown in Figs. 12-15. 

 To verify the statistical validity of the results, we carry 

out the analysis of variance (ANOVA) technique to 

accurately analyze the results. For example, the mean plot 

and LSD intervals at the 95 % confidence level for all the 

algorithms at 𝑐1  metric are shown in Fig. 12. As it is 

illustrated, SA provides statistically better results than EM 

and the others. Also in Table 16, according to the twelve 
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solutions, EM, HGA, HGNP, SA, HSA respectively have 

3, 1, 1, 5, 2  times good performance at 𝑐1 metric. 

Meanwhile in average mode, SA has a best performance 

at 𝑐1 metric that showed by mean plot in Fig. 12. Also 

among of all hybrids, GA and GNP have good 

performance. 

 

Table 16 

Comparison of all algorithms at 𝐶1 metric. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f1k10C1 0 0 0.001 0.0003 0.0045 0.0179 0.3777 0.0034 0.5951 0.0001 

f1k20 C1 0.7093 0 0.0116 0.0233 0.25 0 0 0.0058 0 0 

f1k30 C1 0 0.0241 0.0002 0.0002 0.0389 0.0039 0 0 0 0.9327 

f2k10 C1 0.0002 0 0.0187 0.0004 0.0056 0.0085 0 0 0.9665 0 

f2k20 C1 0 0 0 0.0002 0.0064 0.1229 0 0 0.8692 0.0012 

f2k30 C1 0 0 0 0 0.113 0.0288 0 0 0 0.8582 

f3k10 C1 0.7409 0 0.0763 0 0.009 0.1231 0 0.0485 0 0.0023 

f3k20 C1 0.4665 0 0.1423 0.3841 0.0004 0 0 0 0.0067 0 

f3k30 C1 0 0 0.1243 0 0.051 0.1297 0 0 0.6951 0 

f4k10 C1 0.05 0 0.0917 0.3417 0.0833 0.2667 0 0 0.075 0.0917 

f4k20 C1 0 0 0 0 0.2619 0.7381 0 0 0 0 

f4k30 C1 0 0 0.0034 0 0 0.0387 0 0 0.9512 0.0067 

Average 0.1639 0.002 0.0391 0.0625 0.0687 0.1232 0.0315 0.0048 0.3466 0.1577 

 

 
Fig. 11. Mean plot and LSD intervals at the 95 % confidence level for 𝑐1 metric. 

 

Table 17 

 Comparison of algorithms at 𝑐2 metric. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f1k10C2 0.1129 0.1101 0.0975 0.098 0.0973 0.0969 0.0972 0.0995 0.0938 0.0969 

f1k20C2 0.0018 0.1239 0.1108 0.1095 0.1081 0.1065 0.1151 0.1191 0.0975 0.1077 

f1k30C2 0.1029 0.1055 0.0948 0.0943 0.0953 0.0951 0.1241 0.0981 0.0977 0.0921 

f2k10C2 0.1173 0.1038 0.096 0.0975 0.0974 0.0952 0.0982 0.0931 0.0978 0.1038 

f2k20C2 0.1089 0.1347 0.0995 0.089 0.0891 0.092 0.0976 0.1077 0.0932 0.0883 

f2k30C2 0.094 0.1289 0.0912 0.0916 0.0803 0.0856 0.09 0.1474 0.0979 0.0931 

f3k10C2 0.1267 0.1248 0.1022 0.0795 0.092 0.0835 0.0864 0.0872 0.0988 0.119 

f3k20C2 0.0997 0.1076 0.1323 0.0859 0.0994 0.0989 0.098 0.0989 0.0777 0.1017 

f3k30C2 0.0968 0.1178 0.0772 0.0787 0.1001 0.0755 0.0946 0.1497 0.0842 0.1254 

f4k10C2 0.1025 0.0984 0.0977 0.1057 0.1086 0.1168 0.09 0.0919 0.0875 0.101 

f4k20C2 0.0907 0.1011 0.0947 0.1173 0.1104 0.11 0.0986 0.0993 0.0898 0.0881 

f4k30C2 0.0914 0.123 0.099 0.1153 0.1077 0.0947 0.0881 0.0985 0.0913 0.0911 

Average 0.0955 0.115 0.0994 0.0969 0.0988 0.0959 0.0982 0.1075 0.0923 0.1007 
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Fig. 12. Mean plot and LSD intervals at the 95 % confidence level for 𝑐2 metric. 

