
79- 92

DOI: 10.22094/JOIE.2017.499.11

79

The Preemptive Just-in-Time Scheduling Problem in a Flow Shop

Scheduling System

Javad Rezaeian
 a,*

, Sadegh Hosseini-Kia
 a

, Iraj Mahdavi
 b

a
Department of industrial engineering, Mazandaran University of Science and Technology, Babol, Iran.

Received 09July 2015; Revised 16April 2017; Accepted 19October 2017

Abstract

Flow shop scheduling problem has a wide application in the manufacturing and has attracted much attention in academic fields. From other

point, on time delivery of products and services is a major necessity of companies’ todays; early and tardy delivery times will result

additional cost such as holding or penalty costs. In this paper, just-in-time (JIT) flow shop scheduling problem with preemption and

machine idle time assumptions is considered in which objective function is minimizing the sum of weighted earliness and tardiness. A new

non-linear mathematical model is formulated for this problem and due to high complexity of the problem meta-heuristic approaches have

been applied to solve the problem for finding optimal solution. The parameters of algorithms are set by Taguchi method. Each parameter is

tested in three levels. By implementation of many problems with different sizes these levels are determined .Genetic algorithm, imperialist

competitive algorithm and hybrid of these algorithms are applied to solve the problem and the performance of the proposed algorithms are

evaluated by many test problems. The Computational results indicate the superiority of the performance of hybrid approach than GA and

ICA in finding the best solution in reasonable computational time.

Keywords: JIT scheduling; Flow shop; Preemption; Idle time

1. Introduction

In many industries, machines are arranged within flow

shop systems based on production sequence, in which

several machines are assigned to process jobs in series

and all jobs have a same operation sequence. Each

machine can only process one job at a time and

processing of a job must be completed on the current

machine before processing of the job is started on the

succeeding machine (Mehravaran and Logendran

2012).Rezaeian et al (2013) presented a hybrid algorithm

of genetic algorithm (GA) and Imperialist competitive

algorithm (ICA)to minimizethe total weighted of

makespan and maximum tardiness for a proposed hybrid

flow shop scheduling problem,. Fu et al (2012) studied

flow shop scheduling problem with incompatible job

families and limited buffer to minimize the mean

completion time of all jobs. Nikjo and Rezaeian (2014)

considereda flow line manufacturing cell problem and

solved it by a modified simulated annealing algorithm.

Permutation flow shop scheduling with family setups has

been regarded by Schaller (2012) in which the objective

function is minimizing total tardiness. The problem of

hybrid flow shop scheduling has been regarded by Najafi

et al (2012) and a mathematical model and an immune

system algorithm are presented. A mixed-integer linear

programming model for 𝐹𝑚|𝑝𝑟𝑚𝑝, 𝑆𝑖𝑗𝑘| ∑𝑈𝑗 has been

presented by Varmazyar and Salmasi (2012). Several

meta-heuristic algorithms based on tabu search and

imperialist competitive algorithms have been developed

to solve the problem. Experimental result showed that the

hybrid of these two algorithms produce better solutions

than the other proposed algorithms for large size

problems.

Timely delivery of products in many industries is one of

the important goals. Producing a good before or after the

delivery time imposed on manufacturers a cost. This cost

can be considered as the opportunity cost of the money

invested in inventory, storage and insurance costs and

deterioration, in case of earliness and customer

dissatisfaction, contract penalties, loss of sale and loss of

reputation in case of tardiness (Liao and Cheng 2007).

In the scope of JIT scheduling, many articles have been

published. Most studies in this issue build on minimizing

of total earliness and tardiness or total weighted earliness

and tardiness (see, e.g., Hendel and Sourd 2006; Esteve et

al 2006; Baker and Scudder 1990). Finke et all (2007)

studied Non-preemptive flow shop scheduling problem

with unequal due dates with respect to finding a

permutation schedule that minimizes sum of earliness and

tardiness. To solve this problem a tabu search meta-

heuristic combined with an LP evaluation function is

applied. Also, permutation flow shop scheduling has been

regarded by Schaller and Valente (2013) with the

objective of minimizing total earliness and tardiness and a

genetic algorithm is proposed to solve the problem. The

permutation flow shop scheduling problem with earliness

and tardiness penalties and common due date for jobs has

been considered by Chandra et al (2009). They divided

the problem into three cases: (i) the due date is such that

all jobs are necessarily tardy; (ii) the due date is

unrestricted; and (iii) the due date is between the two. A

comprehensive approach for solving the problem over the

entire range of due dates has been presented. Sun et al

*Corresponding author Email address: j.rezaeian@ustmb.ac.ir

, Summer & Autumn 2019,Vol.12, Issue 2

Journal of Optimization in Industrial Engineering

Javad Rezaeian et al./The Preemptive Just-In-Time…

80

(2012) proposed a model of identical parallel conveyor

belt flow shop using JIT with unstable information based

on the real situation of motorcycle assembly lines and an

artificial fish swarm algorithm based on polar co-ordinate

coding has been developed to solve the problem. The

problem of minimizing makespan and sum of the

earliness and tardiness of jobs in hybrid flow shop system

with fuzzy tasks’ operation times, due dates and

sequence-dependent setup times has been investigated by

Behnamian and FatemiGhomi (2014) and a bi-level

algorithm extended to solve the problem. In a similar

research Tadayoni Rad et al (2015) considered the same

objective function in a two-stage assembly flow shop

environment and the -constraint method has been used to

optimize the problem. Huynh Tuong and Soukhal (2010)

studied minimizing of total weighted earliness–tardiness

and due date cost in single machine and parallel machine

systems with a common due date. Ventura and

Radhakrishnan (2003) studied single machine scheduling

with varying processing times and distinct due dates in

JIT production environments and presented a binary linear

integer mathematical model for the problem. Also, JIT

one-machine scheduling with sequence-dependent setup

times studied by Sourd (2005) and a branch-and-bound

algorithm is presented for problem.

A different approach has been regarded in the JIT

scheduling problems. Lann and Mosheiov (1996)

considered the number of early-tardy jobs. The objective

is maximizing the weighted number of jobs which are

completed exactly on their delivery times and explained

several applications of this problem. Shabtay (2012)

investigated weighted number of JIT jobs problem in flow

shop system. For this problem, four different scenarios

have been regarded and for each one of the scenarios, an

algorithm has been presented. Also Shabtay et al (2012)

gave an analysis for two-machine flow-shop problem with

two criteria including weighted number of JIT jobs and

total resource consumption cost. They proved that the

problem is NP-hard even for constant processing times

and presented a polynomial time algorithm. a pseudo-

polynomial dynamic programming algorithm have been

introduced by Gerstl et al (2014) for the problem of

maximizing the weighted number of Just-in-Time jobs on

a proportionate flow shop which is faster than the

algorithms presented before.

JIT scheduling by preemption consideration has not been

attended in flow shop systems. If work process in a job

interrupted before its completion time on machine

referred as preemption. Recently Khorasanian and

Moslehi (2017) proposed two mathematical models for a

preemption flow shop scheduling problem by two

machines which the first machine is multi-task and can be

blocked. In order to solve the large sized instances a

variable neighbourhood search algorithm (VNS) and a

new variant of it, namely, dynamic VNS (DVNS), have

been extended. DVNS has a better performance in

compare to VNS based on computational results.

