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Abstract  

Flow shop scheduling problem has a wide application in the manufacturing and has attracted much attention in academic fields. From other 

point, on time delivery of products and services is a major necessity of companies’ todays; early and tardy delivery times will result 

additional cost such as holding or penalty costs.  In this paper, just-in-time (JIT) flow shop scheduling problem with preemption and 

machine idle time assumptions is considered in which objective function is minimizing the sum of weighted earliness and tardiness. A new 

non-linear mathematical model is formulated for this problem and due to high complexity of the problem meta-heuristic approaches have 

been applied to solve the problem for finding optimal solution. The parameters of algorithms are set by Taguchi method. Each parameter is 

tested in three levels. By implementation of many problems with different sizes these levels are determined .Genetic algorithm, imperialist 

competitive algorithm and hybrid of these algorithms are applied to solve the problem and the performance of the proposed algorithms are 

evaluated by many test problems. The Computational results indicate the superiority of the performance of hybrid approach than GA and 

ICA in finding the best solution in reasonable computational time. 
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1. Introduction 

 

In many industries, machines are arranged within flow 

shop systems based on production sequence, in which 

several machines are assigned to process jobs in series 

and all jobs have a same operation sequence. Each 

machine can only process one job at a time and 

processing of a job must be completed on the current 

machine before processing of the job is started on the 

succeeding machine (Mehravaran and Logendran 

2012).Rezaeian et al (2013) presented a hybrid algorithm 

of genetic algorithm (GA) and Imperialist competitive 

algorithm (ICA)to minimizethe total weighted of 

makespan and maximum tardiness for a proposed hybrid 

flow shop scheduling problem,. Fu et al (2012) studied 

flow shop scheduling problem with incompatible job 

families and limited buffer to minimize the mean 

completion time of all jobs. Nikjo and Rezaeian (2014) 

considereda flow line manufacturing cell problem and 

solved it by a modified simulated annealing algorithm. 

Permutation flow shop scheduling with family setups has 

been regarded by Schaller (2012) in which the objective 

function is minimizing total tardiness. The problem of 

hybrid flow shop scheduling has been regarded by Najafi 

et al (2012) and a mathematical model and an immune 

system algorithm are presented. A mixed-integer linear 

programming model for 𝐹𝑚|𝑝𝑟𝑚𝑝, 𝑆𝑖𝑗𝑘| ∑𝑈𝑗 has been 

presented by Varmazyar and Salmasi (2012). Several 

meta-heuristic algorithms based on tabu search and 

imperialist competitive algorithms have been developed 

to solve the problem. Experimental result showed that the 

hybrid of these two algorithms produce better solutions 

than the other proposed algorithms for large size 

problems. 

Timely delivery of products in many industries is one of 

the important goals. Producing a good before or after the 

delivery time imposed on manufacturers a cost. This cost 

can be considered as the opportunity cost of the money 

invested in inventory, storage and insurance costs and 

deterioration, in case of earliness and customer 

dissatisfaction, contract penalties, loss of sale and loss of 

reputation in case of tardiness (Liao and Cheng 2007). 

In the scope of JIT scheduling, many articles have been 

published. Most studies in this issue build on minimizing 

of total earliness and tardiness or total weighted earliness 

and tardiness (see, e.g., Hendel and Sourd 2006; Esteve et 

al 2006; Baker and Scudder 1990). Finke et all (2007) 

studied Non-preemptive flow shop scheduling problem 

with unequal due dates with respect to finding a 

permutation schedule that minimizes sum of earliness and 

tardiness. To solve this problem a tabu search meta-

heuristic combined with an LP evaluation function is 

applied. Also, permutation flow shop scheduling has been 

regarded by Schaller and Valente (2013) with the 

objective of minimizing total earliness and tardiness and a 

genetic algorithm is proposed to solve the problem. The 

permutation flow shop scheduling problem with earliness 

and tardiness penalties and common due date for jobs has 

been considered by Chandra et al (2009). They divided 

the problem into three cases: (i) the due date is such that 

all jobs are necessarily tardy; (ii) the due date is 

unrestricted; and (iii) the due date is between the two. A 

comprehensive approach for solving the problem over the 

entire range of due dates has been presented. Sun et al 
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(2012) proposed a model of identical parallel conveyor 

belt flow shop using JIT with unstable information based 

on the real situation of motorcycle assembly lines and an 

artificial fish swarm algorithm based on polar co-ordinate 

coding has been developed to solve the problem. The 

problem of minimizing makespan and sum of the 

earliness and tardiness of jobs in hybrid flow shop system 

with fuzzy tasks’ operation times, due dates and 

sequence-dependent setup times has been investigated by 

Behnamian and FatemiGhomi (2014) and a bi-level 

algorithm extended to solve the problem. In a similar 

research Tadayoni Rad et al (2015) considered the same 

objective function in a two-stage assembly flow shop 

environment and the -constraint method has been used to 

optimize the problem. Huynh Tuong and Soukhal (2010) 

studied minimizing of total weighted earliness–tardiness 

and due date cost in single machine and parallel machine 

systems with a common due date. Ventura and 

Radhakrishnan (2003) studied single machine scheduling 

with varying processing times and distinct due dates in 

JIT production environments and presented a binary linear 

integer mathematical model for the problem. Also, JIT 

one-machine scheduling with sequence-dependent setup 

times studied by Sourd (2005) and a branch-and-bound 

algorithm is presented for problem.  

