
DOI: 10.22094/JOIE.2018.242.1532

131

Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow

Shop Scheduling Problem with Preventive Maintenance and Budget

Constraint

Sadigh Raissi
a,*

, Ramtin Rooeinfar
b
 ,Vahid Reza Ghezavati

b

a
Islamic Azad University, South Tehran Branch, Tehran, Iran

b
School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Received 20 2017; Revised 02 2018; Accepted 08 2018

Abstract

Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent
uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time
may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fixed interval
preventive maintenance (PM) and budget constraint are considered.PM activity is a crucial task to reduce the production efficiency. In the
current research we focused on a scheduling problem which a job is processed at the upstream stage and all the downstream machines get
busy or alternatively PM cost is significant, consequently the job waits inside the buffers and increases the associated holding cost. This
paper proposes a new more realistic mathematical model which considers both the PM and holding cost of jobs inside the buffers in the
stochastic flexible flow shop scheduling problem. The holding cost is controlled in the model via the budget constraint. In order to solve the
proposedmodel, three hybrid metaheuristic algorithms are introduced. They include a couple of well-known metaheuristic algorithms
which have efficient quality solutions in the literature. The two algorithms of them constructed byincorporationof the particle swarm
optimization algorithm (PSO) and parallel simulated annealing (PSA) methods under different random generation policies. The third one
enriched based on genetic algorithm (GA) with PSA. To evaluate the performance of the proposed algorithms, different numerical
examples are presented. Computational experiments revealed that the proposed algorithms embedboth desirable accuracy and CPU time.
Among them, the PSO-PSAП outperforms than other algorithms in terms of makespan and CPU time especially for large size problems.

Keywords: Stochastic flexible flow shop; Budget constraint, Preventive maintenance; Genetic algorithm; Simulated annealing; Particle
swarm optimization.

1. Introduction

The flexible flow shop scheduling problem (FFSSP)
consists of a flow manufacturing line with one or more
parallel machine on some processing stages (or
workstation) in series. Multiple products (or jobs) are
produced in each stage. The objective function of FFSSP
is on minimizing the total completions of all jobs
(makespan or Cmax)(Hoogeveen et al., 1996; Gupta, 1998).
This kind of issue often takes into account an NP-hard
problem. This means that at a reasonable computational
time, an optimal answer cannot be obtained. (Brucker and
Kramer, 1995)have proved that a two-stage FFSSP
remains NP-hard even there is only one machine on the
first stage and two machines on the second stage.Most
researchers have focused on the system which their
relevant process time deploy a given deterministic value.
However, in real circumstances, processing time of jobs at
each stage is the main part of makespan. Most research
focused on the system with deterministicprocessing time.
However, in a real system, theprocessing time is arandom
variable due to random behaviour of tool wearing,

operator skill, material variability and so on (Koulamas
and Kyparisis, 2000). According to Choi and Wang
(2012) makespan estimationmight become invalid under
differentcircumstances. Another important factor that
effects on makespan is interruption caused by machine
breakdowns (Fahmy and Sharif, 2009). One of the most
important ways to deal with these types of random
interruptions is on following preventive and scheduled
tasks. Hence, unavailability of machines, due to
preventive maintenance, could be incorporated as a set of
constraints in the mathematical models. Taking into
account such disruptions due to preventive maintenance
and stochastic processing time makes the problem more
real, but more complicated and has been kept on the
research gap at yet.The significant contributions of this
paper are to propose a more realistic scheduling model for
such production and delivering an efficient solution
methods.The proposed model integrates FFSSP with
preventive maintenance (PM) and budget constraint under
stochastic processing time. Hence,consideringqueues
between consecutive stages is a respectable alternative.
When a job is processed at upstream stage and all the
downstream machines get to busy state or comes under

*Corresponding author Email address: raissi@azad.ac.ir

, Summer & Autumn 2019,Vol.12, Issue 2

Journal of Optimization in Industrial Engineering

131-147

November September September

Sadigh Raissi et al. / Three Hybrid Metaheuristic Algorithms…

132

any PM activity, therefore the job should wait in the
bufferswhichcause holding cost.Because the total budget
in handhas a given level this leads to interrupt the
operations and cause increasing of the makespan.
Consequently, in the proposed model the jobs are
scheduled in such a way that there is no interruption in
their operations. By considering all of these affecting
factors, the optimized makespan will be acquired by the
model. Obviously, such FFSSP also ruins an NP-hard
model. Therefore, three hybrid populations based
metaheuristic algorithms are introduced as solution
methods. The flexible flow shop scheduling problem has
been studied extensively in the literature. Koulamas and
Kyparisis(2000) developed a heuristic method for a two
and a three-stage FFSSP with random processing time
based on the makespan objective function. They proved
the effect of the proposed heuristic by finding the
solutions which were better than the available lower
bounds. A Tabu search (TS) algorithm together with a
procedure for a constructing a complete schedule to solve
the FFSSP with limited buffers has been given by
Wardono and Fathi(2004) that minimizes job completion
time. Their algorithm acts based on the stage-oriented
decomposition approach. Akrami et al. (2006) presented a
mixed-integer linear mathematical programming for
FFSSP. They assumed that there are limited buffers
among stages. Two meta-heuristics, based on genetic
algorithm (GA) and TS algorithm, were presented to
optimality solve the model. A flow shop scheduling was
investigated with limited intermediate buffers was studied
by Wang and Tang (2009). They focused on the
makespan minimizing as a performance criterion and they
applied a TS algorithm to optimize the problem. In order
to improve the diversity of the TS, a scatter search
mechanism was applied. The computational results
showed the high efficiency of their proposed hybrid
metaheuristic. Al-Hinai and ElMekkawy(2011) proposed
a flexible flow shop problem with random machine
failures and a two stage hybrid GA was applied. The first
stage was on minimizing the primary objective; the
makespan, and the second stage was optimized the bi-
objective function and integrates machines assignments
and operations sequencing with the expected machine
breakdown. Tran and Ng (2011)presented a water-flow
algorithm to solve the FFSSP with intermediate buffers.
They pooled the amount of precipitation and falling force
to form flexible erosion capability. This work helped the
erosion process of the algorithm to focus on exploiting
promising regions strongly. They also utilized an
improved procedure for constructing a complete schedule
from a permutation that represents the sequence of jobs at
the first stage of the scheduling problem. Kianfar et al.
(2012) investigated a FFSSP with non-deterministic
arrival of jobs and sequence dependent setup times. They
used average tardiness of jobs as the objective function.
To optimize the problem, they presented a novel
dispatching rule and hybrid GA. A computer simulation
model was also developed to evaluate the presented
dispatching rule. The results showed that their proposed

dispatching rule can lead to much better results in
comparison with the traditional dispatching rules. Singh
and Mahapatra (2012) proposed a novel PSO to solve
FFSSP. An efficient mutation operator was embedded in
PSO to prevent solutions from falling into the local
optimums. The performance of the PSO was evaluated
against GA by a set of test problems taken from the
literature. According to the obtained results, the
percentage deviation of the proposed PSO of the lower
bound is equal to 2.961 and the same measure for GA is
equal to3.559.In order to deal with uncertain job
processing times in FFSSP’s, Choi and Wang (2012)
presented a decomposition-based approach. The method
combines two reactive approaches with a reactive-
proactive approach. Lin and Ying (2013) proposed a
hybrid algorithm based on the features of artificial
immune systems and the annealing process of simulated
annealing algorithms (SA) to optimize the FFSSP with
limited buffer storage between stages. Almeder and
Hartl(2013) studied the FFSSP with limited buffer storage
in the metal–working industry. The partitioned the
problem as a two stage problem. The first stage contains a
single machine and its buffer. The semi-finished parts are
stored in this buffer until a machine of the second stage is
available. The second stage contains two parallel non-
identical machines. They applied a hybrid approach based
on discrete-event simulation and variable neighbourhood
search to optimize the problem. The hybrid approach was
led to an improvement between 3% and 10% compared
with the current production plan of the company. By
considering unrelated parallel machines, sequence-
dependent setup times, probable reworks and different
ready times, Rabiee et al. (2014) investigated the no-wait
two-stage FFSSP. They proposed a novel hybrid
algorithm based on imperialist competitive algorithm
(ICA), SA, variable neighbourhood search (VNS) and
GA. The performance of the proposed hybrid algorithm
was evaluated against ICA, SA, VNS, GA and ant colony
optimization (ACO) and high efficiency of their proposed
hybrid algorithm was revealed. Arnaout (2014) tackled a
rescheduling problem for the flow shop problem
associated with stochastic processing and setup time.
They proposed a new repair rule which and compared it
with the existing algorithms. The results obtained from
the computational experiments showed that the proposed
repair rule can perform better those available algorithms
in literature. Rahmani and Heydari (2014) studied FFSSP
under uncertain processing times and unexpected arrivals
of new jobs. They proposed a new approach to find robust
schedules in this situation. Their approach was a
proactive–reactive method which uses a two-step
procedure. In order to consider stochastic processing time,
Wang and Choi (2014) introduced a novel decomposition-
based the Holonic approach (DBHA) to solve a FFSSP
with stochastic processing time. Their proposed method
was based on genetic algorithm control (GAC) and the
shorting processing time contract net procontrol (SPT-
CNP). Also, K-means clustering is utilized to divide
machines into different clusters according to their

