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Abstract 

This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the make span and total weighted tardiness, 
in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in a 
reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper, therefore, presents 
a new multi-objective simulated annealing algorithm (MOSA). A set of experimental instances are carried out to evaluate the algorithm by 
advanced multi-objective performance measures. In fact, the performance of the algorithm is carefully evaluated in terms of the available 
algorithms by means of multi-objective performance measures and statistical tools. The results show that compared with other algorithms, a 
variant of our proposed MOSA produces a good performance. 
Keywords: No-wait hybrid flowshop scheduling; Multi-objective simulated annealing algorithm; Makespan; Total weighted tardiness.

1. Introduction 

A flowshop problem has a set of n jobs {J1, J2,…,Jn} 
and a set of m machines. All jobs visit machines in the 
same processing route, starting with machine 1 and 
finishing with machine m.  The hybrid no-wait flowshop 
scheduling (HNFS) can be defined by a set of ݊ jobs that 
need to be processed by a set of ݉stages. The jobs visit 
stages by the same order starting with stage 1, then stage 
2 until stage݉  (Pinedo, 2008). It is known that the 
solution of HNFS is necessarily permutation flowshop-
like too(these quences of jobs in all stages are the same).  

Due to some characteristics of the circumstances and 
processing technology, the operations of a job must be 
performed without any waiting between stages, which is 
known as no-wait restriction. The operations of a job can 
be performed in any order, but they must be performed 
without any interruption in the stages and without any 
waiting between the stages. That is, each job must be 
processed continuously from its start to its completion 
(i.e. no-wait constraint). Hence, if necessary, the start of a 
job in one stage must be postponed so that the completion 
of this operation coincides with the beginning of the 
operation in another stage. 

The following assumptions usually characterize the 
HNFS. Setup times are negligible. All the jobs are  

 
 
 
 

Independent and available for the process at time zero. All 
machines in each stage are continuously available. Each 
machine in each stage can process at most one job at a 
time. Each job can be processed by at most one machine 
at a time in each stage. The process of a job on a machine 
cannot be interrupted. Moreover, transportation times are 
considered in this problem. The transportation time from 
machine i-1 to machine ݅  is denoted by Tfand the 
transportation time from machinei to machine i-1 is 
denoted by Tb. The time to load and unload the transporter 
is included in the transportation time. When the 
transporter leaves the first machine, it always returns in 
time Tf + Tbto take the next job. This transportation time 
can be either job-dependent or job-independent. We 
assume that all transportations are job-independent, and 
transportations between two machines have to be done by 
one transporter.  

The aim of production scheduling is to discover the 
job sequence to optimize one or some objectives. One of 
the most commonly used objectives is the minimization of 
makespan (ܥ௠௔௫). Even for the best solution regarding the 
makespan, it is likely that a large number of jobs are 
completed after their due dates. In this case, the 
simultaneous consideration of the total tardiness (or	ܶܶ) 
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minimization could result in a higher productivity. 
Therefore, we investigate the case of minimizing these 
two objectives.In fact, in this research we investigate the 
case of minimizing TT and Cmax. 

Almost all of the studies done are single-objective no-
wait flowshop scheduling problems. The earliest research 
on the single-objective no-wait flowshop scheduling 
wasconducted by Wismer(1972). Later, different genetic 
algorithms were applied by Chen and Neppalli(1996) as 
well as Aldowaisan and Allahverdi(2004). Among the 
other metaheuristics, one could refer the reader to 
theparticle swarm optimization by Pan et al.(2008), the 
ant colony optimization by Shyu et al.(2004) and the tabu 
search by Grabowski and Pempera(2005).There are also 
some studies on multi-objective HNFS problems.For 
instance, Tavakkoli-Moghaddam et al. (2007)proposeda 
multi-objective immune algorithm for the NFS to 
minimize the weighted mean completion time and the 
weighted mean tardiness.In another study, Khalili and 
Tavakkoli-Moghaddam(2012)developed a new multi-
objective electromagnetism algorithm for a bi-objective 
flowshop scheduling problem. To evaluate the 
performance of the proposed algorithm, we use a set of 
instances taken from the literature. Using multi-objective 
performance measures and statistical tools, the 
performance of the proposed algorithms are compared 
withthat of the available multi-objective immune 
algorithm (MOIA) proposed by Tavakoli-Moghaddam 
et.al(2007).Khalili(2012)also proposed an iterated local 
search algorithm for flexible flow lines with sequence 
dependent setup times to minimize the total weighted 
completion. In the same vein, Khalili(2012) studied multi-
objective no-wait hybrid flowshop scheduling problems to 
minimize both makespan and total tardiness. 

Similarly, in this paper we presentthe multi-objective 
no-wait flowshop scheduling problemwith 
minimizingboth makespan and total tardiness. 
Specifically, we proposea high performing novelmulti-
objective solution method based onthe simulated 
annealingalgorithm. 

The rest of the paper is organized as follows. Section 
2describes the mathematical mode of the problem, and 
Section 3 presents the multi-objective simulated annealing 
(MOSA). Then Section 4 describes the experimental 
design to evaluate the proposed algorithms. Finally, 
Section 5 gives some interesting conclusions and 
suggestions for future studies. 

2. The Mathematical Model for Hybrid No-Wait 
Flowshop Scheduling Problems 

This paper presents a mixed integer linear program 
model for hybrid no-wait flowshop scheduling problems. 
In the mathematical model which is based on finding job 
in the sequence, the following parameters and indices are 
used. 

n Number of jobs 

m Number of machines 
݆, ݇ Indices for jobs where ݆, ݇ = {1, 2, …	, ݊} 
݅ Indices for machines where ݅ = {1, 2, …	, ݉} 
݉௜ Number of machines in stage ݅ 
݈ Indices for machines at stage ݅  where 

{1, 2,…	 ,݉௜} 
 ݅ ௝,௜ Processing time of job ݆ on machine݌
 ݅ ௝௜ Transportation time of job ݆ from machineݎ

to machine ݅+1 
௝݀  Due date of job ݆ 

M A large positive number  
 
In the following part, the mathematical model is 

explained. 
 
௝ܺ,௜,௞  Binary variable taking value 1 if job j is 

processed after job k at stage i, and 0 
otherwise. k>j 

௝ܻ,௜,௟ Binary variable taking value 1 if job j is 
processed at stage i on machine l, and 0 
otherwise. 

C୨,୧ Continuous variable for the completion time 
of job j at stage i 

C୫ୟ୶ Continuous variable for makespan. 
௞ܶ  Continuous variable for the tardiness of job k 

 
The model formulates the problem as follows: 
Minimize ܼଵ =  ௠௔௫ (1)ܥ
 

ܼଶ =෍ ௞ܶ

௡

௞ୀଵ

 
(2)  

subject to: 
∑ ௝ܻ,௜,௟
௠೔
௟ୀଵ = 1						∀௝,௜                                                        (3) 

௝,ଵܥ  ௝,ଵ                                                                       (4)݌	≤
௝,௜ܥ = ௝,௜ିଵܥ + ௝௜ିