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Abstract 

In today’s competitive market, those producers who can quickly adapt themselves to diverse demands of customers are successful. Therefore, in 
order to satisfy these demands of market, Mixed-model assembly line (MMAL) has an increasing growth in industry. A mixed-model assembly 
line (MMAL) is a type of production line in which varieties of products with common base characteristics are assembled on. This paper focuses 
on this type of production line in a stochastic environment with three objective functions: 1) total utility work cost, 2) total idle cost, and 3) total 
production rate variation cost that are simultaneously considered.In real life, especially in manual assembly lines, because of some inevitable 
human mistakes, breakdown of machines, lack of motivation in workers and the things alike, events are not deterministic, so weconsider 
operation time as a stochastic variable independently distributed with normal distributions; for dealing with it, chance constraint optimization is 
used to model the problem. At first, because of NP-hard nature of the problem, multi-objective harmony search (MOHS) algorithm is proposed 
to solve it. Then, for evaluating the performance of the proposed algorithm, it is compared with NSGA-II that is a powerful and famous 
algorithm in this area. At last, numerical examples for comparing these two algorithms with some comparing metrics are presented. The results 
have shown that MOHS algorithm has a good performance in our proposed model. 

Keywords: Mixed-model assembly line sequencing, Stochastic operation time, Chance constraint. 

1. Introduction   

In today’s competitive world, due to some challenges for 
producers, such as diversification in customers’ demand, 
competitive price, etc., maintaining the marketplace 
becomes a vital issue for producers.  In the past, 
manufacturers were able to produce a large quantity of 
products by using a single-model assembly line, but they are 
nowadays able to produce many products with high variety 
using mixed-model assembly lines (MMAL). This approach 
is feasible when different models can be assembled without 
a significant changeover delay between them Hyun et al. 
(1998). It is known that a sequencing problem in MMAL 
falls into NP-hard class of combinatorial optimization 
problems; thus, a large-sized problem may be 
computationally intractable Hyun et al. (1998). MMAL is 
widely used by production systems due to its advantages 
such as: more flexibility, better part usage rates, and their 
ability to answer various demands of their customers 
without possessing large product inventory in recent years 
Manavizadeh et al. (2013).  
The effective utilization of a mixed-model assembly line 
requires solving two problems in the sequential manner: (1)  

designing and balancing the line; (2) determining the 
production sequence for different models Tavakkoli-
Moghaddam & Rahimi-Vahed (2006). In this research, we 
assume that the assembly line has already been balanced 
and our goal is just sequencing the line.  
In real-life application, especially in manual assembly lines, 
because of some inevitable human mistakes, breakdown of 
machines, lack of motivation in workers and the things 
alike, events are not deterministic; so, weconsider operation 
time as stochastic. Some approaches are introduced to 
model the stochastic problem in which one of them is 
chance-constrained approach, which was first introduced by 
Charnes and Cooper (1959). Based on Elyasi & Salmasi 
(2013), this approach is suitable for solving optimization 
problems with random variables in constraints and 
sometimes in objective functions as well. The constraints 
are guaranteed to be satisfied with a specified probability or 
confidence level-α- using the known probability 
density/cumulative distribution of the uncertain variables.  
Chance-constrained programming is applicable to models 
where (optimal) decisions have to be made prior to realizing 
random effects Birge (1997). 
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As mentioned above, mixed-model assembly line 
production system is one of the requirements of today's 
competitive market. In addition, since many researchers 
have studied it in this field, numerous studiesexisthere. In 
this section, we will review a part of this rich literature. 
Monden(Monden, 1983) defined two goals for the 
sequencing problems: (1) leveling the load on each station 
on the assembly line and (2) keeping a constant rate of part 
usage. Goal chasings I and II (GC-I and GC-II) were the 
considered approaches developed by Toyota Corporation. 
Miltenburg (1989) considered the second above mentioned 
goal and formulated the mixed-model sequencing problem 
as a nonlinear integer programming. Then, because of time 
complexity function of the proposed problem, he applied 
two heuristic procedures to solve it. Miltenburg et al. 
Miltenburg, et al. (1990), in another research, solved the 
same problem with a dynamic programming algorithm. 
Sarker and Pan Sarker & Pan (1998),in their research, 
considered a mixed-model assembly line with either closed 
or open stations with the goal of minimizing the costs of 
idle and utility times. Then, to solve the problem, they 
developed two models for both closed-station and open-
station systems to determine line parameters optimally. 
Results of their research indicate that the minimum total 
cost of utility and idle times in an open-station system is 
less than that in a closed-station system for a given line 
length. Xiaobo and Ohno (1997), for minimizing the 
conveyor stoppage and finding an optimal or sub-optimal 
sequence of mixed models, proposed two algorithms. One 
of them is branch and bound methods used to find an 
optimal solution to small-sized problems and another is 
simulated annealing algorithm used to obtain a good sub-
optimal solution to large-scale problems. Also, with 
numerical example, they show that the simulated annealing 
algorithm is about 100 times faster than the branch and 
bound algorithm to find an optimal solution. Hyun et al. 
(1998) proposed a new genetic algorithm to solve multiple 
objective sequencing problems in mixed model assembly 
lines. They, between a rich set of criteria based on which to 
judge the sequences of product models in terms of line 
utilization, considered this tree objective function: 
minimizing total utility work, keeping a constant rate of part 
usage, and minimizing total setup cost. Korkmazel and 
Meral , (2001) focused on bi-criteria sequencing methods 
for the mixed-model assembly line in JIT production 
systems. They considered two major goals: 1) smoothing 
the workload on each workstation in the assembly line; 2) 
keeping a constant rate of usage of all parts used in the 
assembly line. In this research, at first, the sum of deviations 
of actual production from the desired amount is minimized 
by using some well-known solution methods for goal 2, and 
then the best approach is extended for both goals, 
simultaneously. Kim and Jeong , (2007) ponderedoverhow 
to optimize the input sequence of product models with 
sequence-dependent setup time in Mixed-Model Assembly 
Line using  the conveyor system that minimizes the 

unfinished works within stations. They presented a 
generalized formulation of the product sequencing-problem 
in MMAL and suggested a Branch & Bound algorithm for 
finding the optimal sequence and a heuristic algorithm for 
solving large-scale problems. Also, in order to find an initial 
solution for branch and bound (B&B) and heuristic 
procedure, they proposed a minimum setup time procedure. 
Bard et al. Bard et al. (1994) considered mixed-model 
assembly line with these two objective functions: 
minimizing the overall line length and keeping a constant 
rate of part usage. Then, for solving the problem, they used 
weighted sum approach and a proposed tabu search (TS) 
algorithm. Mansouri (2005), in his research, presented a 
multi-objective genetic algorithm (MOGA) approach to a 
JIT sequencing problem where variation of production rates 
and the number of setups were simultaneously optimized. 
Since, these two objectives are typically inversely correlated 
with each other and optimizing these goals simultaneously 
is challenging, this type of problem is NP-hard. Then, in 
order to search for locally Pareto-optimal or locally non-
dominated frontier, the MOGA approach was used. 
Tavakkoli-Moghaddam and Rahimi-Vahed (2006) 
considered the multi-criteria sequencing mixed-model 
assembly line problem with three objectives: 1) minimizing 
total utility work;2) total production rate variation; 3) total 
setup cost. At first, these three objectives were weighted by 
their relative importance weights, and then they were 
presented with new mathematical formulations for these 
objectives; a memetic algorithm (MA) wasproposed to 
determine suitable sequences. Rahimi-Vahed and Mirzaei ( 
2007), in their research, considered three objective functions 
presented in(Tavakkoli-Moghaddam & Rahimi-Vahed, 
2006). Due to the complexity of the problem, they applied a 
hybrid multi-objective algorithm based on shuffled frog-
leaping algorithm (SFLA) and bacteria optimization (BO). 
Fattahi and Salehi (2009)  considered sequencing problem 
to minimize total utility and idle cost with a variable 
launching interval between products on the assembly line 
that involves two optimization problems (the sequencing 
problem and launching interval problem). Since this 
problem is NP-hard, they proposed a hybrid meta-heuristic 
algorithm based on the simulated annealing approach and a 
heuristic approach.  
Another important classification of assembly lines is 
considering the deterministic or nondeterministic 
assumption of this paper dealing with nondeterministic 
operation time. If assembly operations are performed using 
machines/robots that are more advanced or highly qualified 
and motivated operators, then the operations may have 
almost constant operation times. In real-life application, 
especially in manual assembly lines, because of some 
inevitable human mistakes, breakdown of machines, lack of 
motivation in workers and the things alike, events are not 
deterministic, so we consider that operation time is 
stochastic. To tackle uncertainty of the problem, we chose 
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Chance-Constrained approach that was firstly introduced by 
Charnes and Cooper (1959).  

In the present paper, three objectives are considered 
simultaneously: 1) total utility work cost;2) total idle cost; 
3) total production variation cost. The rest of this paper is 
organized as follows: in section 2, the problem description 
and formulation under deterministic assumption is 
proposed. Section 3 presents the stochastic model. Section 4 
is about MOOPs. The proposed MOHS algorithm is 
presented in section 5. Section 6 includes comparison 
metrics and numerical experiments; eventually, the last 
section presents the conclusion and main results. 