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 131- 147

133

stochastic environments. The gained results showed that
DBHA had better quality solutions against GAC and SPT-
CNPA simulation based optimization approach for
stochastic hybrid FFSSP in a real-world semiconductor
back-end assembly facility was presented by Lin and
Chen (2015). In their approach, the optimization strategy,
based on genetic algorithm, was used to find the optimal
assignment of the production line and machine type at
each stage. The simulation model was used to evaluate the
performance of solutions. They applied a real case study
to prove the necessity of using simulation optimization
approaches for practical applications. A novel algorithm
was developed by Li and Pan (2015) to solve the hybrid
flow shop with limited buffers. They combine two
metaheuristic algorithms of artificial bee colony and TS
and used makespan as the performance criterion. Their
proposed algorithm was evaluated against several
algorithms reported in the literature and the experimental
results showed the high effectively and efficient
performance of the proposed algorithm. Sangsawang et al.
(2015) proposed two metaheuristic algorithms to optimize
a two-stage re-entrant FFSSP. The first algorithm was a
hybridization of GA and adaptive auto-tuning based on a
fuzzy logic controller. The second one was a
hybridization of particle swarm optimization (PSO) and
Cauchy distribution. Experimental results revealed that
both hybrid algorithms could present better solutions and
are more powerful than the classical metaheuristics. The
statistical analyses indicated that the hybrid PSO and
hybrid GA can improve the best solutions in the literature
by averages of 15.60% and 15.51%, respectively.
Zabihzadeh and Rezaeian(2015) developed a mixed
integer linear programming model for FFSSP. They
assumed that there are some robots between stages for
unloading, transferring and loading parts. Their proposed
model has ability of determining the number of robots and
jobs sequence. They applied two meta-heuristic
algorithms; GA and ACO, to solve their model.
Computational results showed that the GA is more
efficient than ACO to optimize the model. Tang et al.
(2016) presented a new model for dynamic FFSSP’s. By
taking emergency maintenance, the proposed model
minimized both objectives of energy consumption and
makespan. Since they developed model was NP-hard, a
multi-objective PSO algorithm to optimize the model. For
finite capacity material requirement planning system in a
flexible flow shop, Sukkerd and Wuttipornpun(2016)
presented a hybrid GA and a Tabu search algorithm
(HGATS). The results showed that the HGATS can
outperform on comparing with the existing algorithms.
Correspondingly, computational time of HGATS is
acceptable when applied to real industrial systems.
Rahmani and Ramezanian(2016) addressed a stochastic
FFSSP in which new jobs arrive into the process as
disruptions. They developed a mathematical model to
minimize total weighted tardiness. A variable
neighbourhood search algorithm was used to solve the
model. The efficiency of the proposed algorithm
evaluated through a set of test problems. González-Neira

et al. (2016) presented a multi-criteria FFSSP in which
criterion is quantitative and the other is qualitative. They
assumed that job processing time deploys by a stochastic
manner.The integral analysis method (IAM) was
implemented to solve the relevant problem. In the IAM
method, the problem first was introduced, then, cardinal
analysis, ordinal analysis and integration analysis are
done. Results showed that IAM method is able to select
the alternatives with high efficiency in terms of both types
of criteria.
The most important criticism of scheduling problems is
the gap between academic and practical problems. Even
though the developed models have tried to be more
realistic, but they fail to find the exact makespan in real
life problems. This comes from the fact that the model
cannot consider all the factors affected on makespan. As a
result, there is a gap between obtained makespan by
mathematical models and the makespan occurs in reality.
In order to bridge this gap, this research presents an
integrated mathematical model which is capable to
consider all of the influential factors on makespan. The
proposed model can simultaneously consider preventive
maintenance, stochastic processing time and budget
constraint. By integrating all of these subjects the model
will reflect the real performance of a FFSSP.
The rest of the paper is organized as follows: In section 2
the problem definition, mathematical model formulation
and assumption of the model is presented. In section 3,
the proposed hybrid metaheuristic algorithms in which
three hybrid metaheuristic algorithms, including
combining parallel SA with two types of PSO algorithms
(PSO-PSAІ and PSO-PSAП), and a GA with parallel SA
(GA-PSA) are specially explained. In section 4,
computational results are presentedwhich actually
compare the results of proposed metaheuristic algorithms.
First, the small scale problem size is solved with CPLEX
software. Then, the metaheuristic algorithms are used to
find the near optimal solutions for the large scale of the
problems. Analysis of the results and comparisons
demonstrate the performance of the proposed solving
methodologies on different problem sizes. Finally,
conclusions and future researches are presented in the last
section.

2. Mathematical Model Formulation

In this section the problem under consideration is
described. Consider a problem of J jobs and S working
stages as shown in Figure 1. Each stage s has a number of 𝑁𝑠 identical parallel machines that operate in parallel. All
jobs visit all stages from the first to the last stage. They
are processed by one machine at each stage. Each job
processed all the stages and every machine process
maximum one job at a time. Thereis a buffer between two
consecutive stages. The machines are under PM tasks. .
Consequently, each machine could be available or
unavailable at each time. All jobs are independent of each
other and they are available at time zero. The processing
time of jobs is considered to be stochastic. In order to

Sadigh Raissi et al. / Three Hybrid Metaheuristic Algorithms…

134

model such randomly distributed processing time, the
stochastic programing technique is applied in which each
possible processing time is called as a scenario. The
probability of occurrences of each scenario is shown by
Pr(π). Therefore, the averaged processing time of each
job at each stage is calculated according to its processing
times in different scenarios and the probability of
occurrences of each scenario. The objective is to set a
sequence of jobs, allocating jobs to machines at each
stage and determining the time between two consecutive
maintenance activities in such a way that total completion
time being minimized. Figure 2 shows an example of the
Gantt chart of proposed stochastic flexible flow shop
scheduling problem (SFFSSP) with 3 stages and 5 jobs.
There is2, 3 and 2 machines in stages 1, 2 and 3,
respectively. In machine 1 in stage 1, maintenance occurs
after processing job 3. The other maintenance occurs in
stages 2 and 3. The job 2 is processed in stage 1 from time
2 to 5 and is started in stage 2 from time 7. Therefore, job
2 is sent to the buffer of stage 1 and cause holding cost for
each period of time, until machine 1 in stage 2 gets
empty. Sometimes more than one job is placed in the
buffers. For example, in the buffer of stage 2, from time
11 and 12, jobs 1 and 3 are placed in and increasing the
holding cost for staying of each period of time in the
buffer.
Other constraints as well assumptions are listed as
follows:
 There is a set of jobs denoted J (j=1, 2,…, J) jobs

which are available at time zero and no job may be
cancelled before completion.

 The set of L consecutive stages denoted by (s=1,
2,…, L),

 Each stage is equipped with non-identical parallel
machines denoted by (m=1, 2,…, 𝑁𝑠).

 The set of R, denoted by (r=1,2,…, R) indicated the
number of intermediate buffers.

 All jobs have to process serially through all machines
at each stage for only once time.

 The interruption processing of each job on all
machines at each stage is not acceptable. On the other
hand, once a job is started, it must be processed to
completion without any interruption either on or
between machines.

 All machines are continuously available at time zero,
in another word; non-machines are failing at the
starting time.

 Each machine could process only one job at the same
time, and each job has to visit each machine exactly
once.

 The preventive maintenance activities are performed
on each machine at the fixed intervals (𝑃𝑚𝑠).

 Once the preventive maintenance activity is carried
out, there is no probability of a subsequent machine
breakdown.

 All jobsat each intermediate buffer havea same
holding cost, but different at each stage.

Fig.1.The framework of the flexible flow shop problem of

this study
2.1. Notations

To present the model using mathematical terms, consider
the following notations.

Indices

s Indexofstages{s= 1,2,…, L}

m Index of machines at s {m= 1, 2, …,𝑁𝑠}
j Index of jobs{d, j= 1, 2,…, J}

r Index of intermediate buffers{r= 1,2,…, R}

h Index of job sequence{h, u=1 ,2,…,𝐾𝑚}

n Index of maintenance activity which is done on
machine j {n= 1,2,…,𝑉𝑚𝑠} 𝜋Index of probabilistic scenarios{𝜋 = 1, 2,…,𝛱}

Parameters 𝑝𝑗𝑠(𝜋)The processing time of job j at stage s in scenario
π 𝑃𝑟⁡(𝜋)The probability of occurrences scenario π ℎ𝑟𝑠𝑗 Holding cost of job jinintermediate buffer ofr
at stage s 𝜇𝑚𝑠The repair rate of machine m at stage s 𝜆𝑚𝑠The failure rate of machine m at stage s 𝐷𝑚𝑠The duration time of maintenance activity of
machinematstages �̅�𝑚𝑠The mean number of jobs that are performed on
machine m at stage s 𝛽The minimum of availability of the system

M An arbitrary large position number

B Total budget
Dependent decision variables 𝑆𝑗𝑠Starting time for the processing of job j at stage s 𝐶𝑗𝑠Completion time of job j at stage s 𝑃𝑚𝑠The time between two consecutive maintenance
activities on machine m at stage s 𝑚𝑚𝑠The number of maintenance activities on machine
m at stage s 𝑑𝑟𝑠𝑗 Waiting time of job j atintermediate bufferr

at stage s 𝑍𝑗𝑟(𝑡) {1 ⁡if⁡job⁡𝑗⁡is⁡in⁡intermediate⁡buffer⁡𝑟⁡at⁡time⁡𝑡0 otherwise 𝑇𝑚𝑠The completion time of the last PM action on
machine m at stage s 𝐴𝑚𝑠(𝑡)The availability of machine m at stage s at timet 𝐴𝑠(𝑡)The unavailability of stage s at time t 𝐴𝑠𝑦𝑠(𝑡)The unavailability of system at time t
W 0 or 1

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 131- 147

135

 Independent decision variables 𝑋𝑗ℎ𝑚𝑠 {1 ⁡if⁡job⁡𝑗⁡is⁡processed⁡in⁡sequence⁡ℎ⁡by⁡machine⁡𝑚⁡at⁡stage⁡𝑠0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise 𝑌𝑛𝑚𝑠 {1 ⁡if⁡𝑛⁡th⁡maintenance⁡activity⁡on⁡machine⁡𝑚⁡at⁡stage⁡𝑠⁡is⁡executed0 otherwise

2.2 Mathematical model

In our proposed model,availability of machine min stage s

at time t under PM activities could be calculated
according to Villemeur(1991) by Eq. 1.
 𝐴𝑚𝑠(𝑡) = 𝜇𝑚𝑠𝜇𝑚𝑠+𝜆𝑚𝑠 + 𝜆𝑚𝑠𝜇𝑚𝑠+𝜆𝑚𝑠 𝑒𝑥𝑝[−(𝜇𝑚𝑠 + 𝜆𝑚𝑠)(𝑡 − 𝑇𝑚𝑠)]⁡⁡⁡⁡⁡⁡(1)re

we considered system configuration as a parallel-series
system in which machines ateach stage are parallel and
stages are a series. A stage is said to be unavailable if all
of its machines are unavailable. Therefore, the
unavailability of stage s is calculated by Eq. 2 and
unavailability of the total system by Eq. 3. 𝐴𝑠(𝑡) = ∏(1 − 𝐴𝑚𝑠(𝑡))𝑁𝑠

𝑚=1 ⁡⁡(2)
𝐴𝑠𝑦𝑠(𝑡) = 1 −∏(1 − 𝐴𝑠(𝑡))⁡⁡(3)𝐿

𝑠=1

Therefore, the proposed model as an extension to basic
model was taken fromGonzález-Neira et al. (2016) will be
as follows.

 𝑀𝑖𝑛⁡⁡{𝑚𝑎𝑥⁡(𝐶𝑗𝑠)}⁡⁡(4)
St:

 ∑ ∑𝑋𝑗ℎ𝑚𝑠𝐾𝑚
ℎ=1

𝑁𝑠
𝑚=1 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑗 ∈ 𝐽; 𝑠 ∈ 𝐿⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)
∑ ∑𝑋𝑗ℎ𝑚𝑠𝐽

𝑗=1
𝑁𝑠

𝑚=1 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑠 ∈ 𝐿; ℎ ∈ 𝐾𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6)
𝐶𝑗𝑠 ≥ 𝑆𝑗𝑠 +∑𝑃𝑟⁡(𝜋)𝑝𝑗𝑠(𝜋)𝛱

𝜋 ⁡⁡⁡(7)
𝐶𝑗𝑠−1 −𝑀 (1 − 𝑍𝑗𝑟(𝑡)) ≤ 𝑡 ≤ 𝑆𝑗𝑠 +𝑀(1 − 𝑍𝑗𝑟(𝑡))

∀𝑗 ∈ 𝐽; 𝑠 ∈ 𝐿; ∀𝑟 ∈ 𝑅|𝑠 = 𝑟⁡⁡(8) 𝑆𝑗𝑠 + (1 − 𝑋𝑗ℎ𝑚𝑠)𝑀 ≥ 𝐶𝑑𝑠 − (1 − 𝑋𝑑𝑢𝑚𝑠)𝑀⁡⁡⁡⁡ ∀𝑗, 𝑑 ∈ 𝐽⎹⁡𝑗 ≠ 𝑑; ⁡ℎ, 𝑢 ∈ 𝐾𝑚⎹⁡𝑢 < ℎ,𝑚 ∈ 𝑁𝑠; 𝑠 ∈ 𝐿⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9)

∑∑𝑑𝑟𝑠𝑗 ℎ𝑟𝑠𝑗𝑅
𝑟=1

𝐽
𝑗=1 ≤ 𝐵⁡⁡(10) 𝑑𝑟𝑠𝑗 ≥ 𝑆𝑗𝑠+1 − 𝐶𝑗𝑠⁡⁡(11) (𝑛𝑃𝑚𝑠𝑌𝑛𝑚𝑠 − 𝐶𝑗𝑠)𝑋𝑗ℎ𝑚𝑠 ≥ −𝑀⁡(1 −𝑊)⁡ ∀𝑗 ∈ 𝐽; ∀𝑚 ∈ 𝑁𝑠; ∀𝑠 ∈ 𝐿; ℎ ∈ 𝐾𝑚; 0 ≤ 𝑛 ≤ 𝑉𝑚𝑠⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) (𝐶𝑗𝑠−𝑝𝑗𝑠(𝜋) − 𝑛𝑃𝑚𝑠𝑌𝑛𝑚𝑠 −𝐷𝑚𝑠)⁡𝑋𝑗ℎ𝑚𝑠 ≥ −𝑀(𝑊)⁡⁡⁡⁡⁡⁡⁡ ⁡⁡⁡⁡0 ≤ 𝑛 ≤ 𝑉𝑚𝑠⁡⁡⁡(13)
𝑃𝑚𝑠 = ∑ ∑ 𝑋𝑗ℎ𝑚𝑠∑ Pr(𝜋) 𝑝𝑗𝑠(𝜋)𝛱𝜋𝐾𝑚ℎ=1𝐽𝑗=1 𝑚𝑚𝑠

∀𝑚 ∈ 𝑁𝑠; ∀𝑠 ∈ 𝐿⁡⁡(14) 𝑇𝑚𝑠 ≤ 𝑛𝑃𝑚𝑠⁡⁡⁡(15) 1 − 𝐴𝑠𝑦𝑠(𝑡) ≥ 𝛽⁡⁡⁡(16)
𝐶𝑗𝑠,𝑑𝑟𝑠𝑗 ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑗 ∈ 𝐽; ∀𝑠 ∈ 𝐿⁡⁡⁡(17)⁡ 𝑋𝑗ℎ𝑚𝑠 ∈ {0,1}∀𝑗 ∈ 𝐽; ∀𝑚 ∈ 𝑁𝑠; ∀𝑠 ∈ 𝐿; ℎ ∈ 𝐾𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 𝑌𝑛𝑚𝑠 ∈ {0,1}∀𝑚 ∈ 𝑁𝑠; ∀𝑠 ∈ 𝐿; 𝑛 ∈ 𝑉𝑚𝑠⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19)

Eq. (4) indicates the objective function. The constraint (5)
ensures that the assignment of each job to one and only
one machine at each stage. Constraints set (6) determines
that the position of a machine sequence is takes by only
one job at each stage. Constraints set (7) states that it is
not allowed starting processing jobs at the next stage
unless they have completed processing at the previous
stage. Constraint sets (8) and (9) indicate that no
interference should be taken among jobs on a common
machine at any stage if the machine is available. On the
other words, the difference between the processing times
of any two jobs assigned to the same machine should not
have any overlap.The constraint set (10) guarantees that
the holding costs should be less than the available budget.
Constraints set (11) determines the waiting time of jobs in
each buffer.Constraints set (12) and (13) ensure that there
are no overlap among operations and maintenance task.
Constraint sets (14)-(16) are related to control the system
availability.Finally, constraint set (17)-(19) controls the
decision variable types.

Sadigh Raissi et al. / Three Hybrid Metaheuristic Algorithms…

136

Fig. 2. An example of proposed SFFSSP Gantt chart of this study

3. Solution Methodologies

As mentioned earlier, the proposed modelof SFFSSP is an
NP-hard problem and solving this problem with exact
methods in reasonable CPU time is impossible, so we
should use heuristic or metaheuristic algorithms to solve
it(Pinedo& Chao, 1999). Pinedo (2002) proved that some
exact methods have been developed for solvingSFFSSP’s,
but they are not suitable for more than 20 jobs and 10
machines. Also, heuristic algorithms are often may be
trapped onsome local solutions, but metaheuristic
algorithms can be described as a master strategy that
guides and modifies subordinate heuristics to explore the
solutions beyond the local optimally (Osam et al.,
1996).We describe threehybridmetaheuristic algorithms,
including combining parallel SA with two types of PSO
algorithms (named PSO-PSAІ and PSO-PSAП), and a
GA with parallel SA (named GA-PSA) which have good
solution quality in the literature(Singh and Mahapatra,
2012; Kianfar et al., 2012; Rabiee et al., 2014; Tang et al.,
2016; Sukkerd and Wuttipornpun, 2016). Theproposed
metaheuristic algorithms are explained in the
nextsubsections on details.

3.1. Hybrid PSO-PSA algorithms

PSO algorithm is an evolutional solution method
performed on a population of candidate solutions called
particles. These particles move around in the search-space
according to simple routine. The particles movements are
guided by the best found positions in the search-space,
which are continually updated as better positions are
found by the particles. At each iteration, the in position of
a particle (X vector) is updated by calculating the velocity
(Vel vector) using the differences between the current
position of the particle and the two following vectors
(Kennedy and Eberhart, 1995):

 The best position experienced by the particle in all
previous iterations. This is called the particle best
(Pbest).

 The best position experienced by all particles in
population in all previous iterations. This is called the
global best (gbest).

Generally, a PSO is a continuous algorithm inherently,
while SA is a discrete one. Experiments show that
combining PSO with a discrete algorithm such as SA
creates better performances. Poli, Kennedy and Blackwell
(2007) presented a review on the variation and the
hybridization of the PSO. We proposed two types of
hybrid PSO-PSA algorithms named PSO-PSAІ and PSO-
PSAП to have both advantages of these methods. The
basic idea of the hybrid PSO-PSA algorithm is running
the PSO algorithm and improving the best results by
applying parallel SA (PSA). In order to have variety in
the proposed algorithm, we consider every bad, normal
and good solutions could be selected with same
chances.Combining PSO and PSA decreases the
probability to be trapped in the local optimal solutions.
Also, by introducing a suitable neighbourhood formation
structure, the search process is enhanced and finds the
near global optimum solution. The essential components
of our proposed PSO-PSAІ and PSO-PSAП are similar,
except in generating initial solutions as described below.
The pseudo-code for our PSO-PSA algorithm is shown
Figure 6.

3.1.1. Initial solution of PSO-PSAІ

The random generation policy is used to generate the
initial population of PSO-PSAІ.

3.1.2. Initial solution of PSO-PSAП

In PSO-PSAП a new procedure is applied to generate
initial solutions. First, we consider SFFSSP with relaxed
conditions in which the binary constraints of model are

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 131- 147

137

relaxed. In other word the 𝑋𝑗ℎ𝑚𝑠is considered to be a real
number between 0 and 1. Next, the relaxed model was
solved by CPLEX. The optimum values of decision
variables are numbers between 0 and 1 which are looked
as a probability distribution. These values are used as
primal inputs of initial solutions for PSO-PSAП. For
example, if is X2312 = 0.8 then we set X2312 = 1 with the 0.8
and X2312 = 0 with the 0.2. The initial solutions obtained
by this methodare distributed in the high quality of
solution space. In order to perform a comprehensive
search the low quality of solution space must be
investigated. Therefore, some initial solutions are
generated, unlike the obtained probability distributions.
For example, if X2312 = 0.8, then we set X2312 = 1 with the
0.2 and X2312 = 0 with the 0.8, the two groups if initial
solutions are merged and formed initial solutions of PSO-
PSAП.
The input parameters of both proposed PSO-PSAІ and
PSO-PSAП are: the population size (Npop), the number of
successive iterations in which the best solution does not
change (M), the cognition learning factor (C1), The social
factor (C2) the inertial weight (w), the population size
(Npop), the number of internal loop (In loop), and the
temperature decreasing rate (α). The other components of
proposed PSO-PSAІ and PSO-PSAП are the same and
described as follows:

3.1.3. The solution structure of PSO-PSA

The solution is represented by two sub-matrixes, each of
them are associatedto a special area of decision variable.
The first sub-matrix presents the sequence of jobs
contains S*J matrix where S is the number of stations and
J is the number of jobs. An enhanced version of random
key representation, proposed by Norman and Bean (1999)
is used to show the sequence of jobs which is capable to
preserve the solution feasibility. In this way, each job at
each station is assigned a real number between(1, 𝑁𝑠).
The integer part is the number determines the machine
number to which the job is assigned and the fractional
part is used to sort the jobs assigned to that machine. For
example, consider a problem with 4 jobs, 5 stations and 4
machines at each station. An example of a solution for
this problem is presented in Figure 3. According to
Figure 4, in station 2, the jobs 1 and 4 are both processed
on machine 3, and the job 2 is processed on machine 1,
and the job 3 is processed on machine 2. Also the order of
jobs to be scheduled on machine 3 is job 1 followed by
job 4.The second sub-matrix is related to the number of
maintenance activity on machines. It is a S*M matrix
where S is the number of stations and M is the number of
machines at each station. Each cell of this matrix is filled
with a random number between 1 and the maximum
number of allowable maintenance activity. Figure 4 is an
example of a problem with 5 stations and 4 machines at
each station. As shown in Figure 4, three, one, three and
four maintenance activities are performed on machines 1,

2, 3 and 4 in station 1, respectively. Therefore, the
decision variables 𝑌111 , 𝑌211 and 𝑌311will be equal to one.

Fig.3. An example of representation of solution

 (Sequence of jobs)

Fig. 4. An example of representation of solution

(Maintenance activity)

3.1.4. Particle movements

For particle movements, the following formulas are used
to update the velocity and position vectors of a particle: 𝑉𝑒𝑙𝑖(𝑘 + 1) = 𝑤 ∗ 𝑉𝑒𝑙𝑖(𝑘) + 𝐶1 ∗ 𝑟1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑘)) +𝐶2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑘)) (19) 𝑋𝑖(𝑘 + 1) = ⁡𝑋𝑖(𝑘) +⁡𝑉𝑒𝑙𝑖(𝑘 + 1) (20)

In equation (19), Veli(k) is the velocity of particle i in the
k

th iteration and Xi(k) states the position of particle i in
iteration k. Also, Pbesti is the vector for the best known
position of particle i and gbest is the best position vector
of all particles in the whole population. 𝑤 is called the
inertia weight that determines the impact of the current
velocity of a particle on its velocity at the next iteration.
The parameters C1 and C2 are acceleration coefficients
which have constant values to determine the impact of
Pbest and gbestvalues in defining the velocity,
respectively. r1 and r2 are two random numbers uniformly
distributed in [0,1].

3.1.5. Local search improvements

One of the challenges of the algorithms is trapped in local
optimal solutions. In the other words, it is possible that
the near optimum solution which has found yet, is
selected and the algorithm accepts this solution as a final
optimum solution and stops. The hybrid algorithms are
used to combine the base algorithm with different
strategies to improve the algorithm performances. We
utilized medium radius local search for the proposed
hybrid PSO-PSA algorithms. In this method, the local
searches are not used on each swarm, and we used the
double change technique. If the improvements on the
convergence of fitness function are achieved, we replace
it to the previous swarm, but, if no improvements have
been seen, we accept this by Bultzen probability.

Sadigh Raissi et al. / Three Hybrid Metaheuristic Algorithms…

138

3.1.6. Initial temperature

A suitable initial temperature is the one that results in an
average increase of acceptance probability near to one.
The value of initial temperature will clearly depend on the
scaling of fitness and, hence, it should be problem-
specific. Therefore, we first generate a large set of random
solutions, then a standard division of them is calculated
and is used to determine the initial temperature in the way
that the acceptance probability of primary generations
reach to 0.999. Consequently, the initial Tk is set to
1000based on some preliminary examinations.