AfsharNadjafi and Shadrokh (2010) minimized weighted

earliness, tardiness and preemption penalties for

scheduling projects. The problem of preemptive project

scheduling studied by Hassanpour et al (2017) which the

resources are constrained in multi-mode case. They

indicated that presented multi-objective imperialist

algorithm achieves to solutions with higher quality. Most

papers in the field of preemptive JIT problems are

presented for single machine system. Khorshidian et al

(2011) minimized the total weighted earliness and

tardiness of a single machine problem with the allowance

of preemption and idle time for machine. They presented

a genetic algorithm for this problem. Hendel et al (2009)

studied JIT scheduling with preemption in single

machine. They proposeda different computation of

earliness related to the start time of the jobs. In other

words, 𝑇𝑗 = max⁡(0, 𝐶𝑗 − 𝑑𝑗𝑐) where 𝐶𝑗is completion time

of job j and 𝑑𝑗𝑐 is due date, 𝐸𝑗 = 𝑚𝑎𝑥(0, 𝑑𝑗𝑠 − 𝑆𝑗) where 𝑆𝑗 is start time of job j and 𝑑𝑗𝑠 = 𝑑𝑗𝑐 − 𝑝𝑗. Bulbul et al

(2007) considered earliness/tardiness scheduling problem

with preemption on a single machine. Also, Runge and

Sourd (2009) presented a new model for preemptive

scheduling on single machine. A local search algorithm

was presented for the problem.

In the case of preemption allowance, the amount of work

done for a job will be considered after preemption

(Khorasanian and Moslehi (2017)). They presented by at

least a flexible machine when preemption is allowed the

solution space will be enlarged. Preemtion can be

considered in manufacturing operations generally (Ebadi

and Moslehi (2012)). A practical sample of preemption is

presented Khorasanian and Moslehi (2017)for recovery of

a patient when the bed is busy and the recovery will be

continued after availability of bed .

In this study, JIT flow shop scheduling problem is

developed by consideration preemption and machine idle

time. Based on the general assumptions, buffers without

capacity limitations are assumed between machines.

Although, intermediate buffers may not be stayed because

of technological requirements or process characteristics in

some cases (Khorasanian and Moslehi (2017)).

Furthermore there are no sequence dependent setup time

and release date. A set of jobs 𝐺 = {𝐽1, 𝐽2, … , 𝐽𝑛} has been

considered. The objective function is minimizing ∑ (𝛼𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗)𝑛𝑗=1 which 𝐸𝑗 and 𝑇𝑗 are earliness and

tardiness of job 𝐽𝑗. JIT preemptive One-machine

scheduling is NP-hard (Hendel et al 2009). If earliness

penalty (𝛼𝑗) be equal to zero for any job then objective

function would be modified to ∑ 𝛽𝑗𝑇𝑗𝑛𝑗=1 . Lenstra et al

(1977) proved that 1|| ∑𝑊𝑗𝑇𝑗 is strongly NP-hard.

In this study minimization problem of total weighted

earliness and tardiness of jobs has been considered. This

problem is equivalent to 𝐹𝑚|𝑝𝑟𝑚𝑝|∑(𝛼𝑗𝐸𝑗 + 𝛽𝑗). Due to

the complexity of this problem, meta-heuristic methods

have been used to access an optimal solution in acceptable

computational time.

In the rest of the study, in sections 2 and 3 parameters,

variables and the mathematical model for the problem is

explained. Proposed GA, ICA and hybrid algorithms have

been described in section 4. Computational results are

evaluated in section 5. Finally, in section 6 the conclusion

and future research directions are presented.

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 79- 92

81

2. Problem Definition

In this section, we express the problem in a mathematical

model with linear and non-linear constraints so that

preemption and machine idle time are allowable. The

objective function deals with minimization earliness and

tardiness of jobs.

The model variables are defined as follows: a set of

machines {𝑀1, 𝑀2, … ,𝑀𝑚} and a set of independent jobs {𝐽1, 𝐽2, … , 𝐽𝑛} have been regarded. Each job 𝐽𝑗 must be

process on all machines and each machine can process

only one job at the same time. As long as the processing

of a job on current machine has not been completed, its

process cannot start on next machine. Each job 𝐽𝑗 has a

due date 𝑑𝑗 and processing time pij where i is related to

the number of machines. Earliness and tardiness of job 𝐽j
are defined as𝐸𝑗 = 𝑚𝑎𝑥(0, 𝑑𝑗 − 𝐶𝑚𝑗)and 𝑇𝑗 =max⁡(0, 𝐶𝑚𝑗 − 𝑑𝑗), respectively where 𝐶𝑚𝑗is the

completion time of job 𝐽j on last machine. All machines

are steadily available and machine destruction does not

happen. All jobs are available to process at zero time on

first machine. 𝛼𝑗and𝛽𝑗 are earliness and tardiness

penalties respectively.

Parameters:

i 1,2,…,m index for machines

j 1,2,…,n index for jobs 𝑘𝑖 Index for time windows on machine i 𝐻𝑖 Index for number of time windows on machine

i 𝑝𝑖𝑗 Processing time of job 𝐽𝑗 on machine i 𝑑𝑗 Due date of job 𝐽𝑗

Variables: 𝐶𝑖𝑗′ Auxiliary variable to compute completion

time of job 𝐽𝑗 on machine i 𝐶𝑖𝑗 Completion time of job 𝐽𝑗 on machine i 𝑆𝑇𝑖 Start time of machine i 𝑆𝑖𝑗 Start time of job 𝐽𝑗 on machine i 𝑋𝑖𝑘𝑖𝑗= {1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡job⁡𝐽𝑗 ⁡on⁡machine⁡𝑖⁡is⁡placed⁡in⁡the⁡position⁡𝑘𝑖0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise⁡⁡ 𝛿𝑖𝑗 = {0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡𝑋𝑖1𝑗 = 1M⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise 𝑆𝑖𝑘𝑖𝑗, = {𝑘𝑖 + 𝑆𝑇𝑖 − 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡𝑋𝑖𝑘𝑖𝑗 = 1M⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise

3. The Mathematical Model

We formulated the model as follows: 𝑀𝑖𝑛𝑍 =∑ (𝛼𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗)𝑛𝑗=1 ⁡⁡(1)
Subject To: ∑ 𝑋𝑖𝑘𝑖𝑗 = 𝑝𝑖𝑗𝑖 = 1,… ,𝑚𝑗 = 1,… , 𝑛𝐻𝑖
𝑘𝑖=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)

∑𝑋𝑖𝑘𝑖𝑗 ≤ 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1, … ,𝑚𝑘𝑖𝑛
𝑗=1 = 1,… ,𝐻𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 𝐶𝑖𝑗′ =  jiki

H

k i

i

i

Xk *max
1

𝑖 = 1,… ,𝑚𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4)
𝑆𝑇𝑖 =  

jiij

n

j
C ,1

1
min 

 𝑖 = 2,…𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 𝐶𝑖𝑗 = 𝐶𝑖𝑗′ + 𝑆𝑇𝑖𝑖 = 2,… ,𝑚𝑗 = 1,… , 𝑛(6) 𝑆𝑖𝑗 = '

1
min jik

H

k i

i

i

S


𝑖 = 2,… ,𝑚𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 𝐶𝑖−1,𝑗 ≤ 𝑆𝑖𝑗𝑖 = 2,… ,𝑚𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 𝑇𝑗 = 𝑚𝑎𝑥(0, 𝐶𝑚𝑗 − 𝑑𝑗) 𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 𝐸𝑗 = 𝑚𝑎𝑥(0, 𝑑𝑗 − 𝐶𝑚𝑗) 𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10)

The objective function (1) focused on minimizing total

weighted earliness and tardiness. Constraint (2) ensures

that each job is divided into 𝑝𝑖𝑗 period on each machine.

We have 𝐻𝑖 distinct period on each machine which each

period is the smallest unit of time that a preemptionon

jobs can happen. and𝐻𝑖 is length of schedule on machine

i. constraint (3) ensures that in each period, only one part

of one job can be processed or the machine does not

process any job, in other words we have machine idle

time. Constraints (4), (5) and (6) compute the completion

time of each job 𝐽𝑗 on machine i. constraint (7) calculates

start time of each job 𝐽𝑗 on each machine and constraint

(8) guarantees that no jobs start on next machine before

its completion on previous machine. Constraints (9) and

(10) are related to the tardiness and earliness of jobs.

For verification of the proposed model, the mathematical

model presented by Mehravaran and Logendran (2012)

are used. Both models have been coded in Lingo software

and the evaluation is done by test problems. To set same

circumstances in both models, the parameters in designed

test problems that do not exist in the other one (like

sequence dependent setup times in proposed model by

Mehravaran and Logendran (2012)) have been set equal

to 0 and a penalty has been added to the objective

function in our proposed model in order to prevent

preemption. The results of running the codes have shown

the validity of our model.

4. Proposed Algorithms

Here, GA, ICA and a hybrid of these algorithms are

designed for solving the problem.

4.1. GA

The concept of genetic algorithm first used by Holland

(1975) and popularized by Goldberg (1989). The main

steps of this algorithm are as follows:

4-1-1. Chromosome encoding

The first step in the adoption and implementation of the

genetic algorithms is mapping solution characteristics in

the form of a chromosome. In this study, two-dimensional

Javad Rezaeian et al./The Preemptive Just-In-Time…

82

chromosome is designed related to the number of

machines and periods. To avoid a large increase in the

search space, a dominant set is presented where the

optimal solution exists in. A typical chromosome of a

problem by two machines and two jobs is shown in Figure

1. The number of gens that allocated to each job on every

machine is equal to the processing time of job j on

machine i. Number of gens on each machine that are not

allocated is considered as idle time. The number in each

gen is related to job Jj and 0 is related to idle time.

12 1

0

2

2

2

1

11

0

0

2 22 1

0 0

0 1

0

0

J1 idle

J2

J2 J2 J2J1 J1 J1

J1J1J1J2 J2 J2

idle idle idle

idleidleidleidle

Machine 1

Machine 2

Fig 1. Decoding the chromosome

4.1.2. Initial population

Producing an initial set of solutions is the second step of

the GA implementation. First, a sequence of jobs are

randomly generated on a machine. Then, for next

machine, jobs are randomly arranged according to their

completion times on last machine. Number of genes of

each machine must be greater than or equal to the sum of

processing time of jobs on the machine, because of the

allowance of idle time.

4.1.3. Fitness evaluation

The aim of the fitness evaluation is calculating

competence of each solution in the population with regard

to the objective function. By calculating the completion

time of jobs, earliness and tardiness are calculated and the

cost function of each chromosome is calculated with the

following formula.

 𝑓 = ∑ (𝛼𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗)𝑛𝑗=1 (11)

By calculating the objective function of each

chromosome, a penalty added for violation of the

constraints. If a solution does not satisfy the precedence

constraint or the number of gens allocated to a job is not

equal to the processing time of the job then a penalty is

added to the objective function and is called adjusted

objective function. This function is calculated by relation

(12) where f shows the value of objective function, j1 is

first job on machine i, 𝑃𝑖𝑗′ is number of gens that are equal

to j on machine i, γ and δ are penalties for violation of

constraints.

 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐹𝑖) = 𝑓 + γ (∑ ∑ |𝑃𝑖𝑗′𝑃𝑖𝑗 − 1|𝑛𝑗=1𝑚𝑖=1) + 𝜇 (∑ ∑ 𝑚𝑎𝑥 (𝐶𝑖−1,𝑗′ −𝐶𝑖−1,𝑗1′𝑆𝑖𝑗−𝑆𝑇𝑖 − 1,0)𝑛𝑗=1𝑚𝑖=2) (12)

Finally, the fitness function will be calculated by relation

(13).
 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = exp⁡(−𝜌 ∗ (𝐹𝑖 𝑤𝑜𝑟𝑠𝑡𝐹𝑖⁄)) (13)

The parameter 𝜌 is selection pressure and adjusted so that,

the sum of selection probability for the first half of the

population with better objective function equals 80

percent.

4.1.4. Selection strategies

There are many methods for selecting the population and

each has its own advantage and disadvantage. Goldberg

(1989) proposed roulette wheel method to select parents.

In this study, the roulette wheel procedure as the most

popular method is applied for selection.

4.1.5. Genetic operators

In the proposed GA, two types of crossover operator are

used: single point crossover and double point crossover.

Crossover operator performed on chromosomes that have

been selected by the roulette wheel method. In single

point crossover, one machine between [1,m] will be

selected randomly and the gens of parents after the

selected machine will be replaced. As shown in Figure 2,

single point crossover may produce infeasible

chromosome. For example, in sequence of offspring A

and B, job 1 and job 2 doesn’t satisfy its precedence

constraints respectively (in offspring A, 𝐶11 > 𝑆21 and in

offspring B, 𝐶12 > 𝑆22).

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 79- 92

83

12 0 1 1 02

1 2 2 1 100

Machine 1

Machine 2

11 2 2 0 01

2 0 2 1 201

Parent A Parent B

Cutting point = 2

12 0 1 1 02

2 0 2 1 20

Machine 1

Machine 2

Offspring A

11 2 2 0 01

1 2 1 100

Offspring B

1 2

Fig 2. Single point crossover

Therefore, the chromosomes should be modified. The

values of gen 3 on machine 2 in offspring A would be

equal to 0 and first gen with 0 value after completion time

of job 1 would be equal to 1. As it is illustrated in Figure

3, the relation 𝐶𝑖−1,𝑗 ≤ 𝑆𝑖𝑗 is confirmed for all jobs. In

double point cross over operator, two machines are

randomly selected between [1,m] and the genes of parents

chromosomes between the two machines will be replaced.

