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Abstract 

Acceptance Sampling models have been widely applied in companies for the inspection and testing of the raw materials as 
well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to 
inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer 
confirming that the items in the lots are according to the required specifications so that they can make appropriate decision 
based on the results obtained by testing the samples. Acceptance sampling plans are practical tools for quality control 
applications which consider quality contracting on product orders between the vendor and the buyer. Acceptance decision is 
based on sample information. In this research, dynamic programming and Bayesian inference is applied to decide among 
decisions of accepting, rejecting, tumbling the lot or continuing to the next decision making stage and more sampling. We 
employed cost objective functions to determine the optimal policy. First, we used the Bayesian modelling concept to 
determine the probability distribution of the nonconforming proportion of the lot and then dynamic programming was utilized 
to determine the optimal decision. Two dynamic programming models have been developed. The first one is for the perfect 
inspection system and the second one is for imperfect inspection. At the end, a case study is analysed to demonstrate the 
application the proposed methodology and sensitivity analyses are performed. 
Keywords:  Acceptance Sampling, Bayesian Inference, Dynamic Programming, Inspection Errors, Quality Cost. 

1. Introduction 

Acceptance Sampling models have been widely applied in 
companies for the inspection and testing of the raw 
materials as well as the final products. A number of lots 
of the items are produced in a day in the industries, so it 
may be impossible to inspect/test each item in a lot. The 
acceptance sampling models only provide the guarantee 
for the producer and the consumer confirming that the 
items in the lots are according to the required 
specifications so that they can make appropriate decisions 
based on the results obtained by testing the samples. 

In this paper, an optimization model is developed 
for acceptance sampling plan. The proposed approach is 
based on dynamic programming and Bayesian inference. 
In deterministic dynamic programming, given a state and 
a decision, both the immediate payoff and next state are 
known. If we know either of these only as a probability 
function, then it is modelled as stochastic dynamic 
programming. The method of obtaining stages, states, 
decisions, and recursive formula does not differ. A  

 

 
 
 

 
stochastic dynamic programming has the same approach 
of a deterministic one, but only the state transition 
equation differs. The acceptance sampling problem may 
be modelled as a dynamic programming problem when 
different sampling stages are available. States of the lot 
may be defined by the results of the inspection. The lot 
state is defined as the expected value of nonconforming 
proportion. The probability distribution function of 
nonconforming proportion is obtained using the Bayesian 
inference. Therefore, the lot state is assumed to be known 
at each stage and the probability density function of 
nonconforming proportion is determined at the beginning 
of each stage after sampling the new data.  

The state of the lot at the beginning of the next 
stage depends only on our current decision (tumbling or 
more sampling). The lot can be tumbled a constant cost. 
Tumbling will bring the lot to some better state in the next 
stage and it decreases lot state (nonconforming 
proportion) with a constant factor. There is also a state-
dependent cost of decisions about accepting and rejecting 
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the lot at the end of the horizon, reflecting the final 
decision about the lot. The objective is to minimize the 
total cost over the horizon of decision making. In this 
paper, we propose an adaptive optimal policy for lot 
sentencing problem. This policy is derived based upon a 
dynamic programming and the Bayesian approach while 
inspection may be imperfect and first and second type 
errors existed in the inspection process. Since an 
inspection process may be imperfect thus inspection 
process leads to a biased estimation of nonconforming 
proportion hence the first correct value of nonconforming 
proportion should be evaluated using conditional 
probability, then corresponding costs are evaluated based 
on the correct value of nonconforming proportion. At the 
end, an optimal framework is developed for the decision-
making process at hand. 

There are various models for designing an 
economically optimal sampling system, (Li & Chang, 
2005;  Aslam & Fallahnezhad, 2013; Fallahnezhad & 
Niaki, 2013; Fallahnezhad et al., 2014; Fallahnezhad MS, 
2012; Fallahnezhad &  Nasab, 2012; Fallahnezhad et.al, 
2015; Fallahnezhad & Nasab, 2011). Moskowitz and 
Tang (1992) proposed acceptance sampling plans based 
on the Bayesian inference. Klassen (2001) introduced an 
acceptance sampling system based on a new measure 
named ‘credit’. The credit of the producer was defined as 
the total number of items accepted since the last rejection. 
Tagaras (1998) proposed a dynamic model for the joint 
process control and machine maintenance problem of a 
Markovian deteriorating machine. Kuo (2006) developed 
an optimal adaptive control policy for joint machine 
maintenance and product quality control using dynamic 
programming.  

Niaki and Fallahnezhad (2007) utilized Bayesian 
inference and stochastic dynamic programming to design 
a decision-making framework in production environment. 
Also Fallahnezhad et al. (2012), Fallahnezhad (2014) and 
Fallahnezhad and Niaki (2011) proposed an optimal 
policy for machine replacement problem in a finite 
horizon model based on the quality of items produced. 
They used a stochastic dynamic programming model to 
design a control threshold policy for the machine 
replacement problem. In order to determine the optimal 
policy, the inspection cost in combination with the cost of 
continuing the production process and cost of rejecting 
was minimized. Niaki and Fallahnezhad (2009) used 
Bayesian inferences concept and stochastic dynamic 
programming to design an acceptance sampling plan. 
They used a stochastic dynamic programming model to 
minimize the ratio of the system cost to the system correct 
choice probability. Wortham and Wilson (1971) proposed 
an optimal sequential sampling plans using backward 
recursive inference. They presented a procedure based on 
dynamic programming for designing optimal acceptance 
sampling plans for item-by-item inspection. Using a 
Bayesian procedure, a prior distribution is specified, and a 
suitable cost model is employed depicting the cost of 
sampling, accepting or rejecting the lot. Ivy and 

Nembhard (2005) proposed statistical quality control 
(SQC) and partially observable Markov decision 
processes (POMDP) for maintenance decision making of 
deteriorating systems. Iravani and Duenyas (2002) 
considered integrated decisions of maintenance and 
production in a production system with a deteriorating 
machine. They consider infinite horizon and assumed that 
the production and repair times follow exponential 
distribution.  

Fallahnezhad and Yousefi (2014) developed a new 
acceptance sampling plan to decide about the received lot 
based on cost objective function in the presence of 
inspection errors. They assumed that the inspection is not 
perfect and type I and type II errors occur in the 
inspection process. The problem of acceptance sampling 
plan in the presence of inspection errors is modelled using 
decision tree approach. They used from Bayesian 
inference to update the probability distribution function of 
nonconforming proportion. Then they analysed the cost at 
terminal nodes and optimal decisions are determined 
using a backward recursive approach. Fallahnezhad and 
Aslam, (2013) proposed a new approach on selecting the 
different actions for a lot based on Bayesian modeling. 
They applied Bayesian modeling to determine the 
probability distribution of the nonconforming proportion 
of the lot and expected cost of different actions. 
Fallahnezhad et al., (2012) proposed a decision tree 
approach for acceptance sampling model. They proposed 
a new acceptance sampling design to accept or reject a lot 
based on Bayesian modelling in order to update the 
probability distribution function of the nonconforming 
proportion.  

In this research, a new dynamic programming model 
is developed for acceptance sampling problem. Then the 
developed model is generalized for the imperfect 
inspection system. Different decisions are employed in 
objective function. Case studies and sensitivity analysis 
are performed to elaborate the application of proposed 
model. For attribute sampling plan, Lindley and Barnett 
(1965) assumed that the probability for an item to be 
nonconforming has a beta prior distribution, and provided 
numerical solution to the sequential sampling plan using 
Bayesian approach and dynamic programming. Even 
though several dynamic programming models had been 
proposed for the problem of acceptance sampling but as 
the best of author's knowledge, the dynamic modeling of 
this problem based on a continuous state variable and 
proposed definition for sate variable is not addressed 
before. Also solution method of dynamic model is a new 
heuristics method. On the other hand, in comparison with 
single sampling plan or double sampling plan, a 
sequential sampling plan is more attractive in terms of 
statistical efficiency. The rules for a sequential sampling 
plan are as follows: at each time after inspection of one 
lot, we shall accept the batch if all observations up to date 
are ‘‘close’’ to the specification limit(s), or reject the lot if 
the observations are ‘‘far’’ from the specification limit(s), 
or continue sampling one more items from the lot 
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otherwise.  

2. The Model 

A dynamic programming algorithm will examine all 
possible methods to solve the problem and will select the 
optimal solution; therefore, dynamic programming 
enables us to go through all possible solutions to select 
the best one. Stochastic dynamic programming is a 
technique to model a sequential decision making process 
in a stochastic environment (Ross, 1983). In acceptance 
sampling plans, we are selecting between decisions of 
continuing (tumbling the lot or continuing to the next 
decision making stage and more sampling)  or stopping 
(accepting or rejecting the lot) thus it is a type of optimal 
stopping problem that can be generalized in order to 
consider all decisions. 

Dynamic programming technique can be employed 
to design an optimal sequential acceptance sampling plan 
when the following conditions exist: 

i) The cost of accepting a nonconforming item and 
cost of rejecting a conforming item can be reasonably 
assessed. 

ii) The proportion of nonconforming items is stable 
and constant or its probability distribution is known. 

The most powerful method of acceptance sampling 
plans is sequential acceptance sampling model. A 
recessive approach was used to design these models. On 
the other hands dynamic programing models are solved 
based on the recessive approach, therefore we use from 
the dynamic programming to develop a sequential 
sampling models. 

In this paper we impose mandatory fixed sample 
sizes in each sampling stage. We let the dynamic 
programming mechanism dictate the optimal policy based 
on the current state of the system.  

 However, before doing so, first we need to have 
some notations and definitions. 

2.1.  Notations and Definitions 

We will use the following notations and definitions 
in the rest of the section: 
p : The proportion of nonconforming items. 

Referring to Jeffrey’s prior (Nair et. al. (2001)), for 
the nonconforming proportion p, we take a Beta prior 
distribution with parameters 0.5  and 0.5 . By use of the 
Bayesian inference, we can easily show that the posterior 
probability density function of p  is 

0.5 0.5( 1)
( ) (1 )

( 0.5) ( 0.5)
f p p p  

 
   

 
   

              (1) 

Where,  is the number of nonconforming items and   
is the number of conforming items in the past stages of 
the decision- making process.  

N : The total number of items a lot. 

aC : The cost of accepting one nonconforming item when 
the lot is accepted. 

sC : The cost of one nonconforming item which is 
detected during inspection. 
T : The cost of tumbling process. 
I : The cost of inspecting one item during decision of 
inspecting all items in lot. 
 : The coefficient of decreasing detective proportion 
after improving lot quality (Tumbling). 
m : The sample size in each stage of decision making. 
 : The discount factor in stochastic dynamic 
programming approach. 

( )nV p : The cost associated with p when there are n
remaining stages to make the decision. 
 
Following assumptions are made to design the proposed 
sampling plan, 
 The inspections are perfect. 
 A tumbling operation can be performed on lot. 

The tumbling operation can be expected to 
eliminate 1   percentage of the 
nonconforming items. 

 The objective function minimizes the summation 
of quality costs. 

 Bayesian inference is used to update the 
proportion of nonconforming items. 

 Dynamic programming is used to find the 
optimal policy. 

 We can select the optimal policy among decision 
of accepting, rejecting, tumbling the lot or 
continuing to the next stage and taking more 
samples. 

2.2. Derivations 

We may model an acceptance sampling process as an 
optimal stopping problem in which in each stage of the 
decision-making process, we take a sample from a lot and 
based on the information obtained from the sample we 
want to decide whether to accept or to reject the lot or 
continuing to take more samples. 