3.1.7. Cooling Schedule

The performance of this algorithm also depends on the
cooling schedule, which is essentially the temperature
updating function. In the proportional decrement scheme,
temperatures at the k and k+1 steps of the outer loop, 𝑇𝑘and 𝑇𝑘+1, are related by: 𝑇𝑘+1 = 𝛼𝑇𝑘⁡⁡(21)

Where 𝛼 is cooling rate and is obtained by some
experiment.

3.1.8. Stopping criteria

To limit the number of iterations of PSO-PSA algorithms,
some convergence experiment was performed and the
best criterion was applied as follows:
PSO-PSA will be stopped when the best solution does not
change after a pre-determined number of successive
iterations (M). Also, the PSA is allowed to search in a
temperature level, for In-loop iterations. The optimum
value of M and In-loop is determined by Taguchi
experiments. The pseudo-code of the proposed PSO-PSA
is described in Figure 5.

Procedure of hybrid PSO-PSA algorithms

P: initial particle with random positions and velocities
Untiltermination condition is met Do

For each particle ido
Update the velocity of particle i
Update the position of particle i
Evaluate particle i
Update Pbest and gbest
Endfor

Start PSA with some of the best and the worst chromosomes

Set repetition counter k = 0
Untiltermination condition is met Do

Set repetition counter M = 0
UntilM= in_loopDo

Generate a neighbour solution: ω2
Calculate Δω1, ω2= f(ω) - f(ω0)

If Δω1, ω2 ≤ 0, then ω1 = ω2
If Δω1, ω2 >0, then ω1 = ω2 with probability exp (-Δω1, ω 2 / tk)
m = m + 1
End

Tk+1= α Tk

k = k + 1
End

Transfer the improved solution to the particles

End
Fig. 5. Pseudo-code of hybrid PSO-PSA

3.2. Hybrid GA-PSA algorithm (GA-PSA)

Genetic algorithm (GA) has no ability to search
effectively to find the best global optimum solution. Also,
this algorithm isn’t a capable to complete local searches
on solutions. Therefore, we can combine the power of GA
in global search with simulated annealing (SA) local
searches to address the global optimum solution. This
hybrid algorithm which combines GA and SA has both
advantages of these algorithms and help to improve
solution performances.In this hybrid algorithm, first the
GA generates initial solutions with crossover and
mutation operators. Next, some of these solutions have
been selected for the parallel SA (PSA) as initial
solutions. Then, the parallel local search process on the
selected solution starts. To have variety in the proposed
algorithm, we consider every bad, normal and good
solutions could be selected with same chances. The PSA
procedure in the same applied in PSO-PSA. The other
components of PSO-SA are as follows:

3.2.1. Initialization

The input of GA-PSA is the population size (Npop), the
number of successive iterations in which the best solution
does not change (M), the crossover probability (Pc), and
the similarity coefficient (SC), and the mutation
probability (Pm) the number of internal loops (In loop),
and the temperature decreasing rate (α) are first
initialized. Then, to generate an initial population, a
random generation policy is utilized in this step. Since the
solutions obtained by a metaheuristic algorithm are
sensitive to their parameter values, a statistical procedure
based on the Taguchi parameter tuning method is used to
tune the parameters.

3.2.2. Selection operator

One of the most key elements of a GA is the selection
operator which is used to select chromosomes (parents)
which lead to generate new chromosomes (offspring). The
proposed selection operator is roulette wheel selection
method in which parent chromosomes are
probabilistically selected based on their fitness function
value. The better chromosomes are selected with the
highest probability. Using the roulette wheel selection
each chromosome in the population occupies a slot with a
slot size proportional to the chromosome fitness. When
the wheel is randomly spun, the chromosome
corresponding to the slot where the wheel stopped is
selected as the first parent. This process is repeated to find
the second parent. Clearly, since better chromosomes
have larger slots, they have better chances to be chosen in
the selection process.

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 131- 147

139

3.2.3. The chromosome structure

The chromosome structure of the GA-PSA is just like that
used in “solution structure” in PSO-PSA.

3.2.4. Chromosome evaluation

In order to evaluate chromosomes, each chromosome is
simulated for 30 times. Then, the obtained results are
averaged and considered as the chromosome fitness
function. In the other word, by changing the stochastic
input parameters, the fitness function of the chromosome
will change. Therefore, the fitness function of each
chromosome is not under deterministic value and show
the stochastic nature of the model.

3.2.5. The crossover operator

As defined in the previous section, the chromosomes have
two parts, so a crossover operator is applied in these two
parts. For each part of the chromosome a single-point
crossover is applied. For the first part of the chromosome,
a cross point between (1, J) is generated (J is the number
of jobs). Then, the crossover operator is applied according
to Figure 8. The same procedure is applied to generate the
second of the offspring chromosomes.

3.2.6. The mutation operator

The mutation operator is used in only some iterations. The
similarity coefficient (SC) determines if mutation is
applied or not. We can calculate the SC as follows:
 𝑆𝐶𝑎𝑏 = ∑ ∑ ∑ ∑ 𝜕(𝑋𝑗ℎ𝑚𝑠(𝑎),𝑋𝑗ℎ𝑚𝑠(𝑏))𝐿𝑠=1𝑁𝑠𝑚=1𝐾𝑚ℎ=1𝐽𝑗=1 𝑆 × 𝐽

(22)

Where 𝑋𝑗ℎ𝑚𝑠(a)⁡and⁡𝑋𝑗ℎ𝑚𝑠(𝑏) are decision variables in
chromosomes a and b. For comparing the similarity
between two chromosomes, we consider the similarity of
each gene that can be expressed as follows:
 𝜕(𝑋𝑗ℎ𝑚𝑠(𝑎),𝑋𝑗ℎ𝑚𝑠(𝑏)) = {1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑋𝑗ℎ𝑚𝑠(𝑎) = 𝑋𝑗ℎ𝑚𝑠(𝑏)⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡ (23)

The average similarity coefficient of the population is
calculated as follows:
 𝑆𝐶̅̅̅̅ = ∑ ∑ 𝑆𝐶𝑎𝑏𝑁𝑏=𝑎+1𝑁−1𝑎=1 (𝑁2)

(24)

WhereN is the number of chromosomes in the population.
Considering a pre-defined threshold similarity coefficient,
the specified mutation operator will be automatically
applied. Two swapping types are used in proposed GA-
PSA. Swapping type 1 is used to define the
neighbourhood N(s) in local search (PSA) and swapping
type 2 is used as mutation operator of GA.

 Swapping type 1

The mutation operator is applied on both two parts of
chromosomes. To this aim, a column of each chromosome
sub matrix is randomly selected and is inversely arranged.
Figure 6 shows an example of the mutation operator.

Fig.6. An example of mutation operator of swapping type 1

(Sequence of jobs)

 Swapping type 2

The swapping type 2 works which select two rowsof each
chromosome sub matrix is randomly selected and
swapped (see Figure7).

Fig. 7. An example of mutation operator of swapping type 2

(Sequence of jobs)

Sadigh Raissi et al. / Three Hybrid Metaheuristic Algorithms…

140

Fig. 8. An example of crossover operator (Sequence of jobs)

3.2.7. Stopping criteria

The stopping criteria in the GA-PSA is similar to the ones
described for PSO-PSA. Figure 9 shows the pseudo-code
of the proposed GA-PSA algorithm.

Procedure of hybrid GA-PSA algorithm

P: generate the initial population (Npop)
Untiltermination condition is metDo

Evaluate the chromosomes
Apply the crossover operator
Apply the mutation operator
Start PSA with some of the best and the worst chromosomes

For all the selected chromosomes Do

Set repetition counter k = 0
Untiltermination condition is met Do

Set repetition counter M= 0
UntilM= in_loopDo

Generate a neighbour solution: ω2
Calculate Δω1, ω2= f(ω) - f(ω0)

If Δω1, ω2 ≤ 0, then ω1 = ω2
If Δω1, ω2 >0, then ω1 = ω2 with probability exp (-Δω1, ω 2 / tk)
m = m + 1
End
Tk+1= α Tk

k = k + 1
End

 End

Transfer the improved solutions to the genetic population and combine
all the generated populations

End
Fig. 9. Pseudo-code of GA-PSA

4. Computational Evaluation

All experimental results have been carried out on an
ASUS laptop with a 2.4 GHz, core i5 processor using a
4GB of RAM. All metaheuristic algorithms have been
implemented in MATLAB Software (Version 7.10.0.499,
R2010a) and the linear programming models have been
solved using CPLEX 12. Also, the Minitab 17 software
has been used to apply theTaghuchi design of experiment
method for parameters tuning.Two sets of test problems
are applied to solve the model. These test problems are

generated based on the data given in Table 1. Here, we
considered 5 scenarios, each of which has equal
probability to be occurring.Three machines workat each
station, considering the number of jobs and the numbers
of stations, the two test sets aregeneratedin small and
large problem sizes. First, 18small sized test problems are
generated and the solutions, obtained by the algorithms,
are evaluated against global optimum
amounts.Furthermore, 60 large sizedtest problems are
applied to compare the performance of the algorithms.
We considered two kinds of total budget called
hereinafter by type 1 and 2. Both budget types are
associated to the number of jobs. The budget types 1 and
2 are respectively calculating by multiplying of number of
jobs in 1200 and 1000. Therefore, the budget type 2 is
more strict than type 1.