2. Problem Description and Formulation under  
 Deterministic Assumption 

A mixed-model assembly line usually consists of a number 
of stations linked by a conveyor belt moving at a constant 
rate (Fattahi & Salehi, 2009). It is assumed that the 
conveyor moves from left to the right side of the station 
with a constant speed. In this research, we assumed that all 
the stations are closed type. Closed type stations 
haveboundaries, and the workers are not allowed to cross 
the station’s boundaries. Because of this assumption, each 

station’s starting point is zero and the finished point is equal 
to

jL . The tasks, which are allocated to each station, are 

properly balanced, and their operation times are stochastic 
with Normal distribution. Products are launched onto the 
conveyor belt with a fixed rate and also the worker’s 
moving time is ignored. While performing his/her work, the 
operator moves downstream on the conveyor and completes 
the next product by moving upstream. The speed of 
operators is also equal to conveyor speed. 
The design of an MMAL involves several issues such as 
determining operator schedules, product mix, and launch 
intervals. First, we shall consider the operator schedules. 
Two types of operator schedules, early start schedule and 
late start schedule, are found in the literature  Bard et al.( 
1992). An early start schedule is more common in practice 
and, thus, is used in this paper. While this schedule allows 
worker’s idle time, it can shorten the line length. Second, 
minimum part set (MPS) production, a strategy widely 
accepted in mixed model assembly lines(J. F. Bard et al., 
1992), is used. (MPS is a vector representing a product mix, 

such that(݀ଵ, … , ݀ெ) = (஽భ௛ , … , ஽ಾ௛ ), where M is the total 

number of models
MD  is the number of products of model 

type m which needs to be assembled during an entire 
planning horizon, and h is the greatest common divisor 
ofܦଵ, ,ଶܦ … ,  .ெ. This strategy operates in a cyclical mannerܦ
The number of products produced in one cycle is

1

M

mm
I d


  . 

Obviously, h time’s repetition of producing the MPS 
products can meet the total demand in the planning horizon 
Bard et al. (1992). (Fig 1).  

Fig. 1 . Operations in a closed workstation
 

Before introducing the objectives and model, notations of 
the problem are described in Table (1). 

Table 1 
 Notation used in the model 
Indices ݅ product, ݅ ∈ ሼ1,2, … , ሽ݆ܫ station, ݆ ∈ ሼ1,2, … , ሽ݉ܬ model, ݉ ∈ ሼ1,2, … , ሽܯ
Input parameters ܯ Number of models ܫ Total number of products to be sequenced (
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          the assembly line ߛLaunch interval of products to the assembly lineܮ௝ The line length of station j  ܥ௎Cost of utility worker per unit time at ݆th stationܥூ஽Cost of idle worker per unit time at ݆th station
im Sequence dependent production rate variation cost foposition i of the sequence 
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2.1. Minimizing total utility work cost 

In this paper, we assumed that stoppage of conveyor belt is 
not allowed, so when the regular worker could not finish 
his/her work in the work zone, the utility workers assist 
them to finishing the work. In other words, this objective 
function tries to present a sequence of products to reduce 
the overload cost of the work. The following proposed 
model is an extension of the model presented in(Hyun et al., 
1998).

 

min ෍ ௎௃ܥ
௃ୀଵ (෍ ௜ܷ௝௃

௜ୀଵ + ܼ(ூାଵ)௝/ݒ௖)
St: 
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1 1,..,
M
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x for i I

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(7) 
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The above-mentioned objective function shows the total 
cost of unfinished work i at station j; the second term in the 
objective function is in order to account for the utility work 
that may be required at the end of a cycle. Constraint (1) is 
used to ensure that exactly one product is assigned to each 
position in a sequence. Eq. (2) is introduced to show that 
demand for each model is satisfied in a cycle. Eq. (3) 
indicates that the operation for the first product of every 
cycle must be started at the left boundary of the station. In 
Eq. (4), the starting position of the worker at each station j 
for product (i+1) in a sequence is indicated. Eq. (5) 
indicates time of utility work for it product at station j in a 
sequence. Constraint (6) indicates the utility work time for 
end product I at this station in a sequence and Z1j shows that 
stations are closed type. 

 

2.2. Minimizing total idle cost
 

The aim of this objective function is calculating idle times 
that happened for each operator at each station; therefore, it 
tries to minimize its cost per unit time. 

1 1
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This objective function shows sequence-independent idle 
time of workers, so it is ignored when no product enters 

his/her station. Eq. (9) indicates idle time for product i at 
station j. 

