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Abstract 

In this paper, a new multi-objective integer non-linear programming model is developed for designing citrus three-echelon supply chain 

network. Short harvest period, product specifications, high perished rate, and special storing and distributing conditions make the modeling 

of citrus supply chain more complicated than other ones. The proposed model aims to minimize network costs including waste cost, 

transportation cost, and inventory holding cost, and to maximize network’s profits. To solve the model, firstly the model is converted to a 

linear programming model. Then three multi-objective meta-heuristic algorithms are used including MOPSO, MOICA, and NSGA-II for 

finding efficient solutions. The strengths and weaknesses of MOPSO, MOICA, and NSGA-II for solving the proposed model are discussed. 

The results of the algorithms have been compared by several criteria consisting of number of Pareto solution, maximum spread, mean ideal 

distance, and diversification metric. Computational results show that MOPSO algorithm finds competitive solutions in compare with 

NSGA-II and MOICA.  

Keywords: Citrus supply chain; Network design; Location- allocation problem; Multi-objective meta-heuristic algorithms 

1. Introduction  

 

The Supply Chain Network Design (SCND) problem is an 

important strategic decision in supply chain management 

(Pishvaee, 2017 and Hafezalkotob, Khalili-Damghani, & 

Ghashami, 2016). The SCND problems include all 

activities of value chain from supply raw material to 

delivery final products to the customers (Derwik,  & 

Hellström, 2017). Managing facility location, product 

flow, warehousing, ordering, and distributing are known 

as the main problems in SCND literature (Christopher, 

2016). In addition, the characteristics of the products or 

services should be considered to model and solve SCND 

problems. Over the last decades, academics and 

practitioners of food industries aim to design efficient 

food supply chain networks at national or global level. To 

ensure food security and prevent malnutrition, scholars 

need to develop quantitative models of food supply chain 

network (Ju, Osako, & Harashina, 2017). Govindan 

(2018) emphasized that four main activities of food 

industries including production, processing, 

transportation, and consumption should be considered in 

SCND problems. He reviewed food supply chain and 

identified the main indicators, drivers, and barriers for 

designing sustainable food supply chain networks. 

Manders, Caniëls, & Ghijsen (2016) introduced four main 

organizations of the food supply chain including 

suppliers, main manufacturer, the logistics service 

provider, and retailers. They found out the flexibility of 

each organization through food supply chain network 

impact on the network directly.   

The characteristics of fresh fruit such as seasonal 

harvest, high rate of perishability, and special storing 

conditions led to the differentiation of designing fresh 

fruit with foods supply chain network (Lowe, & Preckel, 

2004).  Soto-Silva et al. (2016) reviewed operation 

research methods in fresh fruit supply chain. They 

outlined the comprehensive quantitative approaches for 

designing fresh fruit supply chain as the main gap of the 

relevant literature. Furthermore, the growing fruit 

industries scale and a number of autonomous 

organizations in fruit supply chain were introduced as the 

main reasons for developing new operation research 

models in fresh fruit SCND context. However few 

researches developed operation research methods for 

designing fresh fruit SCND problems in the literature as 

noted in (Ahumada, & Villalobos, 2011). For example, 

González-Araya, Soto-Silva, & Espejo (2015) developed 

a mixed integer linear programming model to support 

harvest planning. The model aims to minimize the amount 

of allocated resources costs (e.g. labor and equipment) 

and ensure the quality of the fresh fruit along harvest time 

windows. Nadal-Roig, & Plà-Aragonés (2015) developed 

a linear programming model for planning daily transport 

of fresh fruit from the warehouse to processing plants by 

minimizing transportation costs. Negi and Anand (2015) 

considered the problems affecting the supply chain of 

fresh fruits industries in India and suggested appropriate 

supply chain strategies to overcome the challenges. 

Bortolini et al. (2016) proposed a three-objective 

distribution planner to tackle the tactical optimization 

issue of a fresh food distribution network. The 

optimization objectives were to minimize operating cost, 

carbon footprint and delivery time. Nevertheless, the limit 

research aim to develop operation research models to 

solve fresh fruit SCND problems. Since the citrus is one 
*Corresponding author Email address: n.sahebjamnia@mazust.ac.ir 
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of the main orchards of the Iran, this study develops a new 

mathematical model for designing citrus supply chain 

network. In the proposed model production, processing, 

and distributing were considered as three main operations 

of the fresh fruit SCND problem. In this study the 

operation research model is applied to optimize location 

of the facility, allocation of products to facilities, and 

logistic issues.   