 

 
Table 18 

 Comparison of algorithms at 𝑐3 metric. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f1k10C3 0.1192 0.1129 0.0863 0.0851 0.0882 0.1027 0.1031 0.0965 0.1011 0.1048 

f1k20C3 0.0796 0.1185 0.0955 0.0899 0.1014 0.1066 0.0803 0.0824 0.1327 0.113 

f1k30C3 0.103 0.1069 0.0926 0.0977 0.1059 0.1029 0.0797 0.087 0.1167 0.1077 

f2k10C3 0.1132 0.101 0.0833 0.0831 0.1035 0.0916 0.0795 0.0887 0.1302 0.1259 

f2k20C3 0.1003 0.1136 0.1085 0.0998 0.1014 0.1064 0.0703 0.0722 0.1192 0.1083 

f2k30C3 0.0935 0.0871 0.0986 0.1025 0.0926 0.1065 0.0705 0.0844 0.1376 0.1266 

f3k10C3 0.0877 0.0954 0.0968 0.0843 0.1041 0.0963 0.1113 0.1149 0.0887 0.1206 

f3k20C3 0.0657 0.0704 0.0872 0.0688 0.0818 0.0802 0.1412 0.1454 0.1568 0.1026 

f3k30C3 0.0802 0.0829 0.0852 0.0906 0.1051 0.1037 0.125 0.1007 0.1265 0.1001 

f4k10C3 0.1063 0.0938 0.1051 0.1004 0.1075 0.121 0.1095 0.0994 0.0667 0.0904 

f4k20C3 0.0705 0.089 0.1154 0.1306 0.1245 0.139 0.1038 0.0977 0.0692 0.0604 

f4k30C3 0.0773 0.0788 0.1302 0.1542 0.1297 0.1276 0.0732 0.0983 0.0578 0.0729 

Average 0.0914 0.0959 0.0987 0.0989 0.1038 0.107 0.0956 0.0973 0.1086 0.1028 

 

 
Fig. 13. Mean plot and LSD intervals at the 95 % confidence level for 𝑐3 metric. 
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Table 19 

Comparison of algorithms at 𝑐4 metric. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f1k10C4 0.0429 0.0438 0.1284 0.1303 0.1462 0.1295 0.0616 0.09 0.1109 0.1164 

f1k20C4 0.9978 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0002 0.0003 0.0003 

f1k30C4 0.0753 0.0722 0.1467 0.1151 0.1087 0.1289 0.0675 0.0831 0.1038 0.0986 

f2k10C4 0.0749 0.0799 0.104 0.1086 0.1135 0.1264 0.0866 0.092 0.1001 0.1141 

f2k20C4 0.0693 0.0616 0.1058 0.1252 0.1299 0.123 0.0801 0.0811 0.0989 0.1252 

f2k30C4 0.1062 0.0603 0.1029 0.1161 0.1386 0.1463 0.082 0.0398 0.0993 0.1085 

f3k10C4 0.0711 0.0881 0.1087 0.0986 0.1249 0.1632 0.0463 0.1097 0.0741 0.1153 

f3k20C4 0.1068 0.0704 0.1381 0.1501 0.1022 0.1151 0.087 0.0669 0.0589 0.1044 

f3k30C4 0.0156 0.1401 0.146 0.1183 0.1503 0.1246 0.0962 0.0629 0.0554 0.0907 

f4k10C4 0.0763 0.0631 0.1221 0.1484 0.1278 0.1153 0.0454 0.088 0.1113 0.1023 

f4k20C4 0.0889 0.0707 0.1154 0.0874 0.1427 0.1172 0.0771 0.1093 0.08 0.1113 

f4k30C4 0.1035 0.0793 0.114 0.0951 0.1263 0.1264 0.0959 0.0746 0.0925 0.0923 

Average 0.1524 0.0691 0.111 0.1078 0.1176 0.118 0.0688 0.0748 0.0821 0.0983 

 

 
Fig. 14. Mean plot and LSD intervals at the 95 % confidence level for 𝑐4 metric.  

 

Comparison of all algorithms at mentioned normalized 

metrics respectively at MV, SV, MAD and VWS structure 

have been showed in Tables 20-23 for different K number 

(K=10, 20, 30). Also after each table, mean plot for all of 

algorithms at every metrics shown in Figs.16-19. 