2.3. Minimizing total production variation cost 

A theoretical basis of this model was presented by 
Miltenburg Miltenburg (1989), and modified by Tavakkoli-
Moghaddam & Rahimi-Vahed (2006) to the figure 
presented here.  According to this objective function, when 
the demand rate of parts is constant over time, the objective 
is significant to achieve a successful operation of the 
system. Thus, the objective can be achieved by matching the 
demand with the actual production Tavakkoli-Moghaddam 
& Rahimi-Vahed (2006). 
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3. Stochastic Formulation of the Proposed Model  

According to assumptions in this paper 
mjt is a stochastic 

parameter assumed to be independent and normally 
distributed with known means ߤ௠௝ and variances ߪ௠௝ଶ , as (ݐ௠௝ − ܰ൫ߤ௠௝, ௠௝ଶߪ ൯), with the confidence level of

(0 1)   . So,
1Z 

is ߙ-quantile of the cumulative 

standardized normal distribution function. It should be 
mentioned that the value of ߙis determined by the decision-
maker. It should also be noted that chance constraint with

1 is equivalent to a deterministic constraint. Following 
our discussion, constraints (4)-(6) and (9) can be extended 
to probabilistic model components as follows: 
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As Hyun et al.(Hyun et al., 1998) claimed, finding 
production sequences with desirable levels of all objectives 
is NP-hard. Computation of total number of sequences for a 
MMAL problem is as follows: 

 1

1

!

( !)

M

mm

M

mm

d
Total sequences

d









(14)  

As can be seen, by increasing the size of the problem, the 
number of the feasible solutions increases exponentially. 
Thus, solving these types of problems for the optimal 
solution within reasonable time is not usually possible. 
Therefore, to solve these problems, the meta-heuristic 
approach is proposed. 

4. Multi-Objective Optimization Problems 

Most of the optimization problems in the real world involve 
simultaneous optimization of several conflicting objectives, 
which are called Multi-Objective optimization problems 
(MOOP). Obtaining an optimal solution in MOOP is not 
like single objective optimization problems, because a 
single objective optimization problem will be terminated 
upon obtaining an optimal solution, while finding a single 
solution is always difficult for a MOOP.Therefore, in 
MOOP, it is common to find a set of solutions depending on 
non-dominance criterion. Let us consider MOOPs as 
follows, which consists of multiple conflicting objectives to 
be optimized simultaneously and the various equality and 
inequality constraints. 

1 2: ( ) { ( ), ( ), ..., ( )}Joptim iz e F x f x f x f x

. : ( ) 0 ; 1, 2,...,ks t g x k m

 
   
  

nx E
 

In above formulation, ݔ is decision vector, ܬ is the number 
of objective functions, and ݇ is the number of equality and 
inequality constraints.  
In a minimization multi-objective problem, assume we have 
two solutions,ݔଵ and ݔଶ.Therefore,solution ݔଵis said to 
dominate solution ݔଶ if and only if: 

1 2

1 2

1. ( ) ( ) {1,2,..., }

2. ( ) ( ) {1,2,..., }
i i

i i

f x f x i J

f x f x i J

  
  

 

Solutions which dominate the others, but do not dominate 
themselves, are called non-dominated solutions Rahimi-
Vahed & Mirzaei (2007). On the other hand, the solutions 
that are non-dominated within the entire search space are 
called as Pareto optimal solutions. 
Traditionally, MOOPs were solved by weighted sum 
approach,-constraint approach, and goal attainment 
method. The weighted sum approach converts MOOP to a 
single objective optimization problem by giving suitable 
weights to the objectives;  Bard et al. (1994) had used this 
method. The -constraint method optimizes one of the 
preferred objective functions using the other objective 
functions as constraints  Mavrotas (2009) explained moreon 
this method. The above-mentioned approaches need 
multiple runs to obtain a Pareto optimal solution and require 
much computational time resulting in a weakly non-
dominated solution. 
Recently, multi-objective evolutionary algorithms have 
been used to solve MMALs problems Mansouri (2005); 
Rahimi-Vahed & Mirzaei (2007). In comparison with 
traditional methods for solving multi-objective problems, it 
is proved that the evolutionary algorithms have better 
performance because of their ability to obtain a Pareto 
optimal solution just in a single run. Since evolutionary 
algorithms use a population of solutions, they can be easily 
extended to maintain a diverse set of solutions in a single 
run Sivasubramani & Swarup (2011). 