Melo, Nickel, & Saldanha-Da-Gama (2009) emphasized 

that SCND problems are complex and meta-heuristic 

algorithms should be developed to solve large-scale 

problems. In this regards various meta-heuristic 

algorithms have been developed to solve large-scale 

SCND problems. Furthermore, most of the scholars 

focused on developing multi-objective mathematical 

programming in order to SCND problems (Harris, 

Mumford, & Naim 2014). Shanker et al. (2013) developed 

a multi-objective mathematical model for optimizing total 

cost and customer demands be met for a single product 

four echelons SCND. To find the optimum number and 

location of nodes in network and the flow of product 

among chain, a hybrid evolutionary based meta-heuristic 

algorithm has been developed. Saeedi Mehrabad et al. 

(2017) emphasized that researchers should focus on 

customer satisfaction factor as well as total costs of SCN 

in the present competitive market. A multi-objective 

mathematical programming model was developed for 

location and allocation problem in the multi-level SCND. 

To solve the proposed model a hybrid meta-heuristic 

algorithm has been developed and the results 

demonstrated the quality of the proposed algorithm. As 

explored in the literature, different multi-objective meta-

heuristic algorithm should be applied to solve large-scale 

SCND problems such as Multi-Objective Particle Swarm 

Optimization (MOPSO), Non-dominated Sorting Genetic 

Algorithm II (NSGA-II), and Multi-Objective Imperialist 

Competitive Algorithm (MOICA).  

MOPSO algorithm as a well-known multi-objective 

meta-heuristic algorithm that was first introduced by 

(Eberhart, & Kennedy, 1995) has been applied for solving 

different problems such as reliability (Khalili-Damghani,  

Abtahi, & Tavana, 2013),  energy management (Litchy, & 

Nehrir, 2014), layout problem (Ghodratnama, Jolai, & 

Tavakkoli-Moghaddam, 2015), scheduling (Torabi, et al., 

2013), relief chain (Bozorgi-Amiri, et al., 2012), and 

SCND (Govindan et al., 2014 and Mousavi et al., 2017). 

Govindan et al. (2014) proposed a novel hybrid multi-

objective meta-heuristic algorithm consisting of MOPSO 

and multi-objective variable neighborhood search. The 

proposed hybrid MOPSO obtained better solution in 

comparison with other meta-heuristics. Mousavi et al. 

[26] developed a MOPSO for finding optimal location of 

facilities as well as quantity of the order and inventory 

through supply chain. Their results show that the 

performance of the MOPSO is better than genetic 

algorithm in large scale problem. Here, a modified 

MOPSO algorithm is coded to solve the proposed citrus 

SCND problem. To demonstrate the efficiency of the 

modified MOPSO algorithm, two well-known meta-

heuristics algorithm including NSGA-II and MOICA are 

utilized for large scale problems. In addition, the proposed 

model has been solved with Branch and Bound approach 

for small size problem and the result show the acceptable 

gap between and applied methods. Consequently, the 

main contributions of the research could be highlighted as 

follows: 

 Developing a new mathematical model to 

design citrus supply chain network; 

 Solving the large-scale problem by using 

three well-known meta-heuristic algorithms 

including MOPSO, NSGA-II, and MOICA; 

 Evaluating the performance of the MOPSO, 

MOICA, and NSGAII algorithms for 

finding Pareto solution of citrus SCND 

problems; 

 Designing a new mixed integer 

programming model to find facility 

location, flow, and transportation problems 

of citrus supply chain network. 

2. Proposed Model  

In this section, a three echelons citrus supply chain 

network including suppliers, distributors, and customers is 

described. Gardeners are known as suppliers and placed in 

the first layer of the network. In the second layer there are 

distributors who purchase the product from suppliers and 

distribute among customers in the third level after 

processing. Product processing involves washing, waxing 

and sizing operations. Distributors can store product 

before processing or afterwards. Due to the limited 

harvesting period, distributors have to purchase products 

from their suppliers at their capacity and process them 

along planning horizon. Due to the storage capacity and 

budget limitation of the distributors in the harvesting 

period, they can purchase unprocessed products from 

other distributors after the end of the harvest period. Thus, 

after product processing, they can be distributed to 

customers. Due to the fact that the price of the product 

after the harvest period increases with decreasing supply, 

distributors prefer to buy and store the product with 

maximum capacity. Accordingly, the price of supply of 

the unprocessed product by the distributor will be higher 

than the supplier. Distributors can use rental depots to 

increase their capacity and reduce their costs. In this way, 

they can store more products in the harvesting period. 