A different approach has been regarded in the JIT 

scheduling problems. Lann and Mosheiov (1996) 

considered the number of early-tardy jobs. The objective 

is maximizing the weighted number of jobs which are 

completed exactly on their delivery times and explained 

several applications of this problem. Shabtay (2012) 

investigated weighted number of JIT jobs problem in flow 

shop system. For this problem, four different scenarios 

have been regarded and for each one of the scenarios, an 

algorithm has been presented. Also Shabtay et al (2012) 

gave an analysis for two-machine flow-shop problem with 

two criteria including weighted number of JIT jobs and 

total resource consumption cost. They proved that the 

problem is NP-hard even for constant processing times 

and presented a polynomial time algorithm. a pseudo-

polynomial dynamic programming algorithm have been 

introduced by Gerstl et al (2014) for the problem of 

maximizing the weighted number of Just-in-Time jobs on 

a proportionate flow shop which is faster than the 

algorithms presented before. 

JIT scheduling by preemption consideration has not been 

attended in flow shop systems. If work process in a job 

interrupted before its completion time on machine 

referred as preemption. Recently Khorasanian and 

Moslehi (2017) proposed two mathematical models for a 

preemption flow shop scheduling problem by two 

machines which the first machine is multi-task and can be 

blocked. In order to solve the large sized instances a 

variable neighbourhood search algorithm (VNS) and a 

new variant of it, namely, dynamic VNS (DVNS), have 

been extended. DVNS has a better performance in 

compare to VNS based on computational results. 

AfsharNadjafi and Shadrokh (2010) minimized weighted 

earliness, tardiness and preemption penalties for 

scheduling projects. The problem of preemptive project 

scheduling studied by Hassanpour et al (2017) which the 

resources are constrained in multi-mode case. They 

indicated that presented multi-objective imperialist 

algorithm achieves to solutions with higher quality. Most 

papers in the field of preemptive JIT problems are 

presented for single machine system. Khorshidian et al 

(2011) minimized the total weighted earliness and 

tardiness of a single machine problem with the allowance 

of preemption and idle time for machine. They presented 

a genetic algorithm for this problem. Hendel et al (2009) 

studied JIT scheduling with preemption in single 

machine. They proposeda different computation of 

earliness related to the start time of the jobs. In other 

words, 𝑇𝑗 = max⁡(0, 𝐶𝑗 − 𝑑𝑗𝑐) where 𝐶𝑗is completion time 

of job j and 𝑑𝑗𝑐 is due date, 𝐸𝑗 = 𝑚𝑎𝑥(0, 𝑑𝑗𝑠 − 𝑆𝑗) where 𝑆𝑗 is start time of job j and 𝑑𝑗𝑠 = 𝑑𝑗𝑐 − 𝑝𝑗. Bulbul et al 

(2007) considered earliness/tardiness scheduling problem 

with preemption on a single machine. Also, Runge and 

Sourd (2009) presented a new model for preemptive 

scheduling on single machine. A local search algorithm 

was presented for the problem. 

In the case of preemption allowance, the amount of work 

done for a job will be considered after preemption 

(Khorasanian and Moslehi (2017)). They presented by at 

least a flexible machine when preemption is allowed the 

solution space will be enlarged. Preemtion can be 

considered in manufacturing operations generally (Ebadi 

and Moslehi (2012)).  A practical sample of preemption is 

presented Khorasanian and Moslehi (2017)for recovery of 

a patient when the bed is busy and the recovery will be 

continued after availability of bed . 

In this study, JIT flow shop scheduling problem is 

developed by consideration preemption and machine idle 

time. Based on the general assumptions, buffers without 

capacity limitations are assumed between machines. 

Although, intermediate buffers may not be stayed because 

of technological requirements or process characteristics in 

some cases (Khorasanian and Moslehi (2017)). 

Furthermore there are no sequence dependent setup time 

and release date. A set of jobs 𝐺 = {𝐽1, 𝐽2, … , 𝐽𝑛} has been 

considered. The objective function is minimizing ∑ (𝛼𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗)𝑛𝑗=1  which 𝐸𝑗 and 𝑇𝑗 are earliness and 

tardiness of job 𝐽𝑗. JIT preemptive One-machine 

scheduling is NP-hard (Hendel et al 2009). If earliness 

penalty (𝛼𝑗) be equal to zero for any job then objective 

function would be modified to ∑ 𝛽𝑗𝑇𝑗𝑛𝑗=1 . Lenstra et al 

(1977) proved that 1|| ∑𝑊𝑗𝑇𝑗 is strongly NP-hard.  

In this study minimization problem of total weighted 

earliness and tardiness of jobs has been considered. This 

problem is equivalent to 𝐹𝑚|𝑝𝑟𝑚𝑝|∑(𝛼𝑗𝐸𝑗 + 𝛽𝑗). Due to 

the complexity of this problem, meta-heuristic methods 

have been used to access an optimal solution in acceptable 

computational time.  

In the rest of the study, in sections 2 and 3 parameters, 

variables and the mathematical model for the problem is 

explained. Proposed GA, ICA and hybrid algorithms have 

been described in section 4. Computational results are 

evaluated in section 5. Finally, in section 6 the conclusion 

and future research directions are presented. 
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2. Problem Definition 
 

In this section, we express the problem in a mathematical 

model with linear and non-linear constraints so that 

preemption and machine idle time are allowable. The 

objective function deals with minimization earliness and 

tardiness of jobs.  

The model variables are defined as follows: a set of 

machines {𝑀1, 𝑀2, … ,𝑀𝑚} and a set of independent jobs {𝐽1, 𝐽2, … , 𝐽𝑛} have been regarded. Each job 𝐽𝑗 must be 

process on all machines and each machine can process 

only one job at the same time. As long as the processing 

of a job on current machine has not been completed, its 

process cannot start on next machine. Each job 𝐽𝑗 has a 

due date 𝑑𝑗 and processing time pij where i is related to 

the number of machines. Earliness and tardiness of job 𝐽j 
are defined as𝐸𝑗 = 𝑚𝑎𝑥(0, 𝑑𝑗 − 𝐶𝑚𝑗)and 𝑇𝑗 =max⁡(0, 𝐶𝑚𝑗 − 𝑑𝑗), respectively where 𝐶𝑚𝑗is the 

completion time of job 𝐽j on last machine. All machines 

are steadily available and machine destruction does not 

happen. All jobs are available to process at zero time on 

first machine. 𝛼𝑗and𝛽𝑗 are earliness and tardiness 

penalties respectively. 