Table 1
Factor and their levels
Factors Levels
Number of jobs (j) [4, 5, 6, 20, 50, 60, 100]
Number of stations (s) [2, 3, 4, 6, 9]
Holding cost ($/sec) Uniform [50, 100]
Process times (sec) Uniform [1, 99]
The minimum of availability 0.95
The repair rate of machine (sec) Uniform [10, 50]
The failure rate of machine (sec) Uniform [150, 450]
Number of scenarios 5

4.1. Parameter tuning

As mentioned before, the initial parameters of hybrid
PSO-PSA algorithms (including both PSO-PSAІ and
PSO-PSAП) are the population size (Npop), the number of
successive iterations in which the best solution does not
change (M), the cognition learning factor (C1), The social
factor (C2) the inertial weight (w), the population size
(Npop), the number of internal loop (In loop), and the
temperature decreasing rate (α). Also, the population size
(Npop), the number of successive iterations in which the
best solution does not change (M), the crossover
probability (Pc), and the similarity coefficient (SC), and
the mutation probability (Pm) the number of internal
loops (In loop), and the temperature decreasing rate (α)
were used in GA-PSA.To investigate the influence of
those parameters on the performance of the algorithms,
we implement the Taguchi’s method in the design of
experiments (DOE) (Montgomery, 2005).In the Taguchi’s
method, the results are converted into an estimator called
single to noise ratio (S/N). The S/N ratio shows both the
mean and the variation in the response variables. To
minimize the objective function the S/N ratio is calculated
as the following formula: 𝑆 𝑁⁄ = −10 log ⁡(1 𝑛⁄ ∑ 1𝑦𝑖2𝑛

𝑖=1)⁡⁡(23)
Which, n and yiindicate number of replications and
process response value at i’th replication. We chose the

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 133- 149

141

orthogonal array L27 for both PSO-PSA and GA-PSA. In
Taguchi’s design of experiments, the relative percentage
deviations (RPD’s) transform into S/N ratio, we figure out
the response value of each parameter in the proposed
algorithms.After testing the different parameter levels and
analysing the obtained results, the better initial parameter
levels were gained. The initial and optimumparameter
levels of each proposed hybrid algorithm are shown in
Tables 2.According to the parameter values in Table 2,
we illustrate the trend of each factor level of PSO-PSA
and GA-PSA are in Figures 10 and 11, respectively. Also,
the results of each test problem solved by the proposed
algorithms are shown in Figure 12. The statistical results
of the objective function (makespan)and CPU time for the
small and large sized problems are presented in Tables 5
and 6.Additionally, we utilized the relative percentage
deviation (RPD) to test the performances of applied
metaheuristics as below:
 𝑅𝑃𝐷 = 𝐴𝑙𝑔𝑠𝑜𝑙 − 𝐿𝑠𝑜𝑙𝐿𝑠𝑜𝑙 ⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1, … , 𝑛⁡⁡(32)

Where, Algsolis the objective function value for a given
algorithm, Lsolis the best value of the objective function
between algorithms and n is the number of small size or
large size problems.

Table 2
Initial and optimum parameter levels of hybrid algorithms
Algorithms Parameters Factor levels Optimum

amount 1 2 3

PSO-PSA

Npop PSO-PSA 100 200 300 200
M 10 20 30 20
C1 1 1.5 2 1.5
C2 0.7 1 1.5 1
Ω 0.3 0.4 1 0.4

In loop 5 10 15 10
α 0.87 0.91 0.95 0.91

GA-PSA

Npop GA-PSA 100 200 300 200
M 10 20 30 20
Pc 0.85 0.9 0.95 0.9
SC 0.6 0.7 0.8 0.7
Pm 0.005 0.01 0.015 0.01

In loop 5 10 15 10
α 0.87 0.91 0.95 0.91

Fig. 10. Factor level trend of PSO-PSAalgorithm

Fig. 11. Factor level trend of GA-PSAalgorithm

Sadigh Raissi et al. / Three Hybrid Metaheuristic Algorithms…

142

Table 5
Solutions found by the algorithms of the small-sized test problems

 CPLEX PSO-PSAП PSO-PSAІ GA-PSA
Problem

Budget

type
NOJ
(j)

NOS
(s)

Makespan CPU
time

Gap
(%)

Makespan CPU
time

Makespan CPU
time

Makespan CPU
time

1 1
2

4 2 205
210

22
22

0
0

205
210

22
23

205
229

26
37

205
233

29
39

2 1
2

 209
217

35
36

0
0

209
218

37
35

216
225

52
47

219
228

55
49

3 1
2

 3 214
240

95
91

0
0

214
241

97
94

215
248

109
117

227
253

115
122

4 1
2

 218
223

155
150

0
0

218
224

156
152

227
237

160
182

249
250

163
186

5 1
2

 4 232
236

185
184

0
0

235
238

191
187

243
246

305
287

247
249

321
328

6 1
2

 249
250

235
234

0
0

249
252

238
236

257
264

398
382

260
262

415
402

7 1
2

5 2 237
241

645
647

0
0

238
245

651
650

248
252

1039
1077

251
255

1100
1138

8 1
2

 253
262

822
830

0
0

256
268

831
833

265
273

1005
1015

270
276

1176
1165

9 1
2

 3 270
280

882
890

0
0

274
282

890
893

280
292

996
1016

284
298

1034
1086

10 1
2

 289
304

918
922

0
0

292
308

923
931

302
317

987
1083

305
321

1150
1154

11 1
2

 4 335
348

1012
1048

0
0

337
350

1024
1055

346
355

1056
1088

350
369

1149
1047

12 1
2

 326
351

943
950

0
0

329
353

951
958

336
363

1008
1032

339
368

1062
1094

13 1
2

6 2 349
362

1083
1116

0
0

352
366

1099
1128

361
374

1125
1176

367
379

1139
1182

14 1
2

 351
366

1043
1055

0
0

355
371

1074
1094

363
381

1133
1156

369
385

1273
1258

15 1
2

 3 350
372

1103
1144

24.54
28.55

354
376

1127
1185

367
392

1176
1192

369
395

1201
1282

16 1
2

 347
360

1078
1123

29.17
31.47

351
363

1112
1175

358
371

1185
1211

363
374

1246
1267

17 1
2

 4 361
367

1197
1255

68.35
66.92

364
371

1225
1292

373
379

1312
1332

377
383

1424
1487

18 1
2

 358
394

1205
1270

74.18
78.53

363
398

1243
1293

370
384

1294
1345

376
399

1431
1481

Average

1
2

 268.28
299.06

703.22
720.39

10.90
51.37

288.61
301.89

716.17
734.11

296.22
310.11

798.11
820.33

301.50
315.39

860.17
875.94

Gap (%) = CPLEX optimality gap

Fig. 12. The performance of proposed hybrid algorithmsof the large-sized test problems in terms of average makespan

0

2000

4000

6000

8000

10000

12000

14000

16000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

11
5

11
8

A
v

er
a

g
e
 m

a
k

es
p

a
n

Test problem

PSO-PSAП PSO-PSAІ GA-PSA

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 133- 149

 143

Table 6
Solutions found by the algorithms of the large-sized test problems
Problem

Budget

type
NOJ
(j)

NOS
(s)