5. The Proposed Multi-objective Harmony Search 
Algorithm

 

5.1. Harmony search algorithm 

Harmony Search (hereafter HS) algorithm is a relatively 
new population-based meta-heuristic algorithm introduced 
by Geem et al. (2001). HS, like most of the meta-heuristic 
algorithms, is a nature-inspired algorithm, which mimics the 
improvisation of music players. The harmony in music is 
analogous to the optimization solution vector, and the 
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musician’s improvisations are analogous to the local and 
global search schemes in optimization techniques 
Sivasubramani & Swarup (2011). By this assumption of 
analogy between improvisation and optimization, we can 
have these considerations: fantastic harmony in music is 
considered as a global optimum in optimization problem, 
and so, aesthetic standard in music is determined by the 
objective function in optimization problem; also, pitches of 
instruments are desired values of the variables, and each 
practice is the same in each iteration. It is remarkable that 
the HS algorithm uses a stochastic random search, instead 
of a gradient search, and is simple in concept, few in 
parameters, and easy in implementation. 

The HS optimization algorithm has been applied 
successfully to various engineering optimization problems 
such as satellite heat pipe design  Geem & Hwangbo ( 
2006), vehicle routing . Geem et al. (2005)  application to 
pipe network design Geem et al. (2002) and water network 
design Geem (2006). Mahdavi et al. (2007) in their 
research, described an improved harmony search (IHS) 
algorithm for solving optimization problems which employs 
a novel method for generating new solution vectors to 
enhance accuracy and convergence rate of harmony search 
(HS) algorithm. The optimization procedure of the HS 
algorithm is as follows Sivasubramani & Swarup (2011): 
1. Initialize the optimization problem and algorithm 

parameters. 
2. Initialize the harmony memory. 
3. Improvise a new Harmony memory. 
4. Update the harmony memory. 
5. Check for stopping criteria. Otherwise, repeat steps 3 to  

5.2. Initialize the optimization problem and algorithm 
parameters 

In the first step, let us consider the optimization problem as 
follows: 

min ( )

. : 1, 2,...,i i

imize f x

s t x X N 

where ݂(ݔ)is an objective function;ݔ is the set of each 
decision variable ௜ܺ ; ܰ is the number of decision 
variables, ௜ܺ is the set of the possible range of values for 
each decision variable, that is, ௜௅ݔ ≤ ௜ܺ ≤  ௜௎areݔ௜௅andݔ ;௜௎ݔ
the lower and upper bounds for each decision variable. The 
HS algorithm parameters are also specified in this step. 
These are the harmony memory size (HMS), or the number 
of solution vectors in the harmony memory; harmony 
memory considering rate (HMCR); pitch adjusting rate 
(PAR); the number of improvisations (NI), or stopping 
criterion Mahdavi et al. (2007). 

HMCR and PAR are used as parameters which improve the 
solution vector. 
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5.3. Initialize the optimization problem and algorithm 
parameters 

The harmony memory (HM) is a memory location where all 
the solution vectors (sets of decision variables) are stored. 
The HM is similar to the number of population in other 
evolutionary algorithms (Sivasubramani & Swarup, 2011). 
In this step, the HM matrix is filled with many randomly 
generated solution vectors equal to the HMS between its 
minimum and maximum limits. 

5.4. Improvise a new harmony memory 

A new Harmony vector, ' ' ' '
1 2  , , . . .,( )NX x x x , is generated 

based on three rules: (1) memory consideration, (2) pitch 
adjustment, and (3) random selection. Generating a new 
harmony is called as improvisation Sivasubramani & 
Swarup (2011). 

In the memory consideration, the value of decision variables 
'
1x for the new vector is chosen from '1 '

1 1( )HMSx x , and also 

other decision variables are selected in the same manner. 
The harmony memory considering rate (HMCR) varies 
between 0 and 1, and it is the rate of choosing one value 
from the historical values stored in HM, while (1 _ HMCR) 
is the rate of randomly selecting one value from the possible 
range of values as follows:  
For instance, HMCR with value 0.8 indicates that the HS 
algorithm will choose the decision variable from historically 
stored values in the HM with an 80% probability or from 
the possible range with a 20% probability. Next, every 
component obtained by the memory consideration is 
examined to determine whether it should be pitch-adjusted 
or not. For this operation, the PAR parameter is used, which 
is the rate of pitch adjustment decision for Xi as follows: 

' '
'

the rate of doing not

 , () ,

  ( hi1 ng)- ) (
i

i iwith probability PAR so x x rand bw

with probability PA

Ye
x

No R

s    






(16) 

where bw is an arbitrary distance bandwidth, and rand ( ) is 
a random number between 0 and 1. 
Only after choosing a value from the HM, the Pitch 
adjusting process is performed. A PAR of 0.25 means that 
the algorithm will choose a neighboring value with 25% * 
HMCR probability. The HMCR and PAR parameters 
introduced in the harmony search help the algorithm find 
globally and locally improved solutions, respectively Lee & 
Geem (2005). 