For example as shown in Table 20 (marked number at 

average row) and Fig.16, EM has better performance 

rather than other algorithms. Also in Table 20, according 

to the twelve solutions, EM, HEM, GA, GNP, PSO, SA 

and HSA respectively have 4, 1, 1, 1, 1, 3, 1  times good 

performance at mean–variance structure. Meanwhile in 

average mode, EM has a best performance that showed by 

mean plot in Fig.16. Also among of all hybrids, HEM and 

HSA have good performance. 
 

 Table 20 

Comparison of algorithms at mean–variance structure. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f1k10C1 0 0 0.001 0.0003 0.0045 0.0179 0.3777 0.0034 0.5951 0.0001 

f1k10C2 0.1129 0.1101 0.0975 0.098 0.0973 0.0969 0.0972 0.0995 0.0938 0.0969 

f1k10C3 0.1192 0.1129 0.0863 0.0851 0.0882 0.1027 0.1031 0.0965 0.1011 0.1048 

f1k10C4 0.0429 0.0438 0.1284 0.1303 0.1462 0.1295 0.0616 0.09 0.1109 0.1164 

f1k20C1 0.7093 0 0.0116 0.0233 0.25 0 0 0.0058 0 0 

f1k20C2 0.0018 0.1239 0.1108 0.1095 0.1081 0.1065 0.1151 0.1191 0.0975 0.1077 

f1k20C3 0.0796 0.1185 0.0955 0.0899 0.1014 0.1066 0.0803 0.0824 0.1327 0.113 

f1k20C4 0.9978 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0002 0.0003 0.0003 

f1k30C1 0 0.0241 0.0002 0.0002 0.0389 0.0039 0 0 0 0.9327 

f1k30C2 0.1029 0.1055 0.0948 0.0943 0.0953 0.0951 0.1241 0.0981 0.0977 0.0921 

f1k30C3 0.103 0.1069 0.0926 0.0977 0.1059 0.1029 0.0797 0.087 0.1167 0.1077 

f1k30C4 0.0753 0.0722 0.1467 0.1151 0.1087 0.1289 0.0675 0.0831 0.1038 0.0986 

Average 0.1954 0.0682 0.0721 0.0703 0.0954 0.0743 0.0922 0.0638 0.1208 0.1475 
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Fig. 15. Comparison of algorithms at mean–variance structure. 

 

Table 21 

 Comparison of algorithms at SV structure. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f2k10C1 0.0002 0 0.0187 0.0004 0.0056 0.0085 0 0 0.9665 0 

f2k10C2 0.1173 0.1038 0.096 0.0975 0.0974 0.0952 0.0982 0.0931 0.0978 0.1038 

f2k10C3 0.1132 0.101 0.0833 0.0831 0.1035 0.0916 0.0795 0.0887 0.1302 0.1259 

f2k10C4 0.0749 0.0799 0.104 0.1086 0.1135 0.1264 0.0866 0.092 0.1001 0.1141 

f2k20C1 0 0 0 0.0002 0.0064 0.1229 0 0 0.8692 0.0012 

f2k20C2 0.1089 0.1347 0.0995 0.089 0.0891 0.092 0.0976 0.1077 0.0932 0.0883 

f2k20C3 0.1003 0.1136 0.1085 0.0998 0.1014 0.1064 0.0703 0.0722 0.1192 0.1083 

f2k20C4 0.0693 0.0616 0.1058 0.1252 0.1299 0.123 0.0801 0.0811 0.0989 0.1252 

f2k30C1 0 0 0 0 0.113 0.0288 0 0 0 0.8582 

f2k30C2 0.094 0.1289 0.0912 0.0916 0.0803 0.0856 0.09 0.1474 0.0979 0.0931 

f2k30C3 0.0935 0.0871 0.0986 0.1025 0.0926 0.1065 0.0705 0.0844 0.1376 0.1266 

f2k30C4 0.1062 0.0603 0.1029 0.1161 0.1386 0.1463 0.082 0.0398 0.0993 0.1085 

Average 0.0732 0.0726 0.0757 0.0762 0.0893 0.0944 0.0629 0.0672 0.2342 0.1544 

 

 
Fig. 16. Comparison of algorithms at SV structure. 
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Table 22 

 Comparison of algorithms at MAD structure. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f3k10C1 0.7409 0 0.0763 0 0.009 0.1231 0 0.0485 0 0.0023 

f3k10C2 0.1267 0.1248 0.1022 0.0795 0.092 0.0835 0.0864 0.0872 0.0988 0.119 

f3k10C3 0.0877 0.0954 0.0968 0.0843 0.1041 0.0963 0.1113 0.1149 0.0887 0.1206 

f3k10C4 0.0711 0.0881 0.1087 0.0986 0.1249 0.1632 0.0463 0.1097 0.0741 0.1153 

f3k20C1 0.4665 0 0.1423 0.3841 0.0004 0 0 0 0.0067 0 

f3k20C2 0.0997 0.1076 0.1323 0.0859 0.0994 0.0989 0.098 0.0989 0.0777 0.1017 

f3k20C3 0.0657 0.0704 0.0872 0.0688 0.0818 0.0802 0.1412 0.1454 0.1568 0.1026 

f3k20C4 0.1068 0.0704 0.1381 0.1501 0.1022 0.1151 0.087 0.0669 0.0589 0.1044 

f3k30C1 0 0 0.1243 0 0.051 0.1297 0 0 0.6951 0 

f3k30C2 0.0968 0.1178 0.0772 0.0787 0.1001 0.0755 0.0946 0.1497 0.0842 0.1254 

f3k30C3 0.0802 0.0829 0.0852 0.0906 0.1051 0.1037 0.125 0.1007 0.1265 0.1001 

f3k30C4 0.0156 0.1401 0.146 0.1183 0.1503 0.1246 0.0962 0.0629 0.0554 0.0907 

Average 0.1631 0.0748 0.1097 0.1032 0.085 0.0995 0.0738 0.0821 0.1269 0.0818 

 

 
Fig. 17. Comparison of algorithms at MAD structure. 

 

 
 

Table 23 

 Comparison of algorithms at VWS structure. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f4k10C1 0.05 0 0.0917 0.3417 0.0833 0.2667 0 0 0.075 0.0917 

f4k10C2 0.1025 0.0984 0.0977 0.1057 0.1086 0.1168 0.09 0.0919 0.0875 0.101 

f4k10C3 0.1063 0.0938 0.1051 0.1004 0.1075 0.121 0.1095 0.0994 0.0667 0.0904 

f4k10C4 0.0763 0.0631 0.1221 0.1484 0.1278 0.1153 0.0454 0.088 0.1113 0.1023 

f4k20C1 0 0 0 0 0.2619 0.7381 0 0 0 0 

f4k20C2 0.0907 0.1011 0.0947 0.1173 0.1104 0.11 0.0986 0.0993 0.0898 0.0881 

f4k20C3 0.0705 0.089 0.1154 0.1306 0.1245 0.139 0.1038 0.0977 0.0692 0.0604 

f4k20C4 0.0889 0.0707 0.1154 0.0874 0.1427 0.1172 0.0771 0.1093 0.08 0.1113 

f4k30C1 0 0 0.0034 0 0 0.0387 0 0 0.9512 0.0067 

f4k30C2 0.0914 0.123 0.099 0.1153 0.1077 0.0947 0.0881 0.0985 0.0913 0.0911 

f4k30C3 0.0773 0.0788 0.1302 0.1542 0.1297 0.1276 0.0732 0.0983 0.0578 0.0729 

f4k30C4 0.1035 0.0793 0.114 0.0951 0.1263 0.1264 0.0959 0.0746 0.0925 0.0923 

Average 0.0715 0.0664 0.0907 0.1163 0.1192 0.176 0.0651 0.0714 0.1477 0.0757 
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Fig. 18. Comparison of algorithms at VWS structure. 

 

In this section, comparison of all algorithms at mentioned 

normalized metrics and cost functions by considering 

different 𝑘 number (𝑘 = 10, 20, 30) have been showed in 

Tables 24-27. Also after each table, mean plot for all of 

algorithms at every metrics shown in Fig. 20-23. 

 

 
Fig. 19. Comparison of algorithms at K=10. 

 

  For example as shown in Table 24 (marked number at 

average row) and Fig. 20, SA has better performance 

rather than other algorithms. Also in Table 24, according 

to the sixteen solutions, EM, HGA, GNP, HGNP, SA and 

HSA respectively have 5, 2, 1, 4, 3, 1 times good 

performance at 𝑘 = 10. Meanwhile in average mode, SA 

has a best performance that showed by mean plot in Fig. 

20. Also among of all hybrids, HGA, HGNP and HSA 

have good performance. 