Also, the cost of the warehouse has declined and only the 

cost of renting the warehouse is added to their costs. To 

transport the product between the echelons, there are 

different transportation equipment such as the vans, truck 

and trailer. Each of the transportation equipment has its 

own expense and capacity. In this study, suppliers for 

each distributor would be selected. In addition, the 

amount of flows in the network between the various 

echelons, including supplier to the distributor, distributor 

to the distributor, and distributor to the customer are 

determined. Finally, the type of transportation equipment 

is selected for the transportation of the product among 

different echelons. 
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2.1. Assumptions 

The following assumptions are made in the network 

configuration: 

 Considering the nature of citrus, the eight 

months planning period was considered. 

 The harvest period is set to three months.  

 Distributors can only purchase product from 

suppliers during harvesting (i.e. the first three 

months). 

 The model is designed for a single product, 

multi-objective, and multi-period SCND 

problem. 

  Distributors can only buy unprocessed 

products from each other. 

 The price of the product will vary in different 

periods. 

 The budget and storage capacity of each 

distributor is limited and predetermined. 

 Processed and unprocessed products are 

perished in the distributor's warehouse with a 

different waste rate. 

2.2. Notation 

The notations including indices, parameters, and, 

decision variables are: 

Sets: 
p  sets of supplier ( Pp ,...,2,1 ) 

dd ,  sets of distributors ( Dd ,...,2,1 ) 

j  sets of customers ( Jj ,...,2,1 ) 

t  sets of  periods ( Tt ,...,2,1 ) 

m  Set of transportation equipment ( Mm ,...,2,1 ) 

Parameters  
Pt

pS  Sales price of supplier p in period t 

Dt

ddS   Sales price of distributor d to distributor d' in 

period t 
Jt

djS  Sales price of distributor d to customer j in 

period t 
Pt

p  Capacity of supplier p in period t 

S

d  Unprocessed product storage capacity in 

warehouse of distributor d  
F

d  Processed product storage capacity in 

warehouse of distributor d 
Rt

d  Processing capacity of distributor d in period t 

Jt

j  Capacity of customer j in period t 

tJ

j



  Capacity upper limit of customer j in period t 

tJ

j



  Capacity lower limit of customer j in period t 

Tt

pdmC  Transportation cost from supplier p to 

distributor d in period t with transportation 

equipment m 
Tt

mddC   Transportation cost from distributor d to 

distributor d' in period t with transportation 

equipment m 

Tt

djmC  Transportation cost from distributor d to 

customer j in period t with transportation 

equipment m 
Rt

dC  Processing cost of distributor d in period t 

S

dC  Holding cost of unprocessed product for 

distributor d 
F

dC  Holding cost of processed product for 

distributor d 
CSt

dC  rent cost of unprocessed product for distributor 

d in period t 
CFt

dC  rent cost of processed product for distributor d 

in period t 

mV  Capacity of transportation equipment m 

t

dB  Budget of distributor d in period t 

d   Waste rate of  unprocessed product for 

distributor d  

d  Waste rate of processed product for distributor 

d  

Decision variables 

  
t

pdX

 

Amount of product be purchased by distributor d 

from supplier p in period t 

t

ddY 

 

Amount of product be purchased by distributor d' 

from d to in period t 

t

djZ

 

Amount of product be purchased by customer j 

from distributor d in period t 

t

dW

 

Amount of unprocessed product in distributor d 

warehouse in period t 

t

dK

 

Amount of processed product in distributor d 

warehouse in period t 

t

pdmU

 

Number of transportation equipment m needed 

for transporting product from supplier p to 

distributor d in period t 
t

mddU 

 

Number of transportation equipment m needed 

for transporting product from distributor d to d' in 

period t 
t

djmU

 

Number of transportation equipment m needed 

for transporting product from distributor d to 

customer j in period t 
t

d

 

Surplus capacity of distributor d in period t for 

storing unprocessed product 

t

d

 

Surplus capacity of distributor d in period t for 

storing processed product 

jR

 

Lost sales of customer j 

t

dpr

 

Inventory level of distributor d in period t 

 

2.3. Problem formulation  

The paper considers a three echelons supply chain 

network with multiple suppliers, distributors, and 

customers. The formulation of the proposed multi-

objective integer non-linear programming model is as 

follows:  
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The first objective function (1) aims to maximize the total 

profit of the network by optimizing the profit of the 

distributors. Distributor cans sales unprocessed products 

to other distributors and processed products to customers. 

Hence, the first term of the equation (1) calculates the 

multiplication of the amount of the unprocessed product 

sold to other distributors with the unit profit of an 

unprocessed product. Also, the second term obtains the 

multiplication of the amount of the processed product sold 

to customers with the unit profit of a processed product. 

To this end, the unit profit of the unprocessed or 

processed product were obtained from the difference in 

sale price and average cost including average purchase 

price from producer or other distributors, warehouse 

costs, the transportation cost between nodes of the 

network. The total amount of the product that was not 

bought from producer through harvest period was 

minimized by objective function (2). Objective functions 

(3) and (4) minimizing the perished cost of the stored 

processed and unprocessed product respectively. It should 

be noted that the perished rate of the processed and 

unprocessed citrus are different in warehouse.       

Constraint (5) guarantees that total useless processing 

capacity of each distributor were not less than eighty 

percent of total processing capacity. It means that if a 

distributor facility is setup at least eighty percent of its 

processing capacity should be activated in each period. 

Constraint (6) restricts the total budget for renting 

warehouses by distributors at each period. The distributors 

can store surplus processed or unprocessed product with 

cost CSt

dC  and CFt

dC  for an unprocessed and processed 

product respectively. Constraints (7), (8), (9), (10) and 

(11) are the balance constraints between producers and 

distributors and distributors and distributors. They are 

guarantee that the processing and sale of each distributor 

cannot be more than of total amount of purchased 

unprocessed product. Constraints (12) and (13) balance 

the flow of the processed product between distributors and 

customers through planning horizon. The capacity of the 

suppliers and distributors are restricted with constraints 

(14) and (15). Constraints (16) and (17) ensure that the 

total amount of product delivery to the customer would be 

between the lower and upper limit of the customer 

demand. A part of customers' demand might be lost and 

equality (18) considers the total lost sale of customers. 

Constraint (19) and (20) ensure that total stored 

unprocessed and processed product should be less than 

warehouse capacity of the distributors at each period. 

However, the distributors could store more products by 

paying surplus cost (see constraint 6).  Constraint (21) 

ensure that the total cost of the stored products be less 

than total budget of the distributors. Constraint (22), (23) 

and (24) restrict the number of used transportation 

equipment according to their capacity. Constraints (25), 

(26) guarantee that the inventory of the unprocessed and 

processed product be zero at the end of the planning 

horizon. Finally, constraint (27) enforces the integer and 

non-negativity restrictions on corresponding decision 

variables. 

2.4. Linearization 

To solve the proposed non-linear integer programming 

model, the linearization process has been utilized. While 

the linear models can be reached to global solution, often 

the local solution was obtained from nonlinear models. In 

the proposed model, the formulas (1), (3), (4), and (21) 

are nonlinear.  To convert the proposed non-linear model 

into a linear one, the presented method by (Mahdavi et al., 

2012) has been used. New variables are added to model 

and linear equations are generated as follows:  
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t
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m
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1
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t

d

t

ddP

p

t

pd

D

d
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d

M

m

t
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ACY

X
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





1

1 1 1
 (29) 

t

d

t

djP

p

t

pd

P

p

D

d

M

m

t
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X

U
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




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1
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t

d

t
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p

t
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D

d

J

j

M

m

t
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X

U
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3. Solution Methodology 

To solve the proposed non-linear integer programming 

model, the linearization process has followed. While the 

linear models can be reached to global solution, often the 

local solution was obtained from nonlinear models. In the 

proposed model, the formulas (1), (3), (4), and (21) are 

nonlinear.  To convert the proposed non-linear model into 

a linear one, the presented method by (Mahdavi et al., 

2012) has been used. New variables are added to model 

and converted equations are generated as follows:  

3.1. NSGA-II 

NSGA-II was introduced by Deb et al. (2002) by 

developing NSGA algorithm. Advantage of NSGA-II 

algorithm is that it is more efficient computationally 

(Afshar-Nadjafi, & Razmi-Farooji, 2016). Moreover, this 

method uses elitism and crowded comparison operator 

that can survive variance without using parameter 

addition Deb et al. (2002). Unlike numerical processing 

methods, the NSGA-II could solve the multi-objective 

models with a single run. Since the optimality of the 

whole objective functions does not exist in with a single 

solution, the NSGA-II provides a set of the Pareto 

solutions by taking into account the diversification 

features.  

Here, two phases have been followed for applying the 

NSGA-II algorithm. The first phase considers the quality 

of solutions by determining the ranks of the solutions. To 

this end two values are calculated including the number of 

times that a solution will be overcome and the set of 

solutions recessive by the current answer. To determine 

these two values, all the solutions should be compared 

with each other. Solutions with failure count zero are 

unbeaten solutions and add to the Pareto front 1 (F1). The 

solutions of the second front are determined by 

subtracting the value 1 from the number of the whole 

recessive answers. In the second phase we used the 

distance congestion measure, which is indicates the 

distance between all solutions of a same level. The greater 

the selective points crowding distance is, the more they 

help to the variety. Comparing two different answers, we 

are faced with two modes consisting of a) between two 

solutions of different ranks, the solution with lesser rank 

excels, b)  If two solutions are in same front, the solution 

with the more crowding distance is preferred. 