Parameters: 

i                1,2,…,m index for machines 

j                1,2,…,n index for jobs 𝑘𝑖               Index for time windows on machine i 𝐻𝑖               Index for number of time windows on machine 

i 𝑝𝑖𝑗               Processing time of job 𝐽𝑗 on machine i 𝑑𝑗               Due date of job 𝐽𝑗 
 

Variables: 𝐶𝑖𝑗′               Auxiliary variable to compute completion 

time of job 𝐽𝑗 on machine i 𝐶𝑖𝑗              Completion time of job 𝐽𝑗 on machine i 𝑆𝑇𝑖              Start time of machine i 𝑆𝑖𝑗               Start time of job 𝐽𝑗 on machine i 𝑋𝑖𝑘𝑖𝑗= {1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡job⁡𝐽𝑗 ⁡on⁡machine⁡𝑖⁡is⁡placed⁡in⁡the⁡position⁡𝑘𝑖0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  𝛿𝑖𝑗 = {0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡𝑋𝑖1𝑗 = 1M⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise 𝑆𝑖𝑘𝑖𝑗, = {𝑘𝑖 + 𝑆𝑇𝑖 − 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡𝑋𝑖𝑘𝑖𝑗 = 1M⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise  

 

3. The Mathematical Model 

 

We formulated the model as follows: 𝑀𝑖𝑛𝑍 =∑ (𝛼𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗)𝑛𝑗=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 
Subject To: ∑ 𝑋𝑖𝑘𝑖𝑗 = 𝑝𝑖𝑗𝑖 = 1,… ,𝑚𝑗 = 1,… , 𝑛𝐻𝑖
𝑘𝑖=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

∑𝑋𝑖𝑘𝑖𝑗 ≤ 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1, … ,𝑚𝑘𝑖𝑛
𝑗=1 = 1,… ,𝐻𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 𝐶𝑖𝑗′ =  jiki

H

k i

i

i

Xk *max
1

𝑖 = 1,… ,𝑚𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 
𝑆𝑇𝑖 =  

jiij

n

j
C ,1

1
min 

 𝑖 = 2,…𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 𝐶𝑖𝑗 = 𝐶𝑖𝑗′ + 𝑆𝑇𝑖𝑖 = 2,… ,𝑚𝑗 = 1,… , 𝑛(6) 𝑆𝑖𝑗 = '

1
min jik

H

k i

i

i

S


𝑖 = 2,… ,𝑚𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 𝐶𝑖−1,𝑗 ≤ 𝑆𝑖𝑗𝑖 = 2,… ,𝑚𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 𝑇𝑗 = 𝑚𝑎𝑥(0, 𝐶𝑚𝑗 − 𝑑𝑗) 𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 𝐸𝑗 = 𝑚𝑎𝑥(0, 𝑑𝑗 − 𝐶𝑚𝑗) 𝑗 = 1,… , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 
 

The objective function (1) focused on minimizing total 

weighted earliness and tardiness. Constraint (2) ensures 

that each job is divided into 𝑝𝑖𝑗 period on each machine. 

We have 𝐻𝑖  distinct period on each machine which each 

period is the smallest unit of time that a preemptionon 

jobs can happen. and𝐻𝑖  is length of schedule on machine 

i. constraint (3) ensures that in each period, only one part 

of one job can be processed or the machine does not 

process any job, in other words we have machine idle 

time. Constraints (4), (5) and (6) compute the completion 

time of each job 𝐽𝑗 on machine i. constraint (7) calculates 

start time of each job 𝐽𝑗 on each machine and constraint 

(8) guarantees that no jobs start on next machine before 

its completion on previous machine. Constraints (9) and 

(10) are related to the tardiness and earliness of jobs.  

For verification of the proposed model, the mathematical 

model presented by Mehravaran and Logendran (2012) 

are used. Both models have been coded in Lingo software 

and the evaluation is done by test problems. To set same 

circumstances in both models, the parameters in designed 

test problems that do not exist in the other one (like 

sequence dependent setup times in proposed model by 

Mehravaran and Logendran (2012) )  have been set equal 

to 0 and a penalty has been added to the objective 

function in our proposed model in order to prevent 

preemption. The results of running the codes have shown 

the validity of our model. 

 

4. Proposed Algorithms 

 

Here, GA, ICA and a hybrid of these algorithms are 

designed for solving the problem. 

 

4.1. GA 

 

The concept of genetic algorithm first used by Holland 

(1975) and popularized by Goldberg (1989). The main 

steps of this algorithm are as follows: 

4-1-1. Chromosome encoding 

The first step in the adoption and implementation of the 

genetic algorithms is mapping solution characteristics in 

the form of a chromosome. In this study, two-dimensional 
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chromosome is designed related to the number of 

machines and periods. To avoid a large increase in the 

search space, a dominant set is presented where the 

optimal solution exists in. A typical chromosome of a 

problem by two machines and two jobs is shown in Figure 

1. The number of gens that allocated to each job on every 

machine is equal to the processing time of job j on 

machine i. Number of gens on each machine that are not 

allocated is considered as idle time. The number in each 

gen is related to job Jj and 0 is related to idle time. 

12 1

0

2

2

2

1

11

0

0

2 22 1

0 0

0 1

0

0

J1 idle

J2

J2 J2 J2J1 J1 J1

J1J1J1J2 J2 J2

idle idle idle

idleidleidleidle

Machine 1

Machine 2

 

Fig 1. Decoding the chromosome 

 

4.1.2. Initial population 

 

Producing an initial set of solutions is the second step of 

the GA implementation. First, a sequence of jobs are 

randomly generated on a machine. Then, for next 

machine, jobs are randomly arranged according to their 

completion times on last machine. Number of genes of 

each machine must be greater than or equal to the sum of 

processing time of jobs on the machine, because of the 

allowance of idle time. 