PSO-PSAП PSO-PSAІ GA-PSA
Makespan CPU time Makespan CPU time Makespan CPU time

1 1
2

20 3 958
1005

2231
2277

937
996

2265
2309

1009
1055

2319
2393

2 1
2

 941
994

2226
2202

959
1002

2261
2278

992
1038

2318
2373

3 1
2

 964
1032

2230
2282

988
1042

2278
2266

1031
1086

2302
2285

4 1
2

 984
1034

2236
2224

981
1034

2279
2273

1035
1088

2333
2383

5 1
2

 952
993

2227
2265

985
1071

2291
2281

993
1039

2329
2382

6 1
2

 6 1127
1179

2385
2463

1138
1197

2450
2408

1161
1231

2483
2479

7 1
2

 1152
1223

2397
2467

1131
1174

2438
2464

1201
1276

2508
2579

8 1
2

 1080
1147

2395
241

1097
1142

2428
2426

1119
1165

2469
2486

9 1
2

 1188
1252

2373
2434

1149
1223

2443
2406

1245
1297

2471
2532

10 1
2

 1164
1218

2380
2379

1170
1228

2431
2426

1104
1159

2468
2464

11 1
2

 9 1174
1210

2417
2490

1178
1234

2458
2524

1216
1278

2529
2531

12 1
2

 1120
1190

2416
2490

1155
1225

2471
2450

1178
1249

2521
2480

13 1
2

 1197
1260

2433
2476

1233
1304

2443
2441

1257
1307

2471
2457

14 1
2

 1143
1215

2421
2437

1145
1213

2465
2495

1169
1233

2500
2549

15 1
2

 1187
1250

2417
2412

1233
1293

2476
2485

1236
1309

2511
2521

16 1
2

50 3 2617
2706

2903
2990

2684
2793

3021
3030

2767
2912

3197
3137

17 1
2

 2652
2758

2911
2945

2730
2881

3028
3058

2813
2936

3134
3216

18 1
2

 2562
2693

2910
2956

2639
2753

3074
3124

2697
2799

3251
3339

19 1
2

 2635
2740

2908
2952

2697
2813

3010
3013

2768
2916

3159
3130

20 1
2

 2589
2676

2901
2936

2680
2789

3050
3042

2757
2858

3180
3270

21 1
2

 6 2839
2992

3010
3097

2920
3035

3141
3085

3055
3218

3300
3378

22 1
2

 2815
2922

3009
3085

2918
3036

3115
3075

2994
3106

3240
3233

23 1
2

 2620
2725

3010
3103

2698
2801

3116
3146

2770
2873

3255
3319

24 1
2

 2843
2996

3031
3019

2933
3035

3199
3286

3050
3169

3352
3444

25 1
2

 2568
2687

3022
3073

2637
2727

3184
3260

2750
2860

3300
3269

26 1
2

 9 2827
2943

3181
3178

2911
3024

3324
3427

3004
3153

3491
3571

27 1
2

 2825
2989

3186
3225

2898
3064

3318
3399

3009
3187

3516
3460

28 1
2

 3109
3296

3164
3137

3214
3373

3288
3273

3325
3478

3399
3465

29 1
2

 2827
2948

3181
3203

2931
3043

3280
3369

3051
3210

3390
3338

30 1
2

 3087
3245

3193
3292

3178
3322

3344
3380

3299
3489

3517
3476

31 1
2

60 3 4117
4388

3578
3690

4525
4793

3834
3926

4900
5726

4070
4084

32 1
2

 3861
4059

3596
3616

4194
4466

3837
3763

4468
4823

4035
4125

33 1
2

 4026
4327

3594
3470

4304
4684

3847
3786

4752
5026

4097
4179

34 1
2

 3828
4043

3586
3670

4192
4452

3876
3968

4507
4910

4134
4243

35 1 4048 3589 4424 3839 4787 4112

Sadigh Raissi et al. / Three Hybrid Metaheuristic Algorithms…

144

2 4412 3694 4675 3840 5185 4207
36 1

2
 6 4406

4650
3709
3692

4712
5107

3999
3922

5205
5487

4221
4180

37 1
2

 4331
4711

3729
3764

4658
4993

4025
3975

5161
5487

4246
4230

38 1
2

 4123
4479

3701
3788

4403
4675

4030
4128

4860
5256

4351
4483

39 1
2

 4250
4513

3700
3809

4570
4916

3912
3988

5072
5392

4240
4342

40 1
2

 4236
4552

3722
3745

4641
4982

3916
3943

5060
5322

4157
4256

41 1
2

 9 4668
4927

3954
4002

5008
5350

4221
4189

5415
5760

4494
4638

42 1
2

 4443
4749

4024
3961

4793
5051

4248
4177

5155
5592

4499
4553

43 1
2

 4249
4607

3947
4001

4626
4958

4156
4232

4943
5218

4431
4511

44 1
2

 4705
4857

3958
3937

5156
5283

4227
4232

5302
5673

4449
4477

45 1
2

 4569
4985

3949
4037

4761
4912

4226
4168

5018
5325

4554
4537

46 1
2

100 3 9395
10037

4845
4805

10169
11081

5459
5445

11358
12081

6083
6024

47 1
2

 9416
10112

4857
5003

10344
11193

5313
5335

11573
12201

6022
5913

48 1
2

 9712
10299

4799
4866

10521
11197

5446
5561

11681
12717

5957
5860

49 1
2

 9279
9762

4811
4962

10184
10869

5301
5307

10896
11522

5982
5906

50 1
2

 9137
9880

4824
4756

9879
10651

5423
5410

11125
11700

6040
6227

51 1
2

 6 9938
10733

4968
5022

11013
11748

5629
5732

11839
12457

6274
6258

52 1
2

 9725
10589

4972
4932

10744
11570

5587
5544

11916
12867

6240
6367

53 1
2

 9747
10378

4920
5059

10919
11581

5415
5340

11947
12926

6167
6248

54 1
2

 10115
10917

4937
4948

11005
11661

5566
5489

12176
13142

6305
6327

55 1
2

 9844
10468

5017
4972

10732
11580

5479
5498

11919
12673

5978
6091

56 1
2

 9 10733
12093

5428
5366

11540
12239

6568
6677

12597
13491

7390
7630

57 1
2

 11007
11613

5799
5817

12329
13058

6558
6643

13316
14096

7855
7953

58 1
2

 10873
11434

5849
5997

12069
12826

6557
6438

13537
14717

7462
7577

59 1
2

 11654
12466

5892
6020

13002
13705

6694
6782

14018
15217

7583
7467

60 1
2

 10650
10987

5824
5742

11537
12587

6502
6697

12880
13879

7893
7834

Average

1
2

 4547.18
4842.08

3579.70
3617.55

4900.02
5211.50

3850.98
3867.98

5307.42
5656.53

4158.90
4193.93

NOJ (j) =number of jobs
NOS (s) =number of stations

After solving all test problems, the results showed that in
the all test problems, PSO-PSAПhas better performances
in terms of makespan and CPU time. The comparisons of
makespan show that the PSO-PSAП provides better
solution quality with difference average RPD (ARPD) of
5.24, and 12.02 in comparison to PSO-PSAІ, and GA-
PSA, respectively. Also, we can see that in the
comparison of CPU times, PSO-PSAП give better results
in terms of difference ARPD of 6.04, and 13.42 against
PSO-PSAІ, and GA-PSA. Figures 13 and 14 show the
mean plot of the CPU time and makespan of the proposed
metaheuristic algorithms, respectively.According to
computational results, it can be inferred that in small-
sized test problems, all the algorithms approximately have

the same computational effort. Therefore, it can be proved
that all the metaheuristic algorithms are able to reach
optimal/near optimal solutions.But, as the sizes of the
problems are increased, the difference between algorithms
is more revealed so that PSO-PSAП overcomes all other
algorithms. However, the PSO-PSAІ, and GA-PSA are
highly affected by the problem size so that by increasing
it, the CPU time is exponentially increased. Figure 15
depicts the 95% confidence intervals of makespan and
Figure 16 showsthe 95% confidence intervals for RPD
among the proposed algorithms.

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 133- 149

145

Fig. 13. Means plot of CPU time of hybrid algorithms

Fig. 14. Means plot of makespan of hybrid algorithms

5. Conclusion

In this study, we developed the stochastic flexible flow
shop scheduling problem (SFFSSP) considering fixed
interval preventive maintenance (PM) and budget
constraint. This new type of problem which is the main
contribution of the research is presented an integrated
mathematical model which is capable to consider all of
the influential factors on makespan. In theproposed
SFFSSP, there is a buffer between each stage, if all
machines are busy or under PM action, the job can wait in
the buffer. The budget constraint controls the holding
costs of total jobs in all buffers should not be greater than
available budget. The proposed model considers not only
the preventive maintenance, but also stochastic processing
time and budget constraint. By integrating all of these
subjects the model will reflect the real performance of a
SFFSSP. Since the problem was strongly NP-hard, three
hybrid algorithms, including PSA with two types of PSO
algorithms (PSO-PSAІ and PSO-SAП), and a GA (GA-
PSA) were proposed to solve the model, which have
suitable quality solutions in the literature.To compare the
computational results, we tested two types of test
problems containing 18 small sized test problems and 60
large sized test problems. As the results showed, the PSO-
PSAП algorithm provided better quality solutions in both

makespan and CPU time among the test problems. Also,
the higher performance of proposed PSO-PSAП
algorithm with respect to other algorithms is more
revealed in the large sized test problems.
The presented model is still open to considering other
options, such as sequence dependent setup time, machine
random breakdown, and the problem of job availability at
time zero. Also, it might be exciting in working on bi-
objective SFFSSP’s, which the other objective function
could be minimizes the maximum tardiness.Another
research direction could be incorporating different
transportation types to transport jobs between each stage.
Additionaleffort can try to solve model by developing a
new solution methodology such as a new hybrid
algorithm or a new population-based algorithm can be
investigated.We assumed that each job has a same
holding cost at each intermediate buffer, but it is different
at each stage. Another aspect deserving future efforts is to
consider that the holding costs of each job are different at
any intermediate buffer.