12 0 1 1 02

2 0 2 1 21

Offspring A

11 2 2 0 01

1 2 1 102

Offspring B

00

Fig. 3. Offspring A and B after modification

In this algorithm, swap mutation operator was also

applied. In this operator, a chromosome and a machine

will be selected randomly, then two random jobs between

[1,n] will be selected and the last gen with these value

will be replaced with each other. It may also produce

infeasible chromosomes. To solve this problem,

modification will be done as well as crossover operator.

The swap mutation shown in Figures 4(a) and 4(b). In this

figures selected machine is 2 and selected jobs are 1 and

2.

1 2 0 21 1 02 0 0

01 1 2 2 0 2000

2 1 1 2 2 1 0000Machine 3

Machine 2

Machine 1

1 2 0 21 1 02 0 0

01 2 2 0 1000

2 1 1 2 2 1 0000Machine 3

Machine 2

Machine 1

2

Fig. 4.(a). Swap mutation before modification

1 2 0 21 1 02 0 0

01 2 2 0 1200

2 1 2 2 1 0000Machine 3

Machine 2

Machine 1

0

1 2 0 21 1 02 0 0

01 2 2 0 1200

2 0 1 2 2 1 0001Machine 3

Machine 2

Machine 1

0

1

Fig. 4.(b). Swap mutation after modification

Javad Rezaeian et al./The Preemptive Just-In-Time…

84

4.2. ICA

This method introduced by Atashpaz-gargari and Lucas

(2007) for the first time and simulated the social-political

process of imperialistic competition. Imperialist countries

try to dominate another countries by legislate directly or

through indirect methods, such as control of market and

raw materials. Imperialism was a political control over

other countries in order to use their resources or to

prevent the dominance of other imperialist countries.

Imperialist countries have intense competition to take

possession of colonial countries. This competition led to

the development of colonial countries in terms of

political, economic and military. Imperialists competes

for increasing the number of colonies and expansion of

their sovereignty. Similarly to what mentioned above,

ICA is simulated and such as many meta-heuristic

algorithms is population based. Each individual

constitutes a country or an imperialist. The competition of

empires is the foundation of ICA. The weak empires will

be dropped and the strong will be extend their colonies. In

this manner the algorithm will be converged to the

strongest empire and colony (Atashpaz-gargari and Lucas

2007). Main steps of the algorithm are as follow.

4.2.1. Initial empires

Countries in ICA have a similar role like chromosomes in

GA. Also, initial countries are generated like initial

chromosomes in GA. After producing this population,

Nimp countries with better cost functions have been

considered as empires and remaining countries (Ncol) have

been considered as colonies. According to the imperialist

powers, the colonies will be distributed between

imperialists which the normalized cost of each empire is

calculated with following relation. 𝑐𝑛is the cost of nth

empire and 𝐶𝑛 is the normalized cost. 𝐶𝑛 = 𝑚𝑎𝑥{𝑐𝑖} − 𝑐𝑛 (14)

And the normalized power of each empire is achieved by

relation (15).

 


impN

i
i

n
n

C

C
p

1

 (15)

The number of colonies of each imperialist is estimated

by relation (16). 𝑁𝐶𝑛 = 𝑟𝑜𝑢𝑛𝑑{𝑝𝑛. (𝑁𝑐𝑜𝑙)} (16)

4.2.2. Assimilation policy

One of the most critical steps of the ICA is the movement

of colonies to imperialist. For simulation of this policy in

proposed algorithm crossover and mutation operators of

GA have been used. At first two countries inside each

empire will be selected randomly as parents that one of

them will be selected from imperialists and the other one

will be selected randomly among its colonies. Then

crossover operation will be performed. Now, among two

produced offspring and selected colony, best of them will

be replaced with the selected colony. This process

graphically is shown in Figure 5. The values of

parameters for 2 jobs and 2 machines are shown in Table

1. Cost function of Parent A (imperialist), parent B

(selected colony), offspring A and offspring B are equal to

10, 20, 5 and 7 respectively. So, offspring A with

minimum cost function will be replaced with the selected

colony. Then on this new colony mutation operator will

be performed. If the produced colony is improved to a

better position, mutated colony will be replaced.

By implementation of this policy, colonies may reach to a

better position than the empire. In this mode of operation,

the position of the colony and imperialist will be

exchanged and the algorithm continues with the new

empire. Now, the new imperialist began to impose

assimilation policy on its colonies.

Table 1

The value of the parameters

Job Jj P1j P2j dj αj βj

J1

J2

3

3

2

2 12

11

2

2

2

3

Machin 1

Machin 2

Parent A (Imperialist) Parent B (selected colony)

1

Cutting point=2

12 2 2

22 1 1 1 0

0 0

0

1 1

11

2 2 20 0

00 1 2 2

Machin 1

Machin 2

Offspring A Offspring B

112 2 2

21 1 0

0 0

0

1 1

02

2 2 20 0

01 2 1 11 2

Fig. 5. Movement of colonies to imperialist

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 79- 92

85

4.2.3.imperialistic competition

Total power of an empire is equal to sum of the

imperialist power and a percentage of the power of its

colonies and will be calculated by following formula

where TC n is total cost of nth empire and ξ is a number

between 0 and 1.

TC n =Cost (imperialist n) +ξ mean {Cost (colonies of

empire n)} (17)

All empires try to take possession of colonies of other

empires and control them (Atashpaz-gargari and Lucas

2007). This competition is modelled by picking one of the

weakest colonies of the weakest empires and to take

possession of this colony, a competition among all

empires was created. First, the normalized total cost of

each empire will be calculated.

𝑁𝑇𝐶𝑛 = max𝑖(𝑇𝐶𝑖) − 𝑇𝐶𝑛 (18)

Where 𝑁𝑇𝐶𝑛 is the normalized total cost of nth empire.

The possession probability of each empire will be

calculated as follow. 𝑝𝑛 = | 𝑁𝑇𝐶𝑛∑ 𝑁𝑇𝐶𝑖𝑁𝑖𝑚𝑝𝑖=1 | (19)

Based on the presented method by AtashpazGargari and

Lucas (2007), vector P will be formed as follow.

P= [p1, p2,…, 𝑝𝑁𝑖𝑚𝑝] (20)

A random vector R with the same size as P will be

generated. This vector is an array of random numbers

with uniform distribution on the interval [0,1].

R= [r1 , r2 , … , 𝑟𝑁𝑖𝑚𝑝] (21)

The vector D will be produced as follow.

𝐷 = 𝑃 − 𝑅 = [𝐷1, 𝐷2, 𝐷3, … , 𝐷𝑁𝑖𝑚𝑝] = [𝑃𝑝1 − 𝑟1, 𝑃𝑝2 − 𝑟2, … , 𝑃𝑝𝑁𝑖𝑚𝑝 − 𝑟𝑁𝑖𝑚𝑝] (22)

Referring to vector D, mentioned colonies will be

assigned to an empire that its index on the vector D is

maximized.

4.2.4. Convergence

Different conditions can be considered for the elimination

of an empire. In the proposed algorithm, an empire will be

eliminated when it lost its colonies. Stopping criteria is

the end of all iterations of the algorithm. Then sequence

of strongest empire among all remaining empires will be

selected as the optimal sequence.