 

4.1.3. Fitness evaluation 

 

The aim of the fitness evaluation is calculating 

competence of each solution in the population with regard 

to the objective function. By calculating the completion 

time of jobs, earliness and tardiness are calculated and the 

cost function of each chromosome is calculated with the 

following formula.  

 𝑓 = ∑ (𝛼𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗)𝑛𝑗=1                                              (11) 

 

By calculating the objective function of each 

chromosome, a penalty added for violation of the 

constraints. If a solution does not satisfy the precedence 

constraint or the number of gens allocated to a job is not 

equal to the processing time of the job then a penalty is 

added to the objective function and is called adjusted 

objective function. This function is calculated by relation 

(12) where f shows the value of objective function, j1 is 

first job on machine i, 𝑃𝑖𝑗′  is number of gens that are equal 

to j on machine i, γ and δ are penalties for violation of 

constraints.  

 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐹𝑖) = 𝑓 + γ (∑ ∑ |𝑃𝑖𝑗′𝑃𝑖𝑗 − 1|𝑛𝑗=1𝑚𝑖=1 ) + 𝜇 (∑ ∑ 𝑚𝑎𝑥 (𝐶𝑖−1,𝑗′ −𝐶𝑖−1,𝑗1′𝑆𝑖𝑗−𝑆𝑇𝑖 − 1,0)𝑛𝑗=1𝑚𝑖=2 )                  (12) 

 

Finally, the fitness function will be calculated by relation 

(13). 
 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = exp⁡(−𝜌 ∗ (𝐹𝑖 𝑤𝑜𝑟𝑠𝑡𝐹𝑖⁄ ))         (13) 

 

The parameter 𝜌 is selection pressure and adjusted so that, 

the sum of selection probability for the first half of the 

population with better objective function equals 80 

percent. 
 

4.1.4. Selection strategies 
 

There are many methods for selecting the population and 

each has its own advantage and disadvantage. Goldberg 

(1989) proposed roulette wheel method to select parents. 

In this study, the roulette wheel procedure as the most 

popular method is applied for selection.  

 

4.1.5. Genetic operators 

 

In the proposed GA, two types of crossover operator are 

used: single point crossover and double point crossover. 

Crossover operator performed on chromosomes that have 

been selected by the roulette wheel method. In single 

point crossover, one machine between [1,m] will be 

selected randomly and the gens of parents after the 

selected machine will be replaced. As shown in Figure 2, 

single point crossover may produce infeasible 

chromosome. For example, in sequence of offspring A 

and B, job 1 and job 2 doesn’t satisfy its precedence 

constraints respectively (in offspring A, 𝐶11 > 𝑆21 and in 

offspring B, 𝐶12 > 𝑆22). 
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12 0 1 1 02

1 2 2 1 100

Machine 1

Machine 2

11 2 2 0 01

2 0 2 1 201

Parent A Parent B

Cutting point = 2

12 0 1 1 02

2 0 2 1 20

Machine 1

Machine 2

Offspring A

11 2 2 0 01

1 2 1 100

Offspring B

1 2

 

Fig 2. Single point crossover 

Therefore, the chromosomes should be modified. The 

values of gen 3 on machine 2 in offspring A would be 

equal to 0 and first gen with 0 value after completion time 

of job 1 would be equal to 1. As it is illustrated in Figure 

3, the relation  𝐶𝑖−1,𝑗 ≤ 𝑆𝑖𝑗   is confirmed for all jobs. In 

double point cross over operator, two machines are 

randomly selected between [1,m] and the genes of parents 

chromosomes between the two machines will be replaced. 

12 0 1 1 02

2 0 2 1 21

Offspring A

11 2 2 0 01

1 2 1 102

Offspring B

00

 

Fig. 3. Offspring A and B after modification 

 
In this algorithm, swap mutation operator was also 

applied. In this operator, a chromosome and a machine 

will be selected randomly, then two random jobs between 

[1,n] will be selected and the last gen with these value 

will be replaced with each other. It may also produce 

infeasible chromosomes. To solve this problem, 

modification will be done as well as crossover operator. 

The swap mutation shown in Figures 4(a) and 4(b). In this 

figures selected machine is 2 and selected jobs are 1 and 

2. 

1 2 0 21 1 02 0 0

01 1 2 2 0 2000

2 1 1 2 2 1 0000Machine 3

Machine 2

Machine 1

1 2 0 21 1 02 0 0

01 2 2 0 1000

2 1 1 2 2 1 0000Machine 3

Machine 2

Machine 1

2

 

Fig. 4.(a). Swap mutation before modification 

1 2 0 21 1 02 0 0

01 2 2 0 1200

2 1 2 2 1 0000Machine 3

Machine 2

Machine 1

0

1 2 0 21 1 02 0 0

01 2 2 0 1200

2 0 1 2 2 1 0001Machine 3

Machine 2

Machine 1

0

1

 

Fig. 4.(b). Swap mutation after modification 
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4.2. ICA 
 

This method introduced by Atashpaz-gargari and Lucas 

(2007) for the first time and simulated the social-political 

process of imperialistic competition. Imperialist countries 

try to dominate another countries by legislate directly or 

through indirect methods, such as control of market and 

raw materials. Imperialism was a political control over 

other countries in order to use their resources or to 

prevent the dominance of other imperialist countries. 