If Pt be the current generation population and Qt be 

number of children, which have been created using 

crossover and mutation operators, to create the next 

generation first the answers of Qt and Pt are merged and 

then sorting is done over this merged population using the 

ranking function and then crowding distance. Finally, the 

number of the first arranged population size transfer to the 

next generation directly and the rest Solutions will be 

deleted. In fact, the algorithm balances between quality 

and order using the high importance it gives to the 

solution ranks and the less to crowding distance (Trisna, 

et al., 2016). The following steps are considered to solve 

the proposed model with NSGA-II algorithm: 

 
1. Initialize population as usual. 

2. Create a random parent population P0 of size N. 

Set t =0. 

3. Use genetic operator (crossover and mutation) 

toward 0P to create offspring population 0Q  of size 

N 

4. If the stopping criterion is satisfied, then stop and 

return to tP . 

5. Set tR  = tP  U tQ . 

6. Rank population and identify the non-dominated 

fronts RFFF ,...,, 21  in tR  applying the fast non- 

dominated sorting algorithm, The first front (
1F ) is 

a non-dominant set for current population and the 

second front (
2F ) is dominated by the individuals in 

the first front only and goes so on for the next front. 

7. For each objective function k, sort the solutions in 

jF  in the ascending order. Let l =|
jF | and x(i,j) 

represent the ith solution in the sorted list with 

respect to the objective function k. Assign 
kcd  (

],1[ kX )= ∞ and 
kcd  (

],1[ kX )= ∞ and for i = 2,…, l-

1 assign. 

 

   ( [   ])  
  ( [     ])    ( [     ])

  
      

   
 (38) 

 

Initially, we generate a number of random solutions and 

select the best one as the current solution. We utilized five 

neighborhood search structures as presented in Figure 1. 
 

3.2. MOPSO  

Particle swarm optimization is an evolutionary 

computation techniques introduced by Eberchart and 

Kennedy (1995) as social behavior. PSO algorithm starts 

searching a particle population and keeps surviving for 

all generations until searching stop criteria is met. Each 

particle has some memory which helps to track the best 

position it has acquired so far and the best position any 

other particle acquired so far within the neighborhood. 

The particle will then modify its direction based on 

components towards its own best position and towards 

the overall best position (Fattahi, & Samouei, 2016). 

Each individual (particle) represents a solution in an n-

dimensional space. Besides, each particle also has 

knowledge of its prior and the best experience and knows 

the global best solution found by the entire swarm. Each 

particle updates its way using the equations as follows: 
 

 

               (       )     

            , 

             

(39) 
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Where w is the inertia factor affecting the local and 

global capabilities of the algorithm, vij is the velocity of 

the particle i in the jth dimension, 1c  and 2c are weights 

affecting the cognitive and social factors, respectively. 1r  

and 2r  are uniform random variables between 0 and 1. 

ijP  is the best value found by particle i (the best of p) 

and gjP  is the global best found by the entire swarm (the 

best of g).  

To solve the proposed multi-objective model of citrus 

supply chain network, we modified the PSO algorithm 

with LP-metric method (Mirzapour Al-E-Hashem, 

Malekly, & Aryanezhad, 2011). The LP-metric method 

requires the optimum value of each objective ( ). It 

intends to minimize the total weighted deviations from 

the ideal value of each objective ( ). To evaluate the 

fitness of a solution, this method uses the following 

formula: 
 

 (40) 

Where  and  are the value and weight of jth 

objective, respectively. P is a control parameter that 

takes an integer value equal to or greater than 1. If we 

have p = ∞, the problem becomes the minimization of the 

maximal deviation as follows: 
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(41) 

As a result, the problem can be stated as follows: 
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Neighborhoods Descriptions 
 

Solution   

1 2 3 4 5 6 7 8 

 

Neighborhoods 

1 2 4 5 3 6 7 8 
  

a) The fist neighborhood search structure 

One randomly selected element is 

relocated into one randomly selected 

position. 

 

Solution   

1 2 3 4 5 6 7 8 

 

Neighborhoods 

1 2 4 5 3 6 7 8 
  

b) The second neighborhood search structure 

The elements between two randomly 

selected positions are swapped 

 

Solution   

1 2 3 4 5 6 7 8 

 

Neighborhoods 

1 2 4 5 3 6 7 8 
  

c) The third neighborhood search structure 

One randomly selected element is 

relocated into the last position. 