' 1 2
'

'

   

   (1-

( , ,..., )
(

)
15)

HMS
i i i i

i

i i

with probability of HMCR

with probability of HMC

x x x x
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In this step, HM consideration, pitch adjustment, or random 
selection are applied to each variable of the new harmony 
vector. 
PAR and bw in HS algorithm are very important parameters 
in fine-tuning of optimized solution vectors and can be 
potentially useful in adjusting convergence rate of algorithm 
to optimal solution Mahdavi et al.  (2007). In traditional HS 
algorithm, the values of these parameters were fixed. But, 
based on Mahdavi et al. (2007), PAR and bw change 
dynamically with generation number as follows: 

max min
min( )

PAR PAR
PAR gn PAR gn

NI


  

 
(17) 

where: 
PARmin : minimum pitch adjusting rate 
PARmax: maximum pitch adjusting rate 
NI        : number of solution vector generations 
gn        : generation number 

min

max
max

( )

( ) exp

BW
Ln

BW
BW gn BW gn

NI

 
 
  
 
 
 

(18) 

where: 
bw (gn): bandwidth for each generation 
bwmin    : minimum bandwidth 
bwmax   : maximum bandwidth 

5.5. Update the harmony memory 

In multi-objective harmony search, this step is different 
from that of the basic HS algorithm. In this paper, in order 
to extend the HS algorithm, we used the non-dominated 
sorting and crowding distance method proposed by Deb et 
al. (2002) to find a Pareto optimal solutions toour multi-
objective MMAL problem with competing objectives. 

5.6. Check for stopping criteria. Otherwise, repeat step 3 to 
4 
When the number of improvisations has been met, The HS 
algorithm is stopped. Otherwise, Steps 3 and 4 are repeated 
until the termination criterion is satisfied. 

The proposed approach to solvingmulti-objective MMAL 
problem is described in the following steps: 

1) Input the system parameters as mentioned in table 
1, and upper and lower bounds of  our variables 
include ݔ௜௠, ,௜௝ݖ ௜ܷ௝ ܽ݊݀ ܦܫ௜௝.

2) Choose the harmony memory size HMS, pitch 
adjusting rate PAR, bandwidth Band the maximum 
number of improvisation NI.  

3) Initialize the harmony memory HM as explained, 
while all the control variables are randomly 
generated within their limits in the first generation. 

4) In this section, start the improvisation based on 
three rules mentioned in section 5.4. 

5) Evaluate the three objective functions for each 
solution vector in HM. 

6) Improvise the new harmony memory as explained. 
7) Perform thenon-dominated sorting and ranking on 

the combined existing and new harmony memory. 
8) Choose the best harmony memory from the 

combined solution vectors for the next 
improvisation. 

9) Check the stopping criteria, and if it has been 
reached to the maximum, go to next step. If not, go 
to step 5. 

10) The non-dominated solution vectors in the HM are 
the problem Pareto optimal solutions. 

Based on available work inthe literature, the input 
parameters are defined as follows: 

Table 2 
The parameters of the HS algorithm. 
HMS HMCR PAR NI 
10 0.85 0.3 100 
20 0.93 0.7 500 
30 0.99 0.9 1000 

Then, the best combination of the parameters that can be 
used in the model of this research is chosen. 

6. Comparison Result 

6.1. Multi-objective metrics 

Most of the problems in multi-objective optimization 
methods approximate the Pareto-optimal front by a set of 
non-dominated solutions. Because of the conflicting and 
incommensurable nature of some of the criteria in multi-
objective problems, making decision about how to evaluate 
the quality of these solutions is so important. Totally, 
comparing the solutions of two different algorithms is not 
straightforward. So, based on Behnamian (2009), for the 
evaluation of algorithms, we use two metrics as follows: 
1. MID (mean ideal distance): The closeness between Pareto 
solution and ideal point (0, 0), 
2. SNS: The spread of non-dominance solution. 