Imperialist countries have intense competition to take 

possession of colonial countries. This competition led to 

the development of colonial countries in terms of 

political, economic and military. Imperialists competes 

for increasing the number of colonies and expansion of 

their sovereignty. Similarly to what mentioned above, 

ICA is simulated and such as many meta-heuristic 

algorithms is population based.  Each individual 

constitutes a country or an imperialist. The competition of 

empires is the foundation of ICA. The weak empires will 

be dropped and the strong will be extend their colonies. In 

this manner the algorithm will be converged to the 

strongest empire and colony (Atashpaz-gargari and Lucas 

2007). Main steps of the algorithm are as follow. 

 

4.2.1. Initial empires 

 
Countries in ICA have a similar role like chromosomes in 

GA. Also, initial countries are generated like initial 

chromosomes in GA. After producing this population, 

Nimp countries with better cost functions have been 

considered as empires and remaining countries (Ncol) have 

been considered as colonies. According to the imperialist 

powers, the colonies will be distributed between 

imperialists which the normalized cost of each empire is 

calculated with following relation. 𝑐𝑛is the cost of nth 

empire and 𝐶𝑛 is the normalized cost.  𝐶𝑛 = 𝑚𝑎𝑥{𝑐𝑖} − 𝑐𝑛                                                     (14)  

And the normalized power of each empire is achieved by 

relation (15). 

 


impN

i
i

n
n

C

C
p

1

                                                       (15) 

The number of colonies of each imperialist is estimated 

by relation (16). 𝑁𝐶𝑛 = 𝑟𝑜𝑢𝑛𝑑{𝑝𝑛. (𝑁𝑐𝑜𝑙)}                                         (16) 

4.2.2. Assimilation policy 

 

One of the most critical steps of the ICA is the movement 

of colonies to imperialist. For simulation of this policy in 

proposed algorithm crossover and mutation operators of 

GA have been used. At first two countries inside each 

empire will be selected randomly as parents that one of 

them will be selected from imperialists and the other one 

will be selected randomly among its colonies. Then 

crossover operation will be performed. Now, among two 

produced offspring and selected colony, best of them will 

be replaced with the selected colony. This process 

graphically is shown in Figure 5. The values of 

parameters for 2 jobs and 2 machines are shown in Table 

1. Cost function of Parent A (imperialist), parent B 

(selected colony), offspring A and offspring B are equal to 

10, 20, 5 and 7 respectively. So, offspring A with 

minimum cost function will be replaced with the selected 

colony. Then on this new colony mutation operator will 

be performed. If the produced colony is improved to a 

better position, mutated colony will be replaced. 

By implementation of this policy, colonies may reach to a 

better position than the empire. In this mode of operation, 

the position of the colony and imperialist will be 

exchanged and the algorithm continues with the new 

empire. Now, the new imperialist began to impose 

assimilation policy on its colonies. 

 
Table 1 

The value of the parameters 

Job Jj P1j P2j dj αj βj

J1

J2

3

3

2

2 12

11

2

2

2

3

 

Machin 1

Machin 2

Parent A (Imperialist) Parent B (selected colony)

1

Cutting point=2

12 2 2

22 1 1 1 0

0 0

0

1 1

11

2 2 20 0

00 1 2 2

Machin 1

Machin 2

Offspring A Offspring B

112 2 2

21 1 0

0 0

0

1 1

02

2 2 20 0

01 2 1 11 2

 

Fig. 5. Movement of colonies to imperialist 
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4.2.3.imperialistic competition 

 

Total power of an empire is equal to sum of the 

imperialist power and a percentage of the power of its 

colonies and will be calculated by following formula 

where TC n is total cost of nth empire and ξ is a number 

between 0 and 1. 

 

TC n =Cost (imperialist n) +ξ mean {Cost (colonies of 

empire n)}                                                                    (17) 

All empires try to take possession of colonies of other 

empires and control them (Atashpaz-gargari and Lucas 

2007). This competition is modelled by picking one of the 

weakest colonies of the weakest empires and to take 

possession of this colony, a competition among all 

empires was created. First, the normalized total cost of 

each empire will be calculated. 

𝑁𝑇𝐶𝑛 = max𝑖(𝑇𝐶𝑖) − 𝑇𝐶𝑛                                       (18) 

Where 𝑁𝑇𝐶𝑛 is the normalized total cost of nth empire. 

The possession probability of each empire will be 

calculated as follow. 𝑝𝑛 = | 𝑁𝑇𝐶𝑛∑ 𝑁𝑇𝐶𝑖𝑁𝑖𝑚𝑝𝑖=1 |                                                (19) 

Based on the presented method by AtashpazGargari and 

Lucas (2007), vector P will be formed as follow. 

P= [p1, p2,…, 𝑝𝑁𝑖𝑚𝑝]                                            (20) 

A random vector R with the same size as P will be 

generated. This vector is an array of random numbers 

with uniform distribution on the interval [0,1]. 

R= [r1 , r2 , … , 𝑟𝑁𝑖𝑚𝑝]                                           (21) 

The vector D will be produced as follow. 
 

𝐷 = 𝑃 − 𝑅 = [𝐷1, 𝐷2, 𝐷3, … , 𝐷𝑁𝑖𝑚𝑝] = [𝑃𝑝1 − 𝑟1, 𝑃𝑝2 − 𝑟2, … , 𝑃𝑝𝑁𝑖𝑚𝑝 − 𝑟𝑁𝑖𝑚𝑝]                                                                  (22) 

 

 

Referring to vector D, mentioned colonies will be 

assigned to an empire that its index on the vector D is 

maximized. 
 

4.2.4. Convergence 
 

Different conditions can be considered for the elimination 

of an empire. In the proposed algorithm, an empire will be 

eliminated when it lost its colonies. Stopping criteria is 

the end of all iterations of the algorithm. Then sequence 

of strongest empire among all remaining empires will be 

selected as the optimal sequence. 