The state variable and stage variable of dynamic 
programming model is as follows, 
 State variable: The expected value of 

nonconforming proportion. The probability 
distribution of nonconforming proportion is 
obtained by sampling. 

 Stage variable: The stage of sampling. It is 
assumed that there are maxn decision making 
stages. 

We mentioned that the probability distribution of the 
nonconforming proportion ( )p could be modelled by the 
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Bayesian inference as a Beta distribution with parameters
0.5  , 0.5   . 

If we define n to be the index of the decision-making 
stage and p  to be the state variable, then 

 sNI C NE p  shows the cost when we reject the lot. It 
is assumed that when we reject the lot, then a 100% 
inspection plan is done on the lot and all items are 

inspected thus the total cost of  sNI C NE p  is 

incurred and decision making process ends.  aC NE p
represents the cost when we accept the lot, and 

  1 ( )nmI V E p   shows the cost when we continue 
to the next decision making stage therefore sampling 
continues. It is obvious that new sample data is gathered 
in this case and then the probability distribution function 
of the state variable is updated using Bayesian method 
and dynamic model would be solved again with new 
sample data. Also a Tumbling operation can be performed 
on lot. Tumbling operation can be expected to eliminate
1   percentage of the nonconforming items therefore 
the proportion of nonconforming items in the tumbled lot 
reduces to 1p p  thus   1 1( )nT V E p p  
represent the cost when we tumble the lot. It is obvious 
that on stage 1n   we may choose one of the possible 
decisions again. It is assumed that if lot continues to the 
next stage, then the proportion of nonconforming items in 
the next stage remains p  and if tumbling  decision is 
made in one stage then the proportion of nonconforming 
items in the next stage decreases from p  to p  where 

1  .  
The discount factor   is used to evaluate the cost 

of the next stage in the current stage. This factor can be 
addressed as the rate of decreasing the cost at the next 
stages which may be resulted from having more 
information on the state variable in the next stages. Hence 
the cost associated with p  when there are n  remaining 
stages to make the decision is: 

   
   

1

1 1

( ), ( ) ,

( ( ))  ,

 +  

s a

n n

n

NI C NE p C NE p mI

V E p Min V E p

T V E p p



 





 





 
 
 
 
 

    (2)                                                                                 

Also on stage 0n  , we have only two decisions 
(accepting and rejecting the lot), therefore 0 ( ( ))V E p  is 
determined based on the minimization of two terms. Thus, 
when no decision making stage is available  0n  , then 
we should select between decisions of accepting or 
rejecting the lot that can be easily performed by 
comparing their corresponding cost. 

 0 ( ( )) ( ), ( )s aV E p Min NI C NE p C NE p  (3) 

It is seen that the value of ( ( ))nV E p  can be easily 

computed from the values of 1 (.)nV  , thus we may easily 
compute all cost values recursively based on the values of  

0 (.)V . Thus, when no decision making stage is available 

 0n  then, we should select between decisions of 
accepting or rejecting the lot, thus following is obtained. 

( ) C ( )
0

( ) C ( )
S a

S a

NI C NE p NE p Accept
n

NI C NE p NE p Reject
   

      
    (4) 

 
Since p is a stochastic variable, thus we have applied 
approximation method in equation (5) in order to consider 
the probability distribution of p in the computations. We 
characterize properties of the value function at the last 
stage using a method for approximating the function 

0 ( (.))V E  as follows: 

     0 0V E p E V p                                            (5) 

Since 0 ( )V p  can be obtained for all possible value of p
using following equation, 

 0 ( ) ,s aV p Min NI C Np C Np                         (6) 
Thus following is concluded based on 

approximation method in equation (5), 
     
   

   

0 0

a s

a s

s
I

p
C C

a
I

p
C C

V E p E V p

NI C Np f p dp

C Np f p dp







 

 



                                     (7) 

Also the probability distribution function of the 
random variable 1p  is needed to evaluate function

  1 1nV E p p  . This probability distribution 
function is needed in equation (7) for the cases that 
tumbling action has been selected. This probability 
distribution is determined using a heuristic approach. 
Assume that 1p  follows a Beta distribution with 

parameters ' , '   . The approximate values of 
parameters ' , '  can be determined from the following 
equalities. 

   1

' '
1

' 0.5
' ' 1

' '

( ) ( , )

E p E p

f p Beta

 
 

   
   

 

       
    
 

    (8) 
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The second equality is defined based on constant sample 
size in each stage. Therefore the values of parameters 

' , '   can be determined based on the values of 
parameters ,   . 

Now we can evaluate the value of function 
( ( ))nV E p based on the value of   1 EnV p  and 

  1 1EnV p p   where   1 .nV E  can be obtained 
using equation (2) recursively thus it is concluded that the 
value of ( ( ))nV E p  can be determined based on the 

values of  0 (.)V E  by continuing this recursive method. 

Also the value of  0 (.)V E  can be determined by 
equation (7). Steps of dynamic programming have been 
shown in Fig (1). 

 

In the next section, a case study is given to illustrate the 
application of the proposed methodology. 

3. Case Study 

Assume a juice production industry has produced a lot of 
100N   items. The amount of vitamin C in juice is 

inspected through experimenters. According to the 
presented approach, first a sample of items is inspected. 
Also three decision making stages are available for 
deciding about the lot. The sample size in each stage of 
decision making is 10m  . Assume that  stages are 
available for decision making process and at the start of 
process, 10 juices are inspected where the number of 
nonconforming juices is 2   and the number of 
conforming juices is 8   in the first sample and the 

cost of accepting one nonconforming juice is 4aC  , 
the cost of one nonconforming juice which is detected 
during inspection is 2sC  , the cost of inspecting one 

item is 1I  , the cost of tumbling process is 150T  , 
the coefficient of decreasing nonconforming proportion in 

tumbling process is 95%   and the discount factor in 
stochastic dynamic programming approach is 0.9  . 

According to dynamic programming approach 
when three decision making stages is available ( 3)n  , 
we have : 

  
   

  
  

3 1

3 1 1

3

,  ,

 E ,

 E

s aNI C NE p C NE p

mI V p

T V p p

V E p Min 

 








 

 
 

  
 
 

 2 ( )V E p  can be calculated using recursive equation 
when two decision making stages is available, on the 
other hand we have : 

 
   

  
  

2 2 1

2 1 1

,  ,

( )  ,

  

s aNI C NE p C NE p

V E p Min mI V E p

T V E p p



 




 
    
 

   
Now we can recursively determine  1 ( )V E p  as 
follow: 

 
   

  
  

1 1 1

1 1 1

,  ,

( )  ,

  

s aNI C NE p C NE p

V E p Min mI V E p

T V E p p



 




 
    
 

   
Also we need to obtain    2

1 2 1V E p p p    for 

calculating the item   2 1V E p p  and then we 

need to determine   1 2
0 2 1V E p p p    and the 

function   2 3
0 3 2 1V E p p p p      which are 

obtained by equation (6). 

Fig. 1. Diagram of Dynamic Programming’s steps  
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In general, first we must calculate the  0 ( )V E p , 

then  1 ( )V E p , then  2 ( )V E p  and at the end 

 3 ( )V E p  as reported in Tables (1)…(5).

Table 1  
Results of calculating E(.) 

 E p  0.2272727 

 

Table 3 
 Results of calculating  1( )nV E p  

   1E p p E p    0.2159091 n=0  0 1( )V E p  125.684 

   2 2
2 1E p p p E p      0.20511 

n=1 

 1sNI C NE p
 

143.182 

   2 3 3
3 2 1E p p p p E p        0.19486  1aC NE p

 
86.3636 

Table 2 
 Results of calculating  ( )nV E p  

  0 1 mI V E p  123.115 

n=0  0 ( )V E p  137.799   0 2  T V E p  257.535 

n=1 

 sNI C NE p
 

145.455  1 1( )V E p  86.3636 

 aC NE p
 

90.9091 

n=2 

 1sNI C NE p
 

143.182 

 0 ( )mI V E p  128.99  1aC NE p
 

86.3636 

  0 1  T V E p p    263.115   1 1 mI V E p  87.7273 

 1 ( )V E p  90.9091   1 2  T V E p  223.841 

n=2 

 sNI C NE p
 

145.455  2 1( )V E p  86.3636 

 aC NE p
 

90.9091 
 
Table 4 
Results of calculating  2( )nV E p  

  1 mI V E p  91.8182 n=0  0 2( )E V p
 

119.483 

  1 1  ET V p p    227.727 

n=1 

 2sNI C NE p
 

141.023 

 2 ( )V E p  90.9091  2aC NE p
 

82.0455 

n=3 

 sNI C NE p
 

145.455   0 2 mI V E p  117.535 

 aC NE p
 

90.9091   0 3  T V E p  252.233 

  2 mI V E p  91.8182  1 2( )V E p  82.0455 

  2 1  T V E p p    227.727 Table 5 
 Results of calculating  3( )nV E p  

 3 ( )V E p  90.9091 n=0  0 3( )V E p  113.592 

 
Considering Tables (1-5), the optimal policy is to 

accept the lot when three decision making stages is 
available. In the next section, sensitivity analysis is 
performed on different parameters. 

 
 
 
 

4. Sensitivity Analysis  

A sensitivity analysis is performed on the 
parameters of the problem that results are in the Table (6).  
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Table 6 
 Sensitivity analysis  

cases ( , , , , , , , , , )a sN C C T I m     Optimal policy  3 ( )V E p  

1. Case study (100, 4,2,150,1,0.95,10,0.9, 2,8)  Accept 90.9091 

2. Increases N  (3422, 4, 2,150,1,0.95,10,0.9,2,8)  Continue to the next 
decision making stage 2538.836 

3. Increases N  (3423, 4, 2,150,1,0.95,10,0.9, 2,8)  Tumble the lot 2539.544 

4. Increases
aC  (100,5, 2,150,1,0.95,10,0.9,2,8)  Continue to the next 

decision making stage 166.2727 

5. Decreases
sC  (100, 4,0.53,150,1,0.95,10,0.9, 2,8)  Continue to the next 

decision making stage 88.48381 

6. Decreases T  (100, 4, 2,13,1,0.95,10,0.9, 2,8)  Tumble the lot 90.722773 

7. Decreases I  (100, 4, 2,150,0.5,0.95,10,0.9, 2,8)  Continue to the next 
decision making stage 83.13636 

8. Decreases   (100, 4,2,150,1,0.25,10,0.9, 2,8)  Tumbling 46.54983 

9. Decreases   (100, 4,2,150,1,0.95,10,0.5, 2,8)  Continue to the next 
decision making stage 34.02635 

  
A sensitivity analysis is performed on the 

parameters of the problem that results have been 
summarized as following:  

 By comparing cases one, two and three, it is seen 
that when the total number of items in a lot  N  is 
less than 3422 units, then the optimal decision in the 
proposed method is to continue to the next decision 
making stage, and when the total number of items in 
a lot  N  is more than 3423 units, then the optimal 
decision in the proposed method is to tumble the lot.  

 By comparing case one and case six, it is seen that 
when the cost of tumbling process  T  is less than 
13, then the optimal decision in the proposed method 
is to tumble the lot. 

 The result of the proposed model in all cases is 
reasonable. For example, cost of proposed model 
increases by increasing cost parameters of the model 
and it decreases by decreasing different costs of the 
model and the corresponding optimal decision are 
made in accordance with the variations. 

4.1. Sensitivity analysis of “ aC  with sC   ”: 

Results for Simultaneous variations of cost of 
accepting one nonconforming item  aC  and the cost of 

one detected nonconforming item  sC are denoted in  
 
 
 

 Table 7 

 Sensitivity analysis of variations of “ aC and sC ” 

N.O of Cases optimal policy 

a sC C 
 

Accept the lot 

a sC C 
 

Tumbling 

a sC C 
 

Continue to the next decision 
making stage 

a sC C 
 

Accept the lot 

 
The results of Table 7, confirms the reasonable 

performance of dynamic programming model in the 
encountering with the variation of cost parameters. 

 
4.2. Sensitivity analysis of “ : the number of 

nonconforming items, : the number of conforming 
items”: 

The results of changing   and   are denoted in 
Table 8. It is seen that when the nonconforming 
proportion p 

 
 

  
 is approximately equal or less 

than 0.31, then optimal policy is to accept the lot, when 
the nonconforming proportion is more than 0.31, then 
optimal policy is to continue to the next decision making 
stage therefore sampling continues. When the 
nonconforming proportion is more than 0.67 then the 
optimal decision is to reject.  Thus, it is observed that the 
optimal policy is a type of control threshold policy. 
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Table 8  
Sensitivity analysis of “ and  ” 

m=9 

  1 

  8 

p  0.11 

optimal 
policy Accept 

m=10 

  1 a 2   3   4 

  9 b 8   7   6 

p  0.10 p 0.20 p  0.3 p  0.40 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Continue optimal 

policy Continue 

m=11 

  1   2 a 3   4 

  10   9 b 8   7 

p  0.09 p  0.18 p 0.27 p  0.36 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Continue optimal 

policy Continue 

m=12 

  1   2   3   4 

  11   10   9   8 

p  0.08 p  0.17 p  0.25 p  0.33 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Accept optimal 

policy Continue 

m=13 

  2   3   4   5 

  11   10   9   8 

p  0.15 p  0.23 p  0.31 p  0.38 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Accept optimal 

policy Continue 

m=14 

  2   3   4   5 

  12   11   10   9 

p  0.14 p  0.21 p  0.29 p  0.36 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Accept optimal 

policy Continue 

m=15 

  2   3 a 4   5   10 

  13   12 b 11   10   5 

p  0.13 p  0.2 p 0.27 p  0.33 p  0.67 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Accept optimal 

policy Continue optimal 
policy Reject 

 
Consequently following decision making strategy is resulted, 

   

[0.00, 0.31]

(0.31, 0.67    )

[0.67,1.00)

continue to the next decision making sta

p accept the lot

p

p rej

ge

ect the lot

 

 

 





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5.  The Presence of Inspection Error 

In this section, a dynamic programming model is 
developed for acceptance sampling problem in the 
presence of inspection errors. There are two types of 
inspection errors: 1. The first type of error 2. the second 
type of error. 

We may model an acceptance sampling process as 
an optimal stopping problem. First, we take a sample from 
a lot in each stage of the decision-making process and the 
objective is to decide whether to accept, to reject and 
inspect all items, to tumble the lot, or to continue 
sampling based on the information obtained from the 
sample. 

We mentioned that the probability distribution of the 
nonconforming proportion ( )p could be modelled by the 
Bayesian inference as a Beta distribution with parameters

 0.5  , 0.5   . But ( )p denotes the 
nonconforming proportion obtained by imperfect 
inspection, thus its value is different from the true 
nonconforming proportion. Following notations are used 
in the rest of this paper; 
p : The apparent nonconforming proportion (its value is 

obtained by imperfect inspection). 
*p : True proportion of nonconforming. 

Tp : The apparent proportion of nonconforming items in 
the tumbled lot.  

*
Tp : True proportion of nonconforming items in the 

tumbled lot.  

rC : The cost of rejecting one conforming item. 

S : The cost of inspecting one item during sampling. 

1I : The probability of first type error in inspecting one 
item. 

2I : The probability of second type error in inspecting one 
item. 

If we define n to be the index of the decision-
making stage and *( )E p  to be the state variable, then 
the cost functions of different decisions can be obtained as 
follows: 

1

* * *

2 1 2 2

*

2 1 2 1 2

3

1) for accepting the lot         

2) for rejecting the lot and inspecting all items in the lot

(1 ) (1 )

( (1 ))

3) for tumbling the lot

a

r a s

r a r s

a C N

a NI NI C p NI C p C N I p

a NI NI C NI C NI C C N I p

a T 



      

     

  *

1 T

*

4 1

continuing to the next decision 

making stage and more sampli

( )

4) for

(

ng

)

n

n

V p

a ms V p



 

     

(9) 
It is assumed that when the lot is rejected then all 

items are inspected and three types of cost are incurred. 
These costs are as follows, 

1. *
2 aNI C p  : The cost of accepting one 

nonconforming item multiplied by second type 
error probability, 2I  (Probability of accepting one 
nonconforming item). 

2. *
2(1 )sC N I p : The cost of one detected 

nonconforming item during inspection multiplied 
by probability of detecting a nonconforming item, 

21 I  (Probability of rejecting one nonconforming 
item). 

3. *
1 (1 )rNI C p : The cost of rejecting one 

conforming item multiplied by first type error 
probability, 1I  (Probability of rejecting one 
conforming item).  

*Np  is the number of nonconforming items in the 

lot. True value of nonconforming proportion ( *p ) 
is determined using conditional probability as 
follows, 
 
 
 
 
 
 
 
 
 

item is categorized
p pr

as

item is categorized
pr

item is item is
pr

nonconforming conforming conforming

item is item is
pr

nonconforming nonconforming nonconfs or inga m





      
      
      

      
      
      

                                                               (10) 
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Since, 
 

 

 

1

*

2

1

1

item is categorized
pr I

as

p

item is categoriz

item is
nonconforming conforming

pr item is conforming

item is
nonconforming nonconforming

pr item is nonconform

ed
pr

ing

I
as

          
     



          



     


 *p
                                                                     

                    (11) 

                   

 
Thus, 

* * * 1
1 2

1 2

(1 ) (1 I )
1

p Ip I p p p
I I


     
 

                                                                                                           (12) 

Since
0.5( )

1
E p 

 



 

, Thus following is obtained, 

 

1
* 1

1 2 1 2

0.5
( ) 1( )

1 1

I
E p IE p

I I I I


 

 
   

   
                                                                                                                             (13) 

 
Tumbling operation eliminates  1   percent of the nonconforming items therefore the proportion of nonconforming 

items in the tumbled lot reduces to * *
Tp p . So the true value of nonconforming proportion after the tumbling process 

*
T( )p  is determined as follows, 

1
* * * * * 1
T T

1 2 1 2

0.5
( ) 1( ) ( ) ( )

1 1

I
E p Ip p E p E p E p

I I I I


     

 
       

                                           
                (14) 

 It is obvious that when 1n   stages are available, then we can select one of the possible decisions again. Also a 
discount factor   is needed to evaluate the cost of the next stage in the current stage (according to the approach of stochastic 
dynamic programming). Hence the cost associated with *( )E p  when there are n  remaining stages to make the decision is: 

*
1

*
2 1 2 1 2*

*
3 1 T

*
4 1

( )
( (1 )) ( )

( ( ))
( ( ))

( ( ))

a

r a r s
n

n

n

a C NE p
a NI NI C NI C NI C C N I E p

V E p Min
a T V E p

a ms V E p








 
 

        
  

   

                              (15)

Since in stage 0n  , we have only two decisions of  

accepting and rejecting the lot therefore *
0 ( ( ))V E p  is 

determined based on the minimization of two terms. 
When no decision making stage is available  0n  , 
then we must select between two decisions of accepting or 
rejecting the lot that can be easily performed by 
comparing their corresponding cost.

 

*

1 2 1*

0 *

2 1 2

( ) ,  
( ( ))

( (1 )) ( )

a r

a r s

a C NE p a NI NI C
V E p Min

NI C NI C C N I E p

   


  

 
 
 

 

(16) 

It is assumed that if decision making continues to 
next stage, then the nonconforming proportion in the next 
stage remains *p , and if tumbling decision is made in 
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one stage then the nonconforming proportion in the next 
stage decreases form *p  to *p  where 0 1  .  

We characterize properties of the value function 
using a method for approximating the function 

  -1 .nE V  in order to consider the probability 
distribution function of p  in computations thus 
following approximation is applied, 

     * *
0 0V E p E V p                                     (17) 

Since function *
0 ( )V p  is obtained using equation 

(18) thus   *
0E V p can be obtained using equation 

(19), 
*

1
*

0 2 1

*
2 1 2

,
( )  

( (1 ))

a

r

a r s

a C Np
V p Min a NI NI C

NI C NI C C N I p

 
     
    

                     (18) 

hence *
0 ( ( ))V E p  can be obtained as follows: 

  

    

   

   

* 1

2 1 2

* 1

2 1 2

*
1 2 1 2

( (1 ))

* *
0 0

*

( (1 ))

( (1 ))  

( )

 

r

a a r s

r

a a r s

r a r s
I I Cp

C I C I C C I

a
I I Cp

C I C I C C I

N I I C I C I C C I p f p dp

V E p E V p

C Np f p dp




   




   

     
 
 
    
 
 
  





                    (19) 

Since,
 * 1

1 21
p Ip
I I



 

,                                                                                                                                                           (20) 

thus  0 ( )V E p  is obtained as follows:  

 

 
 

 
 

1
1 2 2

2 1 2

1
1 2 2

2 1 2

*
0

1
1 2 1 2

1 2
1

( (1 ))

1

1 2
1

( (1 ))

 

 

( )

( (1 ))
1

1

r

a a r s

r

a a r s

r a r s
I I Cp I I I

C I C I C C I

a
I I Cp I I I

C I C I C C I

V E p

p IN I I C I C I C C I f p dp
I I

p IC N f p dp
I I

 
  
 

 
  
 

   
   

   
   

  
  
  
 


    
  

 



    
 




 












      

(21) 

  
When  0n   stages are available then we must select between decisions of accepting or rejecting the lot, thus 

following strategy is obtained for single stage model: 

 
 

* *
1 2 1 2 0 1

* *
1 2 1 2 0 2

( (1 )) ( ) ( ) Accept
0

( (1 )) ( ) ( ) Reject

r a r s a

r a r s a

N I I C I C I C C I E p C NE p V a
n

N I I C I C I C C I E p C NE p V a

             
                                             

(22) 

It is necessary to determine   1 .nV E recursively to 
solve dynamic model in equation (14). To evaluate 
equation (21), the probability distribution function of 
random variable Tp  is needed. This function is 

determined using a heuristic approach. Since Tp  is the 
apparent nonconforming proportion of the lot in the 
imperfect inspection process thus we assume that Tp  

follows a Beta distribution with parameters ", "   . The 
approximate values of parameters ", "  can be 
determined using the equation (27). To explain this 
heuristic method, first we have, 
 T Mean of Beta distribution 

"
with parameters ", "

" "

E p


 

 






.                         (23) 
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Since tumbling operation eliminates  1   percentage 
of the nonconforming items thus the proportion of 
nonconforming items in the tumbled lot reduces to

* *
Tp p thus 

   * * 1
T

1 2

1

1 2

1

0.5
1

1

p IE p E p E
I I

I

I I

 


 

 
     
    
  

 
 

           (24)

 

Also since Tp  is apparent nonconforming proportion of 
the lot after tumbling obtained by imperfect inspection 
and *

Tp   is the true proportion of nonconforming items 
after tumbling with considering inspection errors thus 
using equation (12) following is obtained 

 * T 1
T

1 2 1 2

1
1 2

1 "
1 1 " "

1
1

p IE p E
I I I I

I
I I


 

 
       


 

(25) 

  Thus using two equalities (24) and (25), following is 
obtained, 

1

1

1 2 1 2 1 2

0.5
1 " 11

1 1 " " 1

I
I

I I I I I I


 


 




 
 

      

 
 
 
  
 

 
(26) 

Assuming equal number of sample size for both cases, we 
have, " "      . Thus following equalities are 
resulted to obtain the values of ", "  ,  

1

1

1 2 1 2 1 2

0.5

1 " 11

1 1 " " 1

' '

I

I
I I I I I I



 


 

   




 
 

      

  

  
 

  
  
  



(27) 

Following results are obtained by solving equations(27) 

 
1

1

0.5
" ( ) (1 )

1

0.5
" ( ) 1 (1 )

1

I

I


    

 


    

 


   

 


    

 

 
   


  
     

         (28)  

Thus the values of parameters ", "   can be 
determined using the values of parameters ,   . 

Now we can evaluate the value of function 

 *( )nV E p based on the value of   *
1 EnV p  and 

  *

1 TEnV p
  therefore it is concluded that we can 

determine the value of  *( )nV E p  based on the value of 

 0 (.)V E  recursively.  
In the next section, a case study is given to 

illustrate the application of the extended model 
methodology. 

6. Case Study of Extended Model 

 In addition to the parameter values of the case study in 
the third section, assume that the cost of rejecting one 
conforming juice is 5rC  and the cost of inspecting one 
item during sampling is 2S  and the probability of first 
type error in inspecting one juice is 1 0.05I  , and the 
probability of second type error in inspecting one juice is 

2 0.1I  . 
According to stochastic dynamic programming 

approach where three stages  3n   are remained, we 
have, 

 
 
 

*
1

2 1

2 1
*

*3
2

*
3 2 T

*
4 2

( )

(
( ) (1 )) ( )

( )

( )
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  
 
   

 

 *

2 ( )V E p  can be obtained recursively. Thus when two 

stages are remained  2n  , following is obtained: 
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Also  *

1
( )V E p  can be obtained recursively: 
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Table 9 

The results of  .E  

 E p  0.22727 

 *E p
 

0.20855 

   * *
TE p E p  0.19812 

     * * 2 *
T2 TE p E p E p    0.18822 

     
   

* * 2 *

T3 T2 T

* 3 *

T3

E p E p E p

E p E p

 



  


 0.17881 

 
Table 10 

Results of  *( )
n

V E p
 

n=0  *

0 ( )V E p  103.522 

n=1 

 *

aC NE p  125.133 

*

1 2 1 2
( (1 )) ( )

r a r s
NI NI C NI C NI C C N I E p      119.839 

 *

0 T( )T V E p  190.140 

 *

0 ( )ms V E p  103.169 

 *

1 ( )V E p  103.169 

n=2 

 *

aC NE p  125.133 

*

1 2 1 2
( (1 )) ( )

r a r s
NI NI C NI C NI C C N I E p      119.839 

 *

1 T
( )T V E p  190.126 

 *

1
( )ms V E p  102.852 

 *

2
( )V E p  102.852 

n=3 

 *

a
C NE p  125.133 

*

1 2 1 2
( (1 )) ( )

r a r s
NI NI C NI C NI C C N I E p      119.839 

 *

2 T
( )T V E p  190.114 

 *

2
( )ms V E p  106.738 

 *

3
( )V E p  106.738 

 *

0 T2
( )T V E p  187.26 

 
 

 

 
 

*

1

2 1

2 1
*

*1
2

*

3 0 T

*

4 0

( )

(
( )

(1 )) ( )

( )

( )

a

r

a r

s

a C NE p

a NI NI C

NI C NI C
V E p Min

C N I E p

a T V E p

a ms V E p







  

 




 

 

 
 
 
  
 
 
 
 
  

 

 
The calculations are reported in Tables (9-10). 
Considering Tables (9-10), the optimal policy is to 
continue to the next decision making stage and more 
sampling when three stages are available. In the next 
section, sensitivity analysis is performed on different 
parameters. 

 

7. Sensitivity analysis of extended Model  

Results of sensitivity of analysis are shown in Table (11). 
A sensitivity analysis is performed on the parameters of 
the problem that results have been explained in following:  
 
 All results coincide with the type of variations. For 
example, increasing the cost of one decision leads to not 
selecting this decision as optimal. 

 It is seen that when the total number of items in a lot 

 N  decreases, then the optimal policy in the proposed 
method is to reject the lot, and when the total number of 
items in a lot  N  becomes more than 3800 units, then 
the optimal decision in the proposed method is to tumble 
the lot.  

 It is seen that when the probability of first type error 
in inspecting one item  1I  increases, then the optimal 
decision in the proposed method is to accept the lot. This 
action is logical because when the probability of first type 
error in inspecting one item increases, then it’s better to 
accept the lot because first type error is the probability of 
incorrect rejection of an acceptable item. 

7.1. Sensitivity analysis of changing cost parameters 

Simultaneous variations of the cost of accepting one 
nonconforming items  aC , the cost of one detected 

nonconforming items  sC  and the cost of rejecting one 

conforming items  rC  are investigated and the results 
are denoted in Table 12. The results show the valid and 
logical performance of the proposed method. 
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Table 11  
Sensitivity analysis  

N.O of cases 1 2( , , , , , , , , , , ,S, I , I )a s rN C C T I m C     Optimal policy  3 ( )V E p  

Case study (100, 4, 2,150,1,0.95,10,0.9, 2,8,5,2,0.05,0.1)  Continue to the next 
decision making stage 106.738 

Increases N  (3880, 4, 2,150,1,0.95,10,0.9, 2,8,5,2,0.05,0.1)  Tumble the lot 2927.59072 

Decreases N  (70, 4, 2,150,1,0.95,10,0.9, 2,8,5,2,0.05,0.1)  Reject the lot 83.88770053 

Increases sC  (100, 4,5,150,1,0.95,10,0.9, 2,8,5, 2,0.05,0.1)  Accept the lot 125.1336898 

Decreases T  (100,4, 2,16,1,0.95,10,0.9,2,8,5, 2,0.05,0.1)  Tumble the lot 106.1140686 

Decreases I  (100, 4, 2,150,0.25,0.95,10,0.9, 2,8,5,2,0.05,0.1)  Reject the lot 94.83957219 

Decreases   (100,4, 2,150,1,0.1,10,0.9,2,8,5, 2,0.05,0.1)  Tumble the lot 121.2727273 

Increases   (100, 4, 2,150,1,0.95,10,0.95, 2,8,5, 2,0.05,0.1)  Reject the lot 98.52092074 

Decreases rC  (100, 4, 2,150,1,0.95,10,0.9, 2,8,0.1, 2,0.05,0.1)  Reject the lot 100.4491979 

Increases S  (100, 4, 2,150,1,0.95,10,0.9, 2,8,5,3,0.05,0.1)  Reject the lot 119.8395722 

Increases 1I  (100,4, 2,150,1,0.95,10,0.9,2,8,5, 2,0.1,0.1)  Accept the lot 95.45454545 

Increases 2I  (100, 4, 2,150,1,0.95,10,0.9,2,8,5,2,0.05,0.5)  Tumble the lot 141.3544837 

 
Table 12 
 Sensitivity analysis of changing two parameters 

N.O of cases Optimal policy 

a sC C 
 

Accept the lot 

a sC C 
 

Continue to the next decision making stage 

a sC C 
 

Continue to the next decision making stage 

a sC C 
 

Accept the lot 

a rC C 
 

Accept the lot 

a rC C 
 

Continue to the next decision making stage 

a rC C 
 

Reject the lot 

a rC C 
 

Accept the lot 

r sC C 
 

Reject the lot 

r sC C 
 

Accept the lot 

r sC C 
 

Continue to the next decision making stage 

r sC C 
 

Accept the lot 

 
7.2. Sensitivity analysis of “ : the number of 
nonconforming items, : the number of nonconforming 
items” 

The results of changing   and   are denoted in Table 
13. It is seen that when the nonconforming proportion 

p 
 

 
  

 is equal or less than 0.18, then optimal 

policy is to accept the lot, when the nonconforming 
proportion is more than 0.18, then optimal policy is to 
continue to the next decision making stage therefore 

sampling continues. When the nonconforming proportion 
is more than 0.43, then optimal policy is to reject. Thus, it 
is found that the optimal policy is a type of control 
threshold policy.  
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Table 13 
Sensitivity analysis of “ and  ” 

m=9 

  1 

  8 

p  0.11 

optimal 
policy Accept 

m=10 

  1 a 2   3   4 

  9 b 8   7   6 

p  0.10 p 0.20 p  0.3 p  0.40 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Continue optimal 

policy Continue 

m=11 

  1   2 a 3   4 

  10   9 b 8   7 

p  0.09 p  0.18 p 0.27 p  0.36 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Continue optimal 

policy Continue 

m=12 

  1   2   3   4 

  11   10   9   8 

p  0.08 p  0.17 p  0.25 p  0.33 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Continue optimal 

policy Continue 

m=13 

  2   3   4   5 

  11   10   9   8 

p  0.15 p  0.23 p  0.31 p  0.38 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Continue optimal 

policy Continue 

m=14 

  2   3   4   5 

  12   11   10   9 

p  0.14 p  0.21 p  0.29 p  0.36 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Continue optimal 

policy Continue 

m=15 

  2   3 a 4   5   6 

  13   12 b 11   10   9 

p  0.13 p  0.2 p 0.27 p  0.33 p  0.40 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Reject optimal 

policy Continue optimal 
policy Continue 

m=16 

  3   4 a 5   6   7 

  13   12 b 11   10   9 

p  0.18 p  0.25 p 0.31 p  0.37 p  0.43 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Continue optimal 

policy Continue optimal 
policy Reject 

 

8. Conclusions 

In this paper, we developed two optimization models for 
acceptance sampling plan. The first model is written for 

the cases that inspection is perfect and the second one 
considers inspection errors in the model. It is observed 
that the obtained dynamic model can be solved 
recursively using a heuristic method.  To achieve this 
goal, we used a dynamic programming model and 
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Bayesian inference to design a sampling plan in quality 
environments considering quality costs. In order to 
determine the optimal policy, we considered a cost 
function and tried to optimize the function. first the 
probability distribution of nonconforming proportion is 
obtained by Bayesian inference then the correct value of 
nonconforming proportion is obtained by considering 
inspection errors then, the dynamic programming 
approach is utilized to make the optimal decision among 
decisions of accepting, rejecting and inspection all items, 
tumbling the lot or continuing and more sampling in the 
presence of inspection errors. Using sensitivity analysis, it 
is observed that the optimal policy is a type of control 
threshold policy.  It is observed that when the lot size is 
less than a threshold, then the optimal decision is to 
continue to the next decision making stage, and when the 
lot size is more than this threshold, then the optimal 
decision is to tumble the lot. Also when the cost of 
tumbling process is less than a threshold, then the optimal 
decision is to tumble the lot. Furthermore, in the second 
model, when the lot size decreases, then the optimal 
policy tends to reject the lot, and when the probability of 
first type error increases, then the optimal decision tends 
to accept the lot. 

By comparing the first model and the second model, 
it is observed that, although the cost of the second model 
(considering inspection errors) is more than the cost of the 
first model (perfect inspection), when the inspections are 
not perfect, then the optimal policy is completely different 
in some cases.  
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