 
Table 24 

Comparison of algorithms at K=10. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f1k10C1 0 0 0.001 0.0003 0.0045 0.0179 0.3777 0.0034 0.5951 0.0001 

f1k10C2 0.1129 0.1101 0.0975 0.098 0.0973 0.0969 0.0972 0.0995 0.0938 0.0969 

f1k10C3 0.1192 0.1129 0.0863 0.0851 0.0882 0.1027 0.1031 0.0965 0.1011 0.1048 

f1k10C4 0.0429 0.0438 0.1284 0.1303 0.1462 0.1295 0.0616 0.09 0.1109 0.1164 
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f2k10C1 0.0002 0 0.0187 0.0004 0.0056 0.0085 0 0 0.9665 0 

f2k10C2 0.1173 0.1038 0.096 0.0975 0.0974 0.0952 0.0982 0.0931 0.0978 0.1038 

f2k10C3 0.1132 0.101 0.0833 0.0831 0.1035 0.0916 0.0795 0.0887 0.1302 0.1259 

f2k10C4 0.0749 0.0799 0.104 0.1086 0.1135 0.1264 0.0866 0.092 0.1001 0.1141 

f3k10C1 0.7409 0 0.0763 0 0.009 0.1231 0 0.0485 0 0.0023 

f3k10C2 0.1267 0.1248 0.1022 0.0795 0.092 0.0835 0.0864 0.0872 0.0988 0.119 

f3k10C3 0.0877 0.0954 0.0968 0.0843 0.1041 0.0963 0.1113 0.1149 0.0887 0.1206 

f3k10C4 0.0711 0.0881 0.1087 0.0986 0.1249 0.1632 0.0463 0.1097 0.0741 0.1153 

f4k10C1 0.05 0 0.0917 0.3417 0.0833 0.2667 0 0 0.075 0.0917 

f4k10C2 0.1025 0.0984 0.0977 0.1057 0.1086 0.1168 0.09 0.0919 0.0875 0.101 

f4k10C3 0.1063 0.0938 0.1051 0.1004 0.1075 0.121 0.1095 0.0994 0.0667 0.0904 

f4k10C4 0.0763 0.0631 0.1221 0.1484 0.1278 0.1153 0.0454 0.088 0.1113 0.1023 

Average 0.1389 0.0707 0.0919 0.104 0.0898 0.1173 0.0628 0.0761 0.1581 0.0905 

 

Table 25 

Comparison of algorithms at K=20. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f1k20C1 0.7093 0 0.0116 0.0233 0.25 0 0 0.0058 0 0 

f1k20C2 0.0018 0.1239 0.1108 0.1095 0.1081 0.1065 0.1151 0.1191 0.0975 0.1077 

f1k20C3 0.0796 0.1185 0.0955 0.0899 0.1014 0.1066 0.0803 0.0824 0.1327 0.113 

f1k20C4 0.9978 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0002 0.0003 0.0003 

f2k20C1 0 0 0 0.0002 0.0064 0.1229 0 0 0.8692 0.0012 

f2k20C2 0.1089 0.1347 0.0995 0.089 0.0891 0.092 0.0976 0.1077 0.0932 0.0883 

f2k20C3 0.1003 0.1136 0.1085 0.0998 0.1014 0.1064 0.0703 0.0722 0.1192 0.1083 

f2k20C4 0.0693 0.0616 0.1058 0.1252 0.1299 0.123 0.0801 0.0811 0.0989 0.1252 

f3k20C1 0.4665 0 0.1423 0.3841 0.0004 0 0 0 0.0067 0 

f3k20C2 0.0997 0.1076 0.1323 0.0859 0.0994 0.0989 0.098 0.0989 0.0777 0.1017 

f3k20C3 0.0657 0.0704 0.0872 0.0688 0.0818 0.0802 0.1412 0.1454 0.1568 0.1026 

f3k20C4 0.1068 0.0704 0.1381 0.1501 0.1022 0.1151 0.087 0.0669 0.0589 0.1044 

f4k20C1 0 0 0 0 0.2619 0.7381 0 0 0 0 

f4k20C2 0.0907 0.1011 0.0947 0.1173 0.1104 0.11 0.0986 0.0993 0.0898 0.0881 

f4k20C3 0.0705 0.089 0.1154 0.1306 0.1245 0.139 0.1038 0.0977 0.0692 0.0604 

f4k20C4 0.0889 0.0707 0.1154 0.0874 0.1427 0.1172 0.0771 0.1093 0.08 0.1113 

Average 0.1056 0.0683 0.0949 0.1115 0.1042 0.1536 0.0711 0.0732 0.1433 0.0743 

 

 

 
Fig. 20. Comparison of algorithms at K=20. 
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Table 26 

 Comparison of algorithms at K=30. 