4.3. Hybrid Algorithm

Both of the two mentioned algorithms have their own

advantages. Computational results show that the number

of iterations in ICA is much more than of GA at the same

time, but GA has more precise in solution. In the other

word, faster convergence is the main advantage of ICA,

on the other hand GA has a better global optimal

achievement. The convergence of ICA and GA for a

problem with 20 jobs and 3 machines are shown in Figure

6. As it shown, ICA has converged faster, but GA is

produced better solutions than ICA. Here, a new hybrid

algorithm based on GA and ICA is developed to use the

advantage of both algorithms.

Fig. 6. The convergence in ICA and GA

0 10 20 30 40 50 60 70 80 90 100
800

900

1000

1100

1200

1300

1400

1500

Time

B
e
s
t

C
o
s
t

GA

ICA

Javad Rezaeian et al./The Preemptive Just-In-Time…

86

The main tasks of the proposed hybrid algorithm can be

divided into two main parts. First part is to create an

efficient and proper population and the second part is

improving this population in order to achieve an optimal

solution. Since, ICA is faster than GA, it does a lot of

search on the different sequence of the problem in order

to find a proper and good population. Thus, ICA can be

used as an efficient tool for creating an initial good

population for GA. The precision of GA for this case can

be a useful tool that improves initial population created by

the ICA to achieve an optimal or near-optimal sequence.

As shown in Figure 7, the hybrid algorithm has both

advantages of ICA and GA.

Fig. 7. The convergence in ICA, GA and hybrid algorithm

5. Computational Experiments and Analysis

5.1. Data generation

In this section, the performances of three mentioned

algorithms have been investigated by many test problems

in different sizes which the parameters follow a special

distribution function. Processing times are generated from

discrete uniform distribution [1,9], earliness and tardiness

penalties are generated from discrete uniform distribution

[1,4] and to produce deadlines, the following formula

introduced by zegordi at al (1995) have been used where �̅� is the mean of due dates and parameter 𝜏 is the

earliness/tardiness function. �̅� = (1 − 𝜏) ∗ ∑ ∑ 𝑃𝑖𝑗𝑛𝑗=1𝑚𝑖=1 ⁡⁡(23)

Since, sum of processing times will be a large number and

most of jobs may have earliness, the relation proposed by

Koulamas (1998 a,b) has been used to produce �̅�, where

M is maximum completion time achieved by Johnson’s

order.

𝑑̅ = (1 − 𝜏)𝑀

(24)

After calculating �̅�, due dates have been produced by

relation (25) where parameter R is range of due dates. d = [d̅ − R2M⁡, d̅ + R2M] (25)

Three different types of due dates produced considering

τ = 0.2⁡, 𝑅 = 0.6 ،τ = 0.35⁡, 𝑅 = 0.8and τ = 0.5⁡, 𝑅 =0.8.

5.2. Parameters setting

In order to study the interplay between parameters and

obtain the optimal combination of these parameters, a set

of experiments by Taguchi method have been designed.

Each parameter is tested in three levels. By

implementation of many problems with different sizes

these levels are determined. These factors and their levels

in the hybrid algorithms are shown in Table 2 where

PopGA is the number of initial population of GA, iteration

is the number of iteration in GA, Pc shows the crossover

rate, Pm shows the mutation rate, PopICA represent the

number of initial population of ICA, Decade is the

number of iteration in ICA and PICA is the percent of the

colonies role in determining the total power an empire.

Table 2

 Factors and their levels

Levels Factors
400, 600, 700 𝑷𝒐𝒑𝑮𝑨

60, 70, 80 Iteration

0.6, 0.7, 0.8 𝑷𝒄
0.3, 0.4, 0.5 𝑷𝒎

200, 300, 400 𝑷𝒐𝒑𝑰𝑪𝑨

250, 300, 350 Decade

0.05, 0.01, 0.15 𝑷𝑰𝑪𝑨

0 10 20 30 40 50 60 70 80 90 100
800

900

1000

1100

1200

1300

1400

1500

Time

B
e
s
t

C
o
s
t

GA

ICA

HYBRID

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 79- 92

87

The generated data have been analyzed by Minitab 14.

The summary of the results are shown in Table 3 and

parameters of the hybrid algorithm are set according to

these values.

Table 3

Setting values of parameters

PopIC

A

PIC

A

Decad

e
PopG

A
Pc

P

m

Iteratio

n
Facto

rs

400 0.1 350 600 0.

6
0.

5 80 Level

5.3. Experimental results

The mentioned algorithms are coded in MATLAB7.11

and many test problems considered to evaluate the

performance of proposed algorithms. The data are

generated randomly and the algorithms are run by a

computer with core i3 CPU (2.53 GHz / 3M cache) with

3GB RAM. Each test problem has been run 10 times and

the best, worst and average of solutions are shown in

Table 4. As it shown, for the small size of problems,

solutions by three proposed algorithms are the same and

the averages of solutions in GA for 4 test problems are

better and in other test problems, the hybrid algorithm

produced better solutions than the other algorithms.

Fig. 8. Polynomial approximation of the hybrid algorithm

Table 4

 Computational results of implementation of ICA, GA and Hybrid

Problem

size(S=Small,

M=Medium,

L=Large)

Number of

jobs

Number of

machines

Worst Average Best

GA ICA

HYB

GA ICA HYB GA ICA

HYB

S

2 jobs

2 machines 6 6 6 6 6 6 6 6 6

S 3 machines 9 9 9 9 9 9 9 9 9

S

3 jobs

2 machines 9 9 9 9 9 9 9 9 9

S 3 machines 10 10 10 10 10 10 10 10 10

S 4 machines 11 11 11 11 11 11 11 11 11

S 5 machines 28 30 28 27 27.6 26.9 26 26 26

S

4 jobs

2 machines 2 2 2 2 2 2 2 2 2

S 3 machines 10 10 10 7 7.6 6.9 6 6 6

S 4 machines 35 35 34 33 34.1 32.6 32 33 32

S 5 machines 43 43 42 41.6 42 41.3 41 41 41

S

5 jobs

2 machines 25 25 24 24.3 24.5 20 24 24 18

S 3 machines 26 27 26 22.5 24.2 22.2 21 23 21

S 4 machines 15 18 14 14.3 15.6 13 14 14 12

M 5 machines 103 107 101 98.3 101 96.3 93 94 92

y = 0.9907x2 - 19.508x + 108.48

0

200

400

600

800

1000

1200

0 10 20 30 40

T
im

e

Size

HYBRID

HYBRID

Poly. (HYBRID)