2
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(19) 

wheren is the number of non-dominated set and
2

ijf is 

objective function j for Pareto solutioni . It should be 

mentioned that the lower value of MID indicates the better 
solution quality, and vice versa; the higher value of SNS 
indicates the better solution quality (more diversity in the 
obtained solution). 
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2
i ijC f (21) 

6.2. Experimental result

In this section, several numerical examples are given to 
illustrate the solution methods of the proposed scheduling 
problems with stochastic processing times. On the other 
hand, because this problem is NP-hard, a meta-heuristic 
algorithm is proposed to solve it. MOHS algorithm is 
proposed in this research. In the following, the performance 
of the proposed MOHS algorithm is compared with that of 
the well-known NSGA-II algorithm. These meta-heuristic 
algorithms have been coded in MATLAB R2013a and 
executed on an Intel(R) Core™ i5 CPU (2.4 GH) and 
Windows 8.1 using 2.99 GB RAM. 
Based on the assumption in this research, processing times 
are stochastic parameters that are distributed normally. In 
the following, it is assumed that the variances of processing 
times are proportional to their means. In other words, for 
each model ݉ in station ݆, 2

mj mj  where is a strictly 

positive constant and 2
mj are the mean and variance of the 

processing time of model ݉ in station ݆. Considering such a 
relationship between variances and means for the normal 
distributions is not uncommon Elyasi & Salmasi ( 2013). 
For instance, Sarin et al.(1991), Cai and Zhou (1997),; 
Elyasi et al. (2013) considered this assumption for the 
normally distributed processing times. Here, we consider 
that 0 .5   and

mj are generated randomly from the 

uniform distribution on the interval [5, 15]. The confidence 
level, α, is set to 0.975 (Z α =1.96).  
In the following, we present a brief description about 
NSGA-II algorithm. 

6.3. NSGA-II algorithm 

Deb et al. (2002) suggested an elitist multi-objective genetic 
algorithm in which the parent and offspring population 
(each of the same size N) are combined together and 
evaluated using: (1) a fast non-dominated sorting 
method;(2) an elitist approach;(3) an efficient crowded-
comparison mechanism.  
When more than N population members of the combined 
population exist in the non-dominated set, only those that 
are maximally apart from their neighbors according to the 
crowding distance are chosen(Rahimi-Vahed & Mirzaei, 
2007). 

6.4. Small-sized problems 

In this research, the experiments include small- and large-
sized problems with the following general assumptions:

(1) The conveyor speed ( c ) is set to 1; 

(2) Utility work cost and Idle cost for each station 
areset to 1; 

(3) The number of MPS is set to 1;
(4) All sequence-dependentproduction rate variance 

costs of each station are set to 1;
In this section, we present six test problems carried out on 
small-sized problems. These test problems are generated   
based on (Tavakkoli-Moghaddam & Rahimi-Vahed, 2006).
We consider that there are three stations and three types of 
products as mentioned in Table 3. The six MPSs shown in 
Table 4 are tested. The number of feasible solutions in 
Table 4 is computed from Eq. (14) and also the last column 
in this table refers to the launch interval time for each 
problem instance. Moreover, the introduced test problems 
are solved with MOHS and NSGA-II, and their comparison 
results are shown in Tables 5. CPU time in tables shows the 
time required for solving these problems. Time is 
considered because of its important role in sequencing 
problems. 

       Table 3 
       Assembly time and workstations length  

  Model 

Workstation 1 2 3 Workstation length 

  1 N(6.3,3.15) N(5.9,2.95) N(14.6,7.3) 2 

2 N(14.1,7.05) N(7.8,3.9) N(6.8,3.4) 4 

3 N(11.3,5.65) N(10.5,5.25) N(14.7,7.35) 2 

        Table 4 
        Info of test problem's  

Problem I MPS No. of feasible solution Lunch interval(T) 
1 6 (2,2,2) 90 6.6 
2 6 (1,2,3) 60 6.5 
3 6 (1,1,4) 30 6.6 
4 8 (3,2,3) 560 6.2 
5 8 (4,2,2) 420 6.2 
6 8 (2,3,3) 560 6.2 
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           Table 5 
            Comparison results of two algorithms for small size problems.  

Algorithm MOHS  NSGA-II 
Problem Number of Run MID SNS  Number of pare to Run MID SNS 
1 2 20.7s 276.097 0.002  2 4.2 276.49 0.000 
2 2 21.6 286.35 0.003  2 7.1 286.75 0.000 
3 1 19.5 297 ___  2 4.5 297.43 0.000 
4 4 20.5 367.48 0.007  2 10.9 367.98 0.000 
5 3 19.7 355.74 ___   2 10.1 356.23 0.000 
6 2 20.5 370.03 0.003  2 10 370.5 0.001 
Average   325.4495 0.004   325.8967 0.0003 

            *Bold values refer to the best values. 

6. 5. Large-sized problems 

In this section, large-sized problems are tested. Based on the 
above-mentioned literature, this problem for large sizes is 
NP-hard. So, it should be solved with meta-heuristic 
algorithms. In this research, we used MOHS algorithm. 
Large-sized problems, as mentioned above, were solved 
based on (Tavakkoli-Moghaddam & Rahimi-Vahed, 2006). 
The number of stations in such problems is fixed to 10 and 
length of each station (Lj) is generated from uniform 
distributions of U (2, 5). Based on (Manavizadeh et al., 
2013), the number of product types isset to (0.25 ) 1I  . 