 

Solution   

1 2 3 4 5  6 7 8 

 

Neighborhoods 

1 2 4 5 3 6 7 8 
  

d) The fourth neighborhood search structure 

All elements in positions before a 

randomly selected position are shifted to 

last positions with the same sequence 

Solution 

   

1 2 3 4 5 6 7 8 

 

Neighborhoods 

1 2 4 5 3 6 7 8 
  

e) The fifth neighborhood search structure 

One position is randomly selected and all 

the elements in earlier positions are 

swapped and all the elements in later 

positions are separately swapped 

Fig. 1. The examples of the five neighborhood search structure. 
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3.3. MOICA 

ICA Algorithm was developed by Atashpas-Gargari and 

Lucas (2007) as a population based evolutionary 

algorithm. The inspiration of the algorithm comes from 

the socio-political process of imperialistic competition in 

the real world. The MOICA establishes two concepts of 

non-dominance and crowding distance. In this algorithm, 

numbers of random solutions, named countries, are 

firstly generated to form the initial population. After 

producing the countries, a non-dominance technique and 

a crowding distance measure is utilized to rank and select 

the best countries in the population. In each generation, 

the best solutions are selected as the imperialists and the 

remaining countries are treated as the colonies Naderi, 

(2013). 

All the colonies of initial countries are divided among the 

mentioned imperialists based on their power. The 

imperialist and its countries make an empire. The power 

of the imperialist country is the key factor to determine 

total power of an empire. Imperialists persuade their 

colonies to move toward themselves. The information of 

the colonies is shared by crossover operation and the 

imperialism affects is of colonies by mutation operation. 

This process continues until the power of the stronger 

empire is increased and the power of the weaker ones is 

reduced. As the algorithm goes on, the strongest 

imperialists take up the colonies of less powerful 

imperialists and the weak empires will be deleted. The 

algorithms stop as soon just one emperor remains 

(Alaghebandha, Pasandideh & Hajipour, 2012).  

4. Experimental Results  

To evaluate the performance of the NSGA-II, MOICA, 

and MOPSO, we consider 14 small and large size test 

problems as reported in the Appendix I. For each test 

problem 7 instances was generated randomly and 

summarized in the Appendix II. The algorithms are coded 

in MATLAB V. 12.10.0.499 and run on a Pentium IV 2.5 

GHz processor with 6 GB memory. It should be noted that 

only the small size test problems could be solved by 

Branch and Bound Algorithm (computational time about 

80–550 second in LINGO 8.0 software) due to the 

computational complexity of the proposed model. For the 

large size test problems, we cannot obtain any feasible 

solutions with Branch and Bound Algorithm after 1200s. 

The average computational times of meta-heuristic 

algorithms were obtained about 54.68 s and 262.51s for 

small and large test problems respectively and shown in 

figure 2.   

 

 
Fig. 2. The computational time of small and large size test problems for each algorithm 

 

We utilize relative percentage deviation (RPD) criteria to 

compare the performance of MOICA, NSGA-II, and 

MOPSO algorithms. To calculate RPD for minimization 

and maximization objective function the following 

equations were utilized: 
 

 

(43) 

 

 

 

 

where Alg, Max, and Min were the solutions of the 

algorithm, and the optimum solution if the problem is 

solved in single objective manner with maximization and 

minimization. Tables 1 report the average RPD of 

algorithms. The results of the Branch and Bound (B&B) 

algorithm were reported for small size due to the 

computational time more than 1200s. Figure 3 shows the 

average RPD of objective functions obtained for each 

test problem. Indeed, the RPD of B&B algorithm for 

small size test problems is the best one. Among the meta-

heuristic algorithms, MOPSO obtained the better RPD 

value rather than MOICA and NSGA-II in both small 

and large size test problems as shown in figure 3 and 

summarized in table 1. 
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      Table 1 

      The average RPD of NSGA-II, MOICA, and MOPSO on different problems 
Test problems NSGA-II MOPSO MOICA B&B 

SS1 0.968 0.544 0.821 0.342 

SS2 1.355 0.877 1.042 0.632 

SS3 2.972 1.655 2.832 1.295 

SS4 3.763 1.876 2.733 1.693 

SS5 4.971 2.987 3.252 2.576 

SS6 5.506 3.286 4.261 3.096 

SS7 5.931 3.901 4.988 3.344 

LS1 5.786 4.122 4.984 - 

LS2 6.445 5.347 5.972 - 

LS3 7.866 6.191 6.899 - 

LS4 8.788 6.983 7.981 - 

LS5 9.556 7.173 8.456 - 

LS6 9.788 7.934 8.934 - 

LS7 10.988 8.283 10.145 - 

 

  
Fig. 3. The integrated RPD of NSGA-II, MOICA, and MOPSO for different problem sizes 

 