4.3. Hybrid Algorithm 
 

Both of the two mentioned algorithms have their own 

advantages. Computational results show that the number 

of iterations in ICA is much more than of GA at the same 

time, but GA has more precise in solution. In the other 

word, faster convergence is the main advantage of ICA, 

on the other hand GA has a better global optimal 

achievement. The convergence of ICA and GA for a 

problem with 20 jobs and 3 machines are shown in Figure 

6. As it shown, ICA has converged faster, but GA is 

produced better solutions than ICA. Here, a new hybrid 

algorithm based on GA and ICA is developed to use the 

advantage of both algorithms. 

 

Fig. 6. The convergence in ICA and GA 
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The main tasks of the proposed hybrid algorithm can be 

divided into two main parts. First part is to create an 

efficient and proper population and the second part is 

improving this population in order to achieve an optimal 

solution. Since, ICA is faster than GA, it does a lot of 

search on the different sequence of the problem in order 

to find a proper and good population. Thus, ICA can be 

used as an efficient tool for creating an initial good 

population for GA. The precision of GA for this case can 

be a useful tool that improves initial population created by 

the ICA to achieve an optimal or near-optimal sequence. 

As shown in Figure 7, the hybrid algorithm has both 

advantages of ICA and GA. 

 

Fig. 7. The convergence in ICA, GA and hybrid algorithm 

 

5. Computational Experiments and Analysis 
 

5.1. Data generation 

 

In this section, the performances of three mentioned 

algorithms have been investigated by many test problems 

in different sizes which the parameters follow a special 

distribution function. Processing times are generated from 

discrete uniform distribution [1,9], earliness and tardiness 

penalties are generated from discrete uniform distribution 

[1,4] and to produce deadlines, the following formula 

introduced by zegordi at al (1995) have been used where �̅� is the mean of due dates and parameter 𝜏 is the 

earliness/tardiness function. �̅� = (1 − 𝜏) ∗ ∑ ∑ 𝑃𝑖𝑗𝑛𝑗=1𝑚𝑖=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23) 

Since, sum of processing times will be a large number and 

most of jobs may have earliness, the relation proposed by 

Koulamas (1998 a,b) has been used to produce �̅�, where 

M is maximum completion time achieved by Johnson’s 

order. 

𝑑̅ = (1 − 𝜏)𝑀 

 

(24) 

 

After calculating �̅�, due dates have been produced by 

relation (25) where parameter R is range of due dates. d = [d̅ − R2M⁡, d̅ + R2M]                                               (25) 

Three different types of due dates produced considering 

τ = 0.2⁡, 𝑅 = 0.6 ،τ = 0.35⁡, 𝑅 = 0.8and τ = 0.5⁡, 𝑅 =0.8. 
 

5.2. Parameters setting 
 

In order to study the interplay between parameters and 

obtain the optimal combination of these parameters, a set 

of experiments by Taguchi method have been designed. 

Each parameter is tested in three levels. By 

implementation of many problems with different sizes 

these levels are determined. These factors and their levels 

in the hybrid algorithms are shown in Table 2 where 

PopGA is the number of initial population of GA, iteration 

is the number of iteration in GA, Pc shows the crossover 

rate, Pm shows the mutation rate, PopICA represent the 

number of initial population of ICA, Decade is the 

number of iteration in ICA and PICA is the percent of the 

colonies role in determining the total power an empire. 
 

Table 2 

 Factors and their levels 

Levels Factors 
400, 600, 700 𝑷𝒐𝒑𝑮𝑨 

60, 70, 80 Iteration 

0.6, 0.7, 0.8 𝑷𝒄 
0.3, 0.4, 0.5 𝑷𝒎 

200, 300, 400 𝑷𝒐𝒑𝑰𝑪𝑨 

250, 300, 350 Decade 

0.05, 0.01, 0.15 𝑷𝑰𝑪𝑨 
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The generated data have been analyzed by Minitab 14. 

The summary of the results are shown in Table 3 and 

parameters of the hybrid algorithm are set according to 

these values.  
 

 

Table 3 

Setting values of parameters 

PopIC

A 

PIC

A 

Decad

e 
PopG

A 
Pc 

P

m 

Iteratio

n 
Facto

rs 

400 0.1 350 600 0.

6 
0.

5 80 Level 

 

5.3. Experimental results 

 

The mentioned algorithms are coded in MATLAB7.11 

and many test problems considered to evaluate the 

performance of proposed algorithms. The data are 

generated randomly and the algorithms are run by a 

computer with core i3 CPU (2.53 GHz / 3M cache) with 

3GB RAM. Each test problem has been run 10 times and 

the best, worst and average of solutions are shown in 

Table 4. As it shown, for the small size of problems, 

solutions by three proposed algorithms are the same and 

the averages of solutions in GA for 4 test problems are 

better and in other test problems, the hybrid algorithm 

produced better solutions than the other algorithms. 

 

 

Fig. 8. Polynomial approximation of the hybrid algorithm 
 

 

Table 4 

 Computational results of implementation of ICA, GA and Hybrid 

Problem 

size(S=Small, 

M=Medium, 

L=Large) 

Number of 

jobs 

Number of 

machines 

Worst Average Best 

GA         ICA        

HYB 

GA         ICA        HYB GA         ICA        

HYB 

S  

2 jobs 

2 machines 6 6 6 6 6 6 6 6 6 

S 3 machines 9 9 9 9 9 9 9 9 9 

S  

 

3 jobs 

2 machines 9 9 9 9 9 9 9 9 9 

S 3 machines 10 10 10 10 10 10 10 10 10 

S 4 machines 11 11 11 11 11 11 11 11 11 

S 5 machines 28 30 28 27 27.6 26.9 26 26 26 

S  

 

4 jobs 

2 machines 2 2 2 2 2 2 2 2 2 

S 3 machines 10 10 10 7 7.6 6.9 6 6 6 

S 4 machines 35 35 34 33 34.1 32.6 32 33 32 

S 5 machines 43 43 42 41.6 42 41.3 41 41 41 

S  

 