Javad Rezaeian et al./The Preemptive Just-In-Time…

88

S

8 jobs

2 machines 28 31 28 23.6 27.2 23.5 21 21 18

M 3 machines 82 105 69 67.2 74.1 61.7 56 62 55

M 4 machines 82 86 74 72.7 74.8 68.3 61 66 63

M 5 machines 147 151 133 112.6 130.2 110.6 90 112 90

M

15 jobs

2 machines 163 179 148 135.6 146.1 127.3 107 113 107

M 3 machines 203 259 180 152.6 190.1 149.2 114 154 121

M 4 machines 364 396 352 302.2 353.5 294.7 272 303 240

M 5 machines 907 932 842 658.5 693 642.4 438 463 427

M

20 jobs

2 machines 402 563 396 361.1 448.2 359.9 281 313 302

M 3 machines 738 829 706 653.7 758.5 629.2 525 684 518

M 4 machines 631 840 705 524.3 684.8 592.5 478 560 512

L 5 machines 890 1013 885 692 821 648 457 674 539

M

25 jobs

2 machines 572 596 535 426.1 511.5 425.2 338 454 316

M 3 machines 983 1243 962 833 1093.2 811.6 686 866 721

L 4 machines 1950 2663 2176 1743.4 2329.6 1683.3 1526 1857 1566

M

30 jobs

2 machines 902 1314 874 758.5 1029.6 734.2 627 827 620

L 3 machines 1097 968 1008 822 844.1 777 641 695 619

L 4 machines 2714 3535 2875 2474.9 2957.8 2612.2 2157 2316 2298

M

35 jobs

2 machines 1438 1807 1370 1293 1656.6 1260.5 1105 1415 1103

L 3 machines 2696 3090 2544 2432.9 2836.6 2421.9 2198 2277 2260

L 4 machines 3191 3515 3328 2849.3 3415.5 2945.1 2617 3251 2596

L

40 jobs

2 machines 2680 2906 2583 2317.8 2734.1 2400.2 2204 2568 2194

L 3 machines 4482 4295 4370 3945.9 3982.4 3832 3273 3687 3426

L 4 machines 4958 6015 5000 4589.1 5797 4582.4 4218 5195 4103

Also, Table 5 shows the best solutions of each algorithm

with its computational time and optimal solutions,

achieved by Lingo 9. The results show that ICA is faster

than other algorithms but the quality of solutions are

lower than others, and GA produced good solutions in

more computational time. But the hybrid algorithm

produced best quality of solutions with reasonable

computational time.

 Table 5

 The compare of computational time and quality of solutions in proposed algorithms and Lingo

Problem

size
(S=Small,

M=Medium,

L=Large)

Number

of Jobs

Number of

Machines
Global Solver

(Lingo)

GA ICA HYBRID

Optimal

Solution

Computational

time*

Best

Solution

Computational

time*

Best

Solution

Computational

time*

Best

Solution

Computational

time*

S

2 jobs

2 machines 6 0:00:56 6 0:00:24 6 0:00:15 6 0:00:19

S 3 machines 9 0:19:15 9 0:00:32 9 0:00:21 9 0:00:26

S

3 jobs

2 machines 9 0:06:19 9 0:00:27 9 0:00:17 9 0:00:22

S 3 machines 10 8:54:52 10 0:00:33 10 0:00:26 10 0:00:30

S 4 machines --- 10:00:00 11 0:00:59 11 0:00:38 11 0:00:44

S 5 machines --- 10:00:00 26 0:01:02 26 0:00:42 26 0:00:51

S

4 jobs

2 machines --- 10:00:00 2 0:00:28 2 0:00:23 2 0:00:25

S 3 machines --- 10:00:00 6 0:01:01 6 0:00:38 6 0:00:47

S 4 machines --- 10:00:00 32 0:01:12 33 0:00:41 32 0:00:53

S 5 machines --- 10:00:00 41 0:01:18 41 0:00:47 41 0:01:01

S

5 jobs

2 machines --- 10:00:00 24 0:00:50 24 0:00:38 18 0:00:44

S 3 machines --- 10:00:00 21 0:00:54 23 0:00:45 21 0:00:48

S 4 machines --- 10:00:00 14 0:01:03 14 0:00:42 12 0:00:54

M 5 machines --- 10:00:00 93 0:01:28 94 0:00:55 92 0:01:14

S

2 machines --- 10:00:00 21 0:01:07 21 0:00:44 18 0:00:52

M 3 machines --- 10:00:00 56 0:01:31 62 0:01:04 55 0:01:11

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 79- 92

89

M 8 jobs 4 machines --- 10:00:00 61 0:02:04 66 0:01:12 63 0:01:33

M 5 machines --- 10:00:00 90 0:02:24 112 0:01:28 90 0:01:57

M

15 jobs

2 machines --- 10:00:00 107 0:01:38 113 0:01:13 107 0:01:24

M 3 machines --- 10:00:00 114 0:02:59 154 0:01:46 121 0:02:23

M 4 machines --- 10:00:00 272 0:04:32 303 0:02:38 240 0:03:32

M 5 machines --- 10:00:00 438 0:05:58 463 0:03:36 427 0:04:52

M

20 jobs

2 machines --- 10:00:00 281 0:03:02 313 0:01:35 302 0:01:50

M 3 machines --- 10:00:00 525 0:04:16 684 0:02:35 518 0:03:26

M 4 machines --- 10:00:00 478 0:05:57 560 0:03:21 512 0:04:43

L 5 machines --- 10:00:00 457 0:08:18 674 0:05:06 539 0:06:41

M

25 jobs

2 machines --- 10:00:00 338 0:03:48 454 0:01:54 316 0:02:16

M 3 machines --- 10:00:00 686 0:05:54 866 0:03:31 721 0:04:42

L 4 machines --- 10:00:00 1526 0:10:48 1857 0:06:26 1566 0:08:35

M

30 jobs

2 machines --- 10:00:00 627 0:04:59 827 0:02:32 620 0:03:15

L 3 machines --- 10:00:00 641 0:09:28 695 0:05:50 619 0:07:37

L 4 machines --- 10:00:00 2157 0:13:59 2316 0:07:10 2298 0:11:15

M

35 jobs

2 machines --- 10:00:00 1105 0:05:11 1415 0:03:06 1103 0:04:13

L 3 machines --- 10:00:00 2198 0:11:12 2277 0:06:50 2260 0:09:10

L 4 machines --- 10:00:00 2617 0:14:47 3251 0:09:00 2596 0:12:13

L

40 jobs

2 machines --- 10:00:00 2204 0:06:59 2568 0:04:09 2194 0:05:41

L 3 machines --- 10:00:00 3273 0:13:42 3687 0:08:28 3426 0:11:15

L 4 machines --- 10:00:00 4218 0:20:26 5195 0:12:20 4103 0:17:00

A polynomial approximation function of the hybrid

algorithm is shown in Figure 8.

5.3.1. Experimental evaluation

To evaluate the mentioned algorithms, relative percentage

deviation (RPD) as the most common performance

measure is used according to relation (26).

𝑅𝑃𝐷 = 𝑠𝑜𝑙𝑎𝑣𝑔−𝑠𝑜𝑙𝑚𝑖𝑛𝑠𝑜𝑙𝑚𝑖𝑛 (26)

Where 𝑠𝑜𝑙𝑎𝑣𝑔 is the average value of the objective

function of each algorithm and 𝑠𝑜𝑙𝑚𝑖𝑛 is the minimum

value obtained by three proposed algorithms for each

instance. The RPD values for each algorithm are

calculated in Table 6.