Problems 
Algorithms 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

f1k30C1 0 0.0241 0.0002 0.0002 0.0389 0.0039 0 0 0 0.9327 

f1k30C2 0.1029 0.1055 0.0948 0.0943 0.0953 0.0951 0.1241 0.0981 0.0977 0.0921 

f1k30C3 0.103 0.1069 0.0926 0.0977 0.1059 0.1029 0.0797 0.087 0.1167 0.1077 

f1k30C4 0.0753 0.0722 0.1467 0.1151 0.1087 0.1289 0.0675 0.0831 0.1038 0.0986 

f2k30C1 0 0 0 0 0.113 0.0288 0 0 0 0.8582 

f2k30C2 0.094 0.1289 0.0912 0.0916 0.0803 0.0856 0.09 0.1474 0.0979 0.0931 

f2k30C3 0.0935 0.0871 0.0986 0.1025 0.0926 0.1065 0.0705 0.0844 0.1376 0.1266 

f2k30C4 0.1062 0.0603 0.1029 0.1161 0.1386 0.1463 0.082 0.0398 0.0993 0.1085 

f3k30C1 0 0 0.1243 0 0.051 0.1297 0 0 0.6951 0 

f3k30C2 0.0968 0.1178 0.0772 0.0787 0.1001 0.0755 0.0946 0.1497 0.0842 0.1254 

f3k30C3 0.0802 0.0829 0.0852 0.0906 0.1051 0.1037 0.125 0.1007 0.1265 0.1001 

f3k30C4 0.0156 0.1401 0.146 0.1183 0.1503 0.1246 0.0962 0.0629 0.0554 0.0907 

f4k30C1 0 0 0.0034 0 0 0.0387 0 0 0.9512 0.0067 

f4k30C2 0.0914 0.123 0.099 0.1153 0.1077 0.0947 0.0881 0.0985 0.0913 0.0911 

f4k30C3 0.0773 0.0788 0.1302 0.1542 0.1297 0.1276 0.0732 0.0983 0.0578 0.0729 

f4k30C4 0.1035 0.0793 0.114 0.0951 0.1263 0.1264 0.0959 0.0746 0.0925 0.0923 

Average 0.0632 0.0749 0.0893 0.0802 0.0996 0.099 0.068 0.0714 0.2074 0.1471 

 

 

 

 
Fig. 21. Comparison of algorithms at K=30. 

 

 

Table 27 shows final comparison between all algorithms 

by considering the result of the experiments for all models 

at 48 normalized metrics per average. As shown in this 

table and Fig. 19, the best performance is obtained by SA 

with the average of 0.1574. 

 

 
Table 27 

Final comparison of all algorithms. 

EM HEM GA HGA GNP HGNP PSO HPSO SA HSA 

0.1258 0.0705 0.0871 0.0915 0.0972 0.111 0.0735 0.0711 0.1574 0.1149 
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Fig. 22. Final comparison of all algorithms. 

 

5. Conclusions and Future Research Directions 

This paper was focused to solve the portfolio optimization 

problem and tracing out its efficient frontier. The MV, 

MAD, SV and VWS based cardinality constrained 

portfolio optimization models that includes cardinality 

and bounding constraints were used to develop the meta-

heuristic algorithms. In order to solve the problems, the 

EM, GA, GNP, PSO and SA algorithms are proposed and 

hybridized with a diversification mechanism. Trial-and-

error method was offered to set the proper values for the 

proposed algorithm’s parameters. The performance of 

approaches in the quality of Pareto optimal solutions were 

evaluated by four measurement metrics. Results showed 

that SA was better than other algorithms in QM and SM 

metrics. Comparing the obtained results in terms of MID 

and DM metrics reveals that the proposed HEM and EM 

are more effective respectively. 

In the future, novel hybrid meta-heuristic algorithms with 

new definitions of risk or return by different metrics can 

be useful to solving financial problems, such as Risk 

Management (RM) and option pricing etc.  
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