5 jobs 

2 machines 25 25 24 24.3 24.5 20 24 24 18 

S 3 machines 26 27 26 22.5 24.2 22.2 21 23 21 

S 4 machines 15 18 14 14.3 15.6 13 14 14 12 

M 5 machines 103 107 101 98.3 101 96.3 93 94 92 

y = 0.9907x2 - 19.508x + 108.48 
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S  

 

8 jobs 

2 machines 28 31 28 23.6 27.2 23.5 21 21 18 

M 3 machines 82 105 69 67.2 74.1 61.7 56 62 55 

M 4 machines 82 86 74 72.7 74.8 68.3 61 66 63 

M 5 machines 147 151 133 112.6 130.2 110.6 90 112 90 

M  

 

15 jobs 

2 machines 163 179 148 135.6 146.1 127.3 107 113 107 

M 3 machines 203 259 180 152.6 190.1 149.2 114 154 121 

M 4 machines 364 396 352 302.2 353.5 294.7 272 303 240 

M 5 machines 907 932 842 658.5 693 642.4 438 463 427 

M  

 

20 jobs 

2 machines 402 563 396 361.1 448.2 359.9 281 313 302 

M 3 machines 738 829 706 653.7 758.5 629.2 525 684 518 

M 4 machines 631 840 705 524.3 684.8 592.5 478 560 512 

L 5 machines 890 1013 885 692 821 648 457 674 539 

M  

25 jobs 

2 machines 572 596 535 426.1 511.5 425.2 338 454 316 

M 3 machines 983 1243 962 833 1093.2 811.6 686 866 721 

L 4 machines 1950 2663 2176 1743.4 2329.6 1683.3 1526 1857 1566 

M  

30 jobs 

2 machines 902 1314 874 758.5 1029.6 734.2 627 827 620 

L 3 machines 1097 968 1008 822 844.1 777 641 695 619 

L 4 machines 2714 3535 2875 2474.9 2957.8 2612.2 2157 2316 2298 

M  

35 jobs 

2 machines 1438 1807 1370 1293 1656.6 1260.5 1105 1415 1103 

L 3 machines 2696 3090 2544 2432.9 2836.6 2421.9 2198 2277 2260 

L 4 machines 3191 3515 3328 2849.3 3415.5 2945.1 2617 3251 2596 

L  

40 jobs 

2 machines 2680 2906 2583 2317.8 2734.1 2400.2 2204 2568 2194 

L 3 machines 4482 4295 4370 3945.9 3982.4 3832 3273 3687 3426 

L 4 machines 4958 6015 5000 4589.1 5797 4582.4 4218 5195 4103 

Also, Table 5 shows the best solutions of each algorithm 

with its computational time and optimal solutions, 

achieved by Lingo 9. The results show that ICA is faster 

than other algorithms but the quality of solutions are 

lower than others, and GA produced good solutions in 

more computational time. But the hybrid algorithm 

produced best quality of solutions with reasonable 

computational time.  

 

    Table 5 

    The compare of computational time and quality of solutions in proposed algorithms and Lingo 

Problem 

size 
(S=Small, 

M=Medium, 

L=Large) 

Number 

of Jobs 

Number of 

Machines 
Global Solver 

(Lingo) 

GA ICA HYBRID 

Optimal 

Solution 

Computational 

time* 

Best 

Solution 

Computational 

time* 

Best 

Solution 

Computational 

time* 

Best 

Solution 

Computational 

time* 

S  

2 jobs 

2 machines 6 0:00:56 6 0:00:24 6 0:00:15 6 0:00:19 

S 3 machines 9 0:19:15 9 0:00:32 9 0:00:21 9 0:00:26 

S  

 

3 jobs 

2 machines 9 0:06:19 9 0:00:27 9 0:00:17 9 0:00:22 

S 3 machines 10 8:54:52 10 0:00:33 10 0:00:26 10 0:00:30 

S 4 machines --- 10:00:00 11 0:00:59 11 0:00:38 11 0:00:44 

S 5 machines --- 10:00:00 26 0:01:02 26 0:00:42 26 0:00:51 

S  

 

4 jobs 

2 machines --- 10:00:00 2 0:00:28 2 0:00:23 2 0:00:25 

S 3 machines --- 10:00:00 6 0:01:01 6 0:00:38 6 0:00:47 

S 4 machines --- 10:00:00 32 0:01:12 33 0:00:41 32 0:00:53 

S 5 machines --- 10:00:00 41 0:01:18 41 0:00:47 41 0:01:01 

S  

 

5 jobs 

2 machines --- 10:00:00 24 0:00:50 24 0:00:38 18 0:00:44 

S 3 machines --- 10:00:00 21 0:00:54 23 0:00:45 21 0:00:48 

S 4 machines --- 10:00:00 14 0:01:03 14 0:00:42 12 0:00:54 

M 5 machines --- 10:00:00 93 0:01:28 94 0:00:55 92 0:01:14 

S  
 

2 machines --- 10:00:00 21 0:01:07 21 0:00:44 18 0:00:52 

M 3 machines --- 10:00:00 56 0:01:31 62 0:01:04 55 0:01:11 
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M 8 jobs 4 machines --- 10:00:00 61 0:02:04 66 0:01:12 63 0:01:33 