Table 6

 The RPD values of ICA, GA and hybrid algorithm

HYBRID

ICA

GA

Number of

Machines

Number

of Jobs

HYBRID

ICA

GA

Number of

Machines

Number of Jobs

0.31 0.67 0.34 3 machines

15 jobs

0.00 0.00 0.00 2 machines

2 jobs 0.23 0.47 0.26 4 machines 0.00 0.00 0.00 3 machines

0.50 0.62 0.54 5 machines 0.00 0.00 0.00 2 machines

3 jobs

0.28 0.60 0.29 2 machines

20 jobs

0.00 0.00 0.00 3 machines

0.21 0.46 0.26 3 machines 0.00 0.00 0.00 4 machines

0.24 0.43 0.10 4 machines 0.03 0.06 0.04 5 machines

0.42 0.80 0.51 5 machines 0.00 0.00 0.00 2 machines

4 jobs
0.35 0.62 0.35 2 machines

25 jobs

0.15 0.27 0.17 3 machines

0.18 0.59 0.21 3 machines 0.02 0.07 0.03 4 machines

0.10 0.53 0.14 4 machines 0.01 0.02 0.01 5 machines

0.18 0.66 0.22 2 machines

30 jobs

0.11 0.36 0.35 2 machines

5 jobs
0.26 0.36 0.33 3 machines 0.06 0.15 0.07 3 machines

0.21 0.37 0.15 4 machines 0.08 0.30 0.19 4 machines

0.14 0.50 0.17 2 machines

35 jobs

0.05 0.10 0.07 5 machines

0.10 0.29 0.11 3 machines 0.31 0.51 0.31 2 machines

8 jobs 0.13 0.32 0.10 4 machines 0.12 0.35 0.22 3 machines

0.09 0.25 0.06 2 machines

40 jobs

0.12 0.23 0.19 4 machines

0.17 0.22 0.21 3 machines 0.23 0.45 0.25 5 machines

0.12 0.41 0.12 4 machines 0.19 0.37 0.27 2 machines 15 jobs

Javad Rezaeian et al./The Preemptive Just-In-Time…

90

This table shows that hybrid algorithm has better results

than other algorithms. The least significant differences

(LSD) intervals at the 95% confidence level for three

proposed algorithms are shown in Figure 9. It shows that

there is significant difference between three mentioned

algorithms and the hybrid algorithm produced better

solutions than ICA and GA.

Fig. 9. LSD intervals for the type of algorithms

6. Conclusions

In this study, a preemptive flow shop scheduling with JIT

approach was investigated where machine idle time is

allowed. To assume this case a new non-linear

mathematical model presented for the problem. Three

meta-heuristic algorithms (GA, ICA and hybrid of GA

and ICA)was proposed to solve the problem. To verify the

effectiveness of the search algorithms, 38 test problems

with three structures in small, medium and large sizes

were produced and solved. The experiments analysis

showed that the produced solutions by hybrid algorithm

have a better quality than ICA and GA and their

computational time is reasonable. Also, considering some

assumptions like sequence dependent setup time can be

applied for future researches.

References

Afsharnadjafi, B., & Shadrokh, S. (2010). The preemptive

resource-constrained project scheduling problem

subject to due dates and preemption penalties: An

integer programming approach. Journal of

Optimization in Industrial Engineering, Volume

1(Issue 1), 35-39.

Atashpaz-Gargari, E., & Lucas, C. (2007, 25-28 Sept.

2007). Imperialist competitive algorithm: An

algorithm for optimization inspired by imperialistic

competition. Paper presented at the 2007 IEEE

Congress on Evolutionary Computation.

Baker, K. R., & Scudder, G. D. (1990).Sequencing with

Earliness and Tardiness Penalties: A Review.

Operations Research, 38(1), 22-36.

doi:10.1287/opre.38.1.22

Behnamian, J., & FatemiGhomi, S. M. T. (2014).Multi-

objective fuzzy multiprocessor flowshop

scheduling.Applied Soft Computing, 21, 139-

148.doi:http://dx.doi.org/10.1016/j.asoc.2014.03.031

Chandra, P., Mehta, P., & Tirupati, D. (2009).Permutation

flow shop scheduling with earliness and tardiness

penalties.International Journal of Production

Research, 47(20), 5591-5610.

doi:10.1080/00207540802124301

Ebadi, A., & Moslehi, G. (2012). Mathematical models

for preemptive shop scheduling problems.

Computers & Operations Research, 39(7), 1605-

1614. doi:http://dx.doi.org/10.1016/j.cor.2011.09.013

Esteve, B., Aubijoux, C., Chartier, A., & T’kindt, V.

(2006).A recovering beam search algorithm for the

single machine Just-in-Time scheduling

problem.European Journal of Operational Research,

172(3), 798-813.

doi:http://dx.doi.org/10.1016/j.ejor.2004.11.014

International Journal of Production Research, 45(21),

4899-4915. doi:10.1080/00207540600871228

Fu, Q., Sivakumar, A. I., & Li, K. (2012).Optimisation of

flow-shop scheduling with batch processor and

limited buffer.International Journal of Production

Research, 50(8), 2267-2285.

doi:10.1080/00207543.2011.565813

Gerstl, E., Mor, B., & Mosheiov, G. (2015). A note:

Maximizing the weighted number of just-in-time

jobs on a proportionate flow shop. Information

Processing Letters, 115(2), 159-

162.doi:http://dx.doi.org/10.1016/j.ipl.2014.09.004

Goldberg, D. E. (1989). Genetic algorithms in search,

optimization, and machine learning: Addison-

Wesley, Reading, MA.

hasanpour, j., ghodoosi, m., & Hosseini, z. s. (2016).

Optimizing a bi-objective preemptive multi-mode

resource constrained project scheduling problem:

NSGA-II and MOICA algorithms. Journal of

R
P

D

GA-ICAICAGA

0.40

0.35

0.30

0.25

0.20

0.15

0.10

Interval Plot of GA; ICA; GA-ICA
95% CI for the Mean

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 79- 92

91

Optimization in Industrial Engineering, 10(21), 79-

92.

Hendel, Y., Runge, N., & Sourd, F. (2009).The one-

machine just-in-time scheduling problem with

preemption. Discrete Optimization, 6(1), 10-22.

doi:http://dx.doi.org/10.1016/j.disopt.2008.08.001

Hendel, Y., & Sourd, F. (2006).Efficient neighborhood

search for the one-machine earliness–tardiness

scheduling problem.European Journal of

Operational Research, 173(1), 108-119.

doi:http://dx.doi.org/10.1016/j.ejor.2004.11.022

Holland, J. H. (1975). Adaptation in Natural and Artificial

Systems: University of Michigan Press.

Huynh Tuong, N., & Soukhal, A. (2010).Due dates

assignment and JIT scheduling with equal-size

jobs.European Journal of Operational Research,

205(2), 280-289.

doi:http://dx.doi.org/10.1016/j.ejor.2010.01.016

Khorasanian, D., & Moslehi, G. (2017). Two-machine

flow shop scheduling problem with blocking, multi-

task flexibility of the first machine, and preemption.