Fig 15. The 95% confidence intervals of makespanof the small-

sized test problems

Fig 16. The 95% confidence intervals of makespanof the large-
sized test problems

References

Akrami, B., Karimi, B., Hosseini, S.M.M., (2006). Two
metaheuristic methods for the common cycle

0

5

10

15

20

25

30

20 50 60 100

R
P

D

NOJ

PSO-PSAП PSO-PSAІ GA-PSA

0

5

10

15

20

25

20 50 60 100

R
P

D

NOJ

PSO-PSAП PSO-PSAІ GA-PSA

0

50

100

150

200

250

300

350

CPLEX PSO-PSAП PSO-PSAІ GA-PSA

R
P

D

0

2

4

6

8

10

12

14

16

PSO-PSAП PSO-PSAІ GA-PSA

R
P

D

Sadigh Raissi et al. / Three Hybrid Metaheuristic Algorithms…

146

economic lot sizing and scheduling in flexible flow
shops with limited intermediate buffers: the finite
horizon case.Applied Mathematics and Computation,
183, 634- 645.

Al-Hinai, N., ElMekkawy, T.Y., (2011). Robust and
stable flexible job shop scheduling with random
machine breakdowns using a hybrid genetic
algorithm.International Journal of Production

Economics, 132, 279-291.
Almeder, C., Hartl, R.F., (2013). A metaheuristic

optimization approach for a real-world stochastic
flexible flow shop problem with limited
buffer.International Journal of Production

Economics, 145, 88-95.
Arnaout, J.P., (2014). Rescheduling of parallel machines

with stochastic processing and setup times.Journal of

Manufacturing Systems, 33 (3), 376-384.
Brucker, P., Kramer, B., (1995). Shop scheduling

problems with multiprocessor tasks on dedicated
processors. Annals of Operations Research, 50, 13–
27.

Choi, S.H., Wang, K., (2012). Flexible flow shop
scheduling with stochastic processing times: A
decomposition-based approach.Computers &

Industrial Engineering, 63, 362-373.
Fahmy, S.A., Sherif, A., Balakrishnan, S., ElMekkawy,

T.Y., (2009). A generic deadlock-free reactive
scheduling approach.International Journal of

Production Research, 47 (20), 5657-5676.
González-Neira, E.M., García-Cáceres, R.G., Cabellero-

Villalobos, J.P., Molina-Sánchez, L.P., Montoya-
Torres, J.R., (2016). Stochastic flexible flow shop
scheduling problem under quantitative and
qualitative decision criteria.Computer and Industrial

Engineering, 101, 128-144.
Gupta J.N.D., (1988). Two stage hybrid flow shop

scheduling problem. Journal of Operational

Research Society, 39(4), 359-64.
Hoogeveen, J.A., Lenstra, J.K., Veltman, B., (1996).

Minimizing the makespan in a multiprocessor flow
shop is strongly NP-hard. European Journal of

Operational Research, 89, 172-175.
Kennedy, J.,Eberhart,R.C.,(1995). Particle swarm

optimization.Proceeding of IEEE International

Conference on Neural Network, Piscataway: IEEE 4,
1942-1948.

Kianfar, K., FatemiGhomi, S.M.T., OroojlooyJadid, A.,
(2012). Study of stochastic sequence-dependent
flexible flow shop via developing a dispatching rule
and a hybrid GA.Engineering Applications of

Artificial Intelligence, 25, 494-506.
Koulamas, C., Kyparisis, G.J., (2000). Scheduling on

uniform parallel machines to minimize maximum
lateness.Operations Research Letters, 24(6),175-179.

Li, J.Q., Pan, Q.K., (2015). Solving the large-scale hybrid
flow shop scheduling problem with limited buffers
by a hybrid artificial bee colony algorithm.
Information Sciences, 316:487–502.

Lin, SW., Ying, K.C., (2013). Minimizing makespan in a
blocking flowshop using a revised artificial immune
system algorithm.Omega, 2 (4), 383-389.

Lin, J.T., Chen, C.M., (2015). Simulation optimization
approach for hybrid flow shop scheduling problem in
semiconductor back-end manufacturing.Simulation

Modeling Practice and Theory, 51, 100-114.
Montgomery, D.C. (2005). Design and analysis of

experiments. Arizona, John Wiley and Sons.
Norman, B.A., Bean, J.C., (1999). A genetic algorithm

methodology for complex scheduling problems.
Naval Research. Logistics, 46: 199-211.

Osman, I.H., Kelly, J.P., (1996). Metaheuristics: an
overview. Metaheuristics: theory and applications.

Boston: Kluwer Academic Publisher, 1-21.
Pinedo, M., Chao, X., (1999). Operations scheduling with

applications inmanufacturing and services. New

York: McGraw-Hill.
Pinedo, M., (2002). Scheduling theory, algorithms, and

systems. Englewood Cliffs, New Jersey: Prentice-

Hall. Chapter 2.
Poli, R., Kennedy, G., Blackwell, T., (2007). Particle

swarm optimization: an overview. Swarm

Intelligence, 1(3), 33-57.
Rabiee, M., Sadeghi Rad, R., Mazinani, M., Shafaei, R.,

(2014). An intelligent hybrid metaheuristic for
solving a case of no-wait two-stage flexible flow
shop scheduling problem with unrelated parallel
machine.International Journal of Advanced

Manufacturing Technology, 71: 1229-1245.
Rahmani, D., Heydari, M., (2014). Robust and stable flow

shop scheduling with unexpected arrivals of new
jobs and uncertain processing times. Original

Research Article, 33 (1), 84-92.
Rahmani, D., Ramezanian, R., (2016). A stable reactive

approach in dynamic flexible flow shop scheduling
with unexpected disruptions: A case study.
Computers & Industrial Engineering, 98, 360-372.

Sangsawang, C., Sethanan, K., Fujimoto, T., Gen, M.,
(2015). Metaheuristics optimization approaches for
two-stage reentrant flexible flow shop with blocking
constraint.Expert Systems with Applications, 42,
2395–2410.

Singh, M.R., Mahapatra, S.S., (2012). A swarm
optimization approach for flexible flow shop
scheduling with multiprocessor tasks.International

Journal of Advanced Manufacturing Technology, 62:
267-277.

Sukkerd, W., Wuttipornpun, T., (2016). Hybrid genetic
algorithm and tabu search for finite capacity material
requirement planning system in flexible flow shop
with assembly operations. Computers & Industrial

Engineering, 97, 157- 169.
Tang, D., Dai, M., Salido, M.A, Giret, A., (2016).

Energy-efficient dynamic scheduling for a flexible
flow shop using an improved particle swarm
optimization. Computers in Industry, 81, 82–95.

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 133- 149

147

Tran, T.H., Ng, K.M. (2011). A water flow algorithm for
flexible flow shop scheduling with intermediate
buffers.Journal of Scheduling, 14, 483-500.

Villemeur, A., (1991). Reliability, availability,
maintainability and safety assessment. USA: Wiley.

[32] Wang, X., Tang, L., (2009). A Tabu search heuristic
for the hybrid flowshop scheduling with finite
intermediate buffers. Computers & Operations

Research, 36 (3), 907–918.
Wang, K., Choi, S.H., (2014). A holonic approach to

flexible flow shop scheduling under stochastic
processing times.Computers & Operations Research,
43, 157-168.

Wardono, B., Fathi, Y., (2004). A Tabu search algorithm
for multi-stage parallel machine problem with
limited buffer capacities. European Journal of

Operational Research, 155 (2), 380-401.
Zabihzadeh, S.R., Rezaeian, J., (2015). Two metaheuristic

algorithms for flexible flow shop scheduling problem
with robotic transportation and release time. Applied

Soft Computing, 40, 319-330.

This article can be cited: Raissi, S., Rooeinfar, R. & Ghezavati, V. R. (2019)
Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem
with Preventive Maintenance and Budget Constraint Journal of Optimization in Industrial Engineering.
12 (2), 131-147.

http://www.qjie.ir/article_543744.html
DOI: 10.22094/JOIE.2018.242.1532

http://www.qjie.ir/article_543744.html