M 5 machines --- 10:00:00 90 0:02:24 112 0:01:28 90 0:01:57 

M  
 

15 jobs 

2 machines --- 10:00:00 107 0:01:38 113 0:01:13 107 0:01:24 

M 3 machines --- 10:00:00 114 0:02:59 154 0:01:46 121 0:02:23 

M 4 machines --- 10:00:00 272 0:04:32 303 0:02:38 240 0:03:32 

M 5 machines --- 10:00:00 438 0:05:58 463 0:03:36 427 0:04:52 

M  
 

20 jobs 

2 machines --- 10:00:00 281 0:03:02 313 0:01:35 302 0:01:50 

M 3 machines --- 10:00:00 525 0:04:16 684 0:02:35 518 0:03:26 

M 4 machines --- 10:00:00 478 0:05:57 560 0:03:21 512 0:04:43 

L 5 machines --- 10:00:00 457 0:08:18 674 0:05:06 539 0:06:41 

M  

25 jobs 

2 machines --- 10:00:00 338 0:03:48 454 0:01:54 316 0:02:16 

M 3 machines --- 10:00:00 686 0:05:54 866 0:03:31 721 0:04:42 

L 4 machines --- 10:00:00 1526 0:10:48 1857 0:06:26 1566 0:08:35 

M  

30 jobs 

2 machines --- 10:00:00 627 0:04:59 827 0:02:32 620 0:03:15 

L 3 machines --- 10:00:00 641 0:09:28 695 0:05:50 619 0:07:37 

L 4 machines --- 10:00:00 2157 0:13:59 2316 0:07:10 2298 0:11:15 

M  

35 jobs 

2 machines --- 10:00:00 1105 0:05:11 1415 0:03:06 1103 0:04:13 

L 3 machines --- 10:00:00 2198 0:11:12 2277 0:06:50 2260 0:09:10 

L 4 machines --- 10:00:00 2617 0:14:47 3251 0:09:00 2596 0:12:13 

L  

40 jobs 

2 machines --- 10:00:00 2204 0:06:59 2568 0:04:09 2194 0:05:41 

L 3 machines --- 10:00:00 3273 0:13:42 3687 0:08:28 3426 0:11:15 

L 4 machines --- 10:00:00 4218 0:20:26 5195 0:12:20 4103 0:17:00 

 

A polynomial approximation function of the hybrid 

algorithm is shown in Figure 8. 

 

5.3.1. Experimental evaluation 

 

To evaluate the mentioned algorithms, relative percentage 

deviation (RPD) as the most common performance 

measure is used according to relation (26). 

𝑅𝑃𝐷 = 𝑠𝑜𝑙𝑎𝑣𝑔−𝑠𝑜𝑙𝑚𝑖𝑛𝑠𝑜𝑙𝑚𝑖𝑛                                                   (26) 

Where 𝑠𝑜𝑙𝑎𝑣𝑔 is the average value of the objective 

function of each algorithm and 𝑠𝑜𝑙𝑚𝑖𝑛  is the minimum 

value obtained by three proposed algorithms for each 

instance. The RPD values for each algorithm are 

calculated in Table 6.  

 

Table 6 

 The RPD values of ICA, GA and hybrid algorithm 

 

HYBRID 

 

ICA 

 

GA 

Number of 

Machines 

Number 

of Jobs 

 

HYBRID 

 

ICA 

 

GA 

Number of 

Machines 

Number of Jobs 

0.31 0.67 0.34 3 machines  

15 jobs 

0.00 0.00 0.00 2 machines  

2  jobs 0.23 0.47 0.26 4 machines 0.00 0.00 0.00 3 machines 

0.50 0.62 0.54 5 machines 0.00 0.00 0.00 2 machines  

 

 

3 jobs 

0.28 0.60 0.29 2 machines  

 

20 jobs 

0.00 0.00 0.00 3 machines 

0.21 0.46 0.26 3 machines 0.00 0.00 0.00 4 machines 

0.24 0.43 0.10 4 machines 0.03 0.06 0.04 5 machines 

0.42 0.80 0.51 5 machines 0.00 0.00 0.00 2 machines  

 

4 jobs 
0.35 0.62 0.35 2 machines  

25 jobs 

0.15 0.27 0.17 3 machines 

0.18 0.59 0.21 3 machines 0.02 0.07 0.03 4 machines 

0.10 0.53 0.14 4 machines 0.01 0.02 0.01 5 machines 

0.18 0.66 0.22 2 machines  

30 jobs 

0.11 0.36 0.35 2 machines  

 

5 jobs 
0.26 0.36 0.33 3 machines 0.06 0.15 0.07 3 machines 

0.21 0.37 0.15 4 machines 0.08 0.30 0.19 4 machines 

0.14 0.50 0.17 2 machines  

35 jobs 

0.05 0.10 0.07 5 machines 

0.10 0.29 0.11 3 machines 0.31 0.51 0.31 2 machines  

8 jobs 0.13 0.32 0.10 4 machines 0.12 0.35 0.22 3 machines 

0.09 0.25 0.06 2 machines  

40 jobs 

0.12 0.23 0.19 4 machines 

0.17 0.22 0.21 3 machines 0.23 0.45 0.25 5 machines 

0.12 0.41 0.12 4 machines 0.19 0.37 0.27 2 machines 15 jobs 
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This table shows that hybrid algorithm has better results 

than other algorithms. The least significant differences 

(LSD) intervals at the 95% confidence level for three 

proposed algorithms are shown in Figure 9. It shows that 

there is significant difference between three mentioned 

algorithms and the hybrid algorithm produced better 

solutions than ICA and GA. 

 

 

Fig. 9. LSD intervals for the type of algorithms 

6. Conclusions 

 

In this study, a preemptive flow shop scheduling with JIT 

approach was investigated where machine idle time is 

allowed. To assume this case a new non-linear 

mathematical model presented for the problem. Three 

meta-heuristic algorithms (GA, ICA and hybrid of GA 

and ICA)was proposed to solve the problem. To verify the 

effectiveness of the search algorithms, 38 test problems 

with three structures in small, medium and large sizes 

were produced and solved. The experiments analysis 

showed that the produced solutions by hybrid algorithm 

have a better quality than ICA and GA and their 

computational time is reasonable. Also, considering some 

assumptions like sequence dependent setup time can be 

applied for future researches. 
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