4.1. Results validation 

The performance of the meta-heuristic algorithms depends 

on the parameters that were used in the components of 

them. So the validity of the solutions must be evaluated to 

ensure the real Pareto front. To this end, three small size 

test problems were generated and the real Pareto front 

space was found. The real Pareto front is compared with 

the result of the applied algorithms. The detailed results of 

three generated examples were summarized in table 2. As 

reported in table 2, the NSGA-II found more non-

dominated solutions in the first and third examples (i.e. 15 

and 14). We can found 39 non-dominated solutions by 

MOPSO algorithm for the second test problem. The value 

of objective functions for the first example that was 

obtained by NSGA-II (15 non-dominated solution) is 

reported in Appendix III. Distribution of points in the 

solution space is shown in figure 4. According to the 

obtained results, we can conclude that the accuracy and 

the ability of the three algorithms in achieving Pareto 

front solutions are acceptable.  

 

 

Table 2 

Characteristics and results for examples produced for validation algorithms 

The running time of 

three algorithms (s) 

The number of Non-dominated 

solution 
The total 

solution time (s) 

The total number of 

points Non-dominated 

The total number of points 

possible solution space 

Test 

Problem 
MOICA NSGA-II MOPSO 

5 13 15 12 274 17 4850 1 

35 31 36 39 24560 38 37487 2 

40 12 14 10 23730 13 196534 3 
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Fig. 4. Pareto points dispersion in the solution space 

4.2. Comparison of Algorithms 

To compare the performance of the multi-objective meta-

heuristic algorithms, several indicators were proposed in 

the literature (Afshar-Nadjafi, & Razmi-Farooji, 2014 and 

Sarrafha, Kazemi, & Alinezhad, 2014). Generally, 

indicators are evaluating two main features of multi-

objective programming consisting of the convergence and 

quality and distribution and expansion of solutions in the 

solution space. We used four indicators to compare the 

utilized algorithms including Number of Pareto Solution 

(NOS), Maximum Spread (MS), Mean Ideal Distance 

(MID), and Diversification Metric (DM). To this end the 

identified indicators were calculated for MOPSO, 

MOICA, and NSGA-II algorithms in small and large size 

test problems.  

 Small size test problems: 

Four small size test problems were generated for 

comparing the algorithms. The results show that MOPSO 

algorithm is more successful than NSGA-II and MOICA 

algorithms for finding the number of Pareto points in all 

problems. In relation to the average distance from the 

ideal answer a definite statement cannot be given about 

the superiority of any ones over the other algorithms. For 

diversification metric and maximum spread criteria which 

have an indication over distribution of solutions 

superiority MOPSO algorithm is better than MOICA and 

NSGA-II algorithms. 

 Large size test problems: 

Three large size test problems were generated to compare 

the algorithms. The values of the indicators were reported 

in table 4. The MOPSO has shown better results 

according to the number of Non-dominant solutions. By 

increasing the size of the problems, NSGA-II algorithm 

finds more Pareto points in compare to MOICA 

algorithm. However, MOICA algorithm was converged 

and Non-dominant solutions were obtained rapidly. It 

should be noted that we cannot find new non-dominated 

solutions by increasing the number of the iterations in 

MOICA algorithm. As reported in table 4, we found out 

the NSGA-II is a capable algorithm for solving the 

proposed model in large size test problem. Although the 

computational time of the NSGA-II was more than two 

other ones. Based on the computational time, the MOICA 

showed better performance rather than NSGA-II and 

MOPSO for large size test problem. We can claim that the 

MOPSO algorithm has acceptable running time as well as 

four indicators in large size test problems.  
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                                Table 3 

                                Comparison of the algorithms for small size test problems 

Run time 

(s) 

Number of 

Pareto 

solution 

Maximum 

spread 

Mean ideal 

distance 

diversification 

metric 
algorithm 

Test 

problem 

10 30 114/43 51/43 12/32 NSGA-II 1 

10 31 115/22 47/76 12/5 MOICA 

10 29 105/32 39/74 11/98 MOPSO 

10 24 87/63 34/27 10/06 NSGA-II 2 

10 25 90/54 40/07 10/24 MOICA 

10 23 85/35 31/47 9/11 MOPSO 

30 19 65/39 37/07 8/94 NSGA-II 3 

30 34 67/31 33/79 9/02 MOICA 

30 23 63/01 29/3 8/15 MOPSO 

150 132 396/14 202/7 22/96 NSGA-II 4 

150 126 440/19 214/42 24/01 MOICA 

150 116 432/85 198/65 21/45 MOPSO 

 

Table 4 

Comparison of the algorithms for large scale test problems 
Run time (s) Number of Pareto solution Maximum spread Mean ideal distance diversification metric Algorithm Test Problems 