Computers & Operations Research, 79, 94-108.

doi:http://dx.doi.org/10.1016/j.cor.2016.09.023

Khorshidian, H., Javadian, N., Zandieh, M., Rezaeian, J.,

& Rahmani, K. (2011).A genetic algorithm for JIT

single machine scheduling with preemption and

machine idle time.Expert Systems with Applications,

38(7), 7911-

7918.doi:http://dx.doi.org/10.1016/j.eswa.2010.10.06

6

Koulamas, C. (1998a). On the complexity of two-machine

flowshop problems with due date related objectives.

European Journal of Operational Research, 106(1),

95-100. doi:http://dx.doi.org/10.1016/S0377-

2217(98)00323-3

Koulamas, C. (1998b). A guaranteed accuracy shifting

bottleneck algorithm for the two-machine flowshop

total tardiness problem.Computers & Operations

Research, 25(2), 83-89.

doi:http://dx.doi.org/10.1016/S0305-0548(97)00028-

2

Lann, A., & Mosheiov, G. (1996).Single machine

scheduling to minimize the number of early and

tardy jobs.Computers & Operations Research, 23(8),

769-781. doi:http://dx.doi.org/10.1016/0305-

0548(95)00078-X

Lenstra, J. K., RinnooyKan, A. H. G., &Brucker, P.

(1977).Complexity of Machine Scheduling

Problems. In E. L. J. B. H. K. P.L. Hammer & G. L.

Nemhauser (Eds.), Annals of Discrete Mathematics

(Vol. Volume 1, pp. 343-362): Elsevier.

Liao, C.-J., & Cheng, C.-C. (2007). A variable

neighborhood search for minimizing single machine

weighted earliness and tardiness with common due

date. Computers & Industrial Engineering, 52(4),

404-413.

doi:http://dx.doi.org/10.1016/j.cie.2007.01.004

Mehravaran, Y., & Logendran, R. (2012).Non-

permutation flowshop scheduling in a supply chain

with sequence-dependent setup times. International

Journal of Production Economics, 135(2), 953-963.

doi:http://dx.doi.org/10.1016/j.ijpe.2011.11.011

Najafi, E., Naderi, B., Sadeghi, H., & Yazdani, M.

(2012).A Mathematical Model and a Solution

Method for Hybrid Flow Shop Scheduling. Journal

of Optimization in Industrial Engineering, 5(10), 65-

72.

Nikjo, B., & Rezaeian, J. (2014).Meta heuristic for

Minimizing Makespan in a Flow-line Manufacturing

Cell with Sequence Dependent Family Setup

Times.Journal of Optimization in Industrial

Engineering, 7(16), 21-29.

Rezaeian, J., Seidgar, H., & Kiani, M. (2013). Scheduling

of a flexible flow shop with multiprocessor task by a

hybrid approach based on genetic and imperialist

competitive algorithms. Journal of Optimization in

Industrial Engineering, 6(13), 1-11.

Runge, N., & Sourd, F. (2009).A new model for the

preemptive earliness–tardiness scheduling

problem.Computers & Operations Research, 36(7),

2242-

2249.doi:http://dx.doi.org/10.1016/j.cor.2008.08.018

Schaller, J. (2012). Scheduling a permutation flow shop

with family setups to minimise total

tardiness.International Journal of Production

Research, 50(8), 2204-2217.

doi:10.1080/00207543.2011.575094

Schaller, J., & Valente, J. M. S. (2013). A comparison of

metaheuristic procedures to schedule jobs in a

permutation flow shop to minimise total earliness

and tardiness. International Journal of Production

Research, 51(3), 772-779.

doi:10.1080/00207543.2012.663945

Operational Research, 216(3), 521-532.

doi:http://dx.doi.org/10.1016/j.ejor.2011.07.053

Shabtay, D., Bensoussan, Y., &Kaspi, M. (2012).A

bicriteria approach to maximize the weighted number

of just-in-time jobs and to minimize the total

resource consumption cost in a two-machine flow-

shop scheduling system. International Journal of

Production Economics, 136(1), 67-74.

doi:http://dx.doi.org/10.1016/j.ijpe.2011.09.011

Sourd, F. (2005).Punctuality and idleness in just-in-time

scheduling.European Journal of Operational

Research, 167(3), 739-751.

doi:http://dx.doi.org/10.1016/j.ejor.2004.07.018

Sun, D.-h., Song, X.-x., Zhao, M., & Zheng, L.-J.(2012).

Research on a JIT scheduling problem in parallel

motorcycle assembly lines considering actual

situations.International Journal of Production

Research, 50(18), 4923-4936.

doi:10.1080/00207543.2011.616232

Tadayoni Rad, S., Gholami, S., Shafaei, R., &Seidgar, H.

(2015). Bi-objective Optimization for Just in Time

Scheduling: Application to the Two-Stage Assembly

Flow Shop Problem. Journal of Quality Engineering

and Production Optimization, 1(1), 21-32.

doi:10.22070/jqepo.2015.186

Varmazyar, M., & Salmasi, N. (2012).Sequence-

dependent flow shop scheduling problem minimising

Javad Rezaeian et al./The Preemptive Just-In-Time…

92

the number of tardy jobs.International Journal of

Production Research, 50(20), 5843-5858.

doi:10.1080/00207543.2011.632385

Ventura, J. A., & Radhakrishnan, S. (2003). Single

machine scheduling with symmetric earliness and

tardiness penalties. European Journal of Operational

Research, 144(3), 598-612.

doi:http://dx.doi.org/10.1016/S0377-2217(02)00163-

7

Zegordi, S. H., Itoh, K., & Enkawa, T. (1995). A

knowledgeable simulated annealing scheme for the

early/tardy flow shop scheduling

problem.International Journal of Production

Research, 33(5), 1449-1466.

doi:10.1080/00207549508930220

This article can be cited: Rezaeian, J., Hosseini-Kia, S. & Mahdavi, I. (2019)

The Preemptive Just-In-Time Scheduling Problem In a Flow Shop Scheduling System.

 Journal of Optimization in Industrial Engineering. 12 (2), 79-92.

http://www.qjie.ir/article_538173.html

DOI: 10.22094/JOIE.2017.499.11

http://www.qjie.ir/article_538173.html

	1. Introduction
	2. Problem Definition
	3. The Mathematical Model
	4. Proposed Algorithms
	4.1. GA
	4-1-1. Chromosome encoding
	4.1.2. Initial population
	4.1.3. Fitness evaluation
	4.1.4. Selection strategies
	4.1.5. Genetic operators

	4.2. ICA
	4.2.1. Initial empires
	4.2.2. Assimilation policy
	4.2.3.imperialistic competition
	4.2.4. Convergence

	4.3. Hybrid Algorithm

	5. Computational Experiments and Analysis
	5.1. Data generation
	5.2. Parameters setting
	5.3. Experimental results
	5.3.1. Experimental evaluation

	6. Conclusions
	References