Mean and Var for processing time for each product at each 
station are generated based on the idea mentioned in section 
6.1. Six MPSs shown in Table 6 are provided and the 
proposed meta-heuristic algorithm is applied to each of 
them. For large-sized problems, idle cost and production 
rate variation cost are generated based on uniform 
distribution between 5 and 10, and utility worker cost is 
generated based on uniform distribution between 6 and 9. 

Table 7 illustrates the comparison results of the two 
algorithms for large-sized problems. 

6.6. Parameter settings  

Based on literature and some extensive experiments, 
different sets of parameters for the proposed algorithm were 
tested and, finally, the following sets were found: 

Harmony memory size HMS = 20, 
Harmony memory considering rate HMCR = 0.85, 
Pitch adjusting rate PARmin = 0.2 and PARmax = 2, 
Bandwidth BWmin = 0.45 and BWmax = 0.9, 
The number of improvisations NI = 100. 
For comparison purpose, this multi-objective problem has 
also been solved by NSGA-II and, at last, our proposed 
algorithm is compared with NSGA -II. For NSGA -II, based 
on literature and some experiments, the number of 
population NP = 20 and the number of generation Gen = 
1000 were considered. 
Fig. 3 shows Pareto optimal solutions toboth the proposed 
method and NSGA-II algorithm. 

            Table 6 
              Info of test problems  

Problem I MPS No. of feasible solution Lunch interval(T)
1 20 (4,6,3,2,2,3) 9.78*1012 10 
2 20 (4,4,2,3,3,4) 2.44*1012 10 
3 20 (5,5,4,3,2,1) 5.87*1012 10 
4 30 (4,4,3,5,5,3,2,4) 18.51*1024 10 
5 30 (5,4,4,4,3,3,2,5) 18.51*1024 10 
6 30 (3,5,5,2,4,3,4,4) 18.51*1024 10 

          Table 7 
          Comparison results of two algorithms for large-sized problems.  

Algorithm MOHS  NSGA-II 
Problem Number of pare 

to solution 
Run time MID SNS  Number of pare to 

solution 
Run 
time 

MID SNS 

1 10 27.6s 29401.65 16.1  7 24 29390.67 0.001 
2 9 26.8 29300.25 11.3  6 24 29295.63 0.001 
3 7 26.6 29067.14 1.3  6 24 29066.73 0.001 
4 6 30.5 44720.86 15.4  5 30 44714.64 1.5 
5 10 30.9 44848.72 1.7  8 29 44856.73 15.8 
6 6 30.8 44859.18 17.8  8 30 45171.25 0.001 

Average   37032.97 10.6   37082.61 2.9 
          *Bold values refer to the best values. 
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Fig. 3. Pareto optimal solutions for MOHS & NSGA-II 

6.7. Comparison result                

In order to validate the proposed algorithm, we used six test 
problems in small sizes and 6 test problems in large sizes 
and evaluated the performance and reliability of the 
proposed algorithm in comparison with NSGA-II of a single 
run. Two compression metrics (MID & SNS) were used to 
validate the efficiency of the algorithms. As it can be seen 
in average column, MOHS has better performance. 
  
7. Result 

This paper focuses on mixed model assembly line 
sequencing problems with stochastic processing times with 
three objective functions: 1) total utility work cost, 2) total 
idle cost, and 3) total production rate variation cost that are 
simultaneously considered. At first, Chance-constrained 
optimization is used to model the problem, then, because of 
NP-hardness nature of problem, the Multi-Objective 
Harmony Search (MOHS) algorithm is proposed to solve it.  
Eventually, to validate the proposed algorithm, we used 12 
test problems in small and large sizes and evaluated the 
performance and the reliability of the proposed algorithm in 
comparison with NSGA-II. Based on the results in table (5) 
for small size and table (7) for large size, two compression 
metrics (MID & SNS) were used to validate the efficiency 
of the algorithms, and accordingly, MOHS had better result. 
On the other hand, in small sizse, as shown in table (5), run 
times for NSGA-II are so better than MOHS, but for large 
size, table (7) shows that two algorithms have almost the 
same performance. Another comparison metric is Number 
of Pareto solution that MOHS in most of the problems had 
better performance. Totally, the obtained results 
acknowledge the better performance of the proposed 
algorithm in comparison with NSGA-II. In the future 
studies, this problem could be solved with other meta-
heuristics and hybrid algorithms , and it would be a good 
suggestion to use some other methods to deal with 
uncertainty situation in a problem like fuzzy or scenario-
based methods. 
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