600 52 354/5 115/14 20/05 NSGA-II 1 

600 49 566/84 158/09 23/4 MOICA 

600 47 576/6 165/16 24/64 MOPSO 

900 104 546/23 183/76 22/67 NSGA-II 2 

900 53 753/56 271/32 27/16 MOICA 

900 48 776/43 289/45 25/29 MOPSO 

1000 114 494/14 214/08 22/45 NSGA-II 3 

1000 43 654/5 249/95 26/07 MOICA 

1000 39 697/3 256/76 28/79 MOPSO 

 

5. Conclusions and Future Research Directions 

This paper developed a three-echelon citrus supply chain 

network model as a multi-objective single-product multi-

period location-allocation problem. The proposed multi-

objective integer non-linear programming model aims to 

maximize the profit of the networks while minimize the 

total costs. Three meta-heuristic algorithms including 

MOPSO, MOICA, and NSGA-II were coded to solve the 

citrus SCND problem. To evaluate the performance of the 

algorithms several test problems have been generated 

randomly with different sizes. First, computational time 

and RPD criteria were used to evaluate the performance 

of algorithms. Then four multi-objective indicators i.e. 

number of Pareto solution, maximum spread, mean ideal 

distance, and diversification metric have been utilized for 

comparing the algorithms in small and large size test 

problems. The following results were found from solving 

the proposed citrus SCND problem by three multi-

objective meta-heuristics algorithms: 

 The computational time of the NSGA-II 

algorithm would be increased significantly by 

increasing the size of the test problems;  

 The computational time of both MOPSO and 

MOICA were same relatively while in large size 

test problems the MOPSO show better 

performance.; 

 According to RPD criteria, the MOPSO was 

better than two other algorithms for solving the 

proposed citrus SCND problem. In addition, in 

small size test problems, the RPD of the MOPSO 

is close to the results of the B&B algorithm; 

 Based on the Pareto point dispersion criteria, the 

NSGA-II algorithm is more similar to full count 

method rather than MOPSO and MOICA 

algorithms; 

 In the large size test problems, the MOICA was 

converged rapidly while the number of its 

Parreto solution was less than NSGA-II 

algorithm; 

 Based on the comparison indicators and 

performance criteria we can claim that the 

MOPSO has acceptable results for solving the 

proposed citrus SCND problem.   

As directions for future researches, the model 

presented in this paper could be implemented in a real 

case study to evaluate the applicability of the proposed 

models and solution methods. In addition, other solution 

approaches could be utilized to solve the developed 

problem in different sizes. 
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Appendix I. Test Problems size 
The sets of test problems 

Sets 
Test Problems 

Transportation equipment Period Customer Distributor Producer 

     Small 

1 1 2 2 2 SS1 
1 2 2 2 2 SS2 
2 2 2 2 1 SS3 
2 3 3 2 1 SS4 
2 2 3 2 2 SS5 
3 3 3 2 2 SS6 
1 2 3 2 2 SS7 
     Large 

5 4 15 10 8 LS1 
5 4 16 18 15 LS2 
5 4 16 18 17 LS3 
6 4 17 20 19 LS4 
7 5 20 22 20 LS5 
6 5 20 23 20 LS6 
5 4 23 24 25 LS7 

Appendix II. Test Problems parameters’ distributions 

Parameters’ distribution 

Parameters Problem ranges Parameters Problem ranges 

Pt

pS  
[150،100] Tt

mddC   
[2,10] 

Dt

ddS   
[120،100] Tt

pjmC  
[2,10] 

Jt

djS  
[450, 500] Rt

dC  
[5,15] 

Pt

p  
[200,250] S

dC  
[5,10] 

S

d  
[100,200] F

dC  
[5,10] 

F

d  
[150،100] CSt

dC  
[5,10] 

R

d  
[200,250] CFt

dC  
[10,20] 

Jt

j  
[150،100] 

mV  
[1000,2000] 

tJ

j



  
[150،100] 

d   
[0/00015,0/00085] 

tJ

j



  
[150،100] 

d  
[0/00025,0/00075] 

Tt

pdmC  
[5,10]   

 

Appendix III. The values of objective functions related to the non-dominant first example solved by NSGA-II 

 

Distributor profit Costs average  
The point of 

non-dominated 

1275 83.96 1 

1224 83.96 2 

1163 83.48 3 

1198 81.8 4 

1137 83.18 5 

1137 82 6 

1179 81.5 7 

1154 82.76 8 

1118 81.57 9 

1104 81.07 10 

1174 80.51 11 

1099 82.07 12 

1093 79.82 13 

1087 78.07 14 

1087 77.7 15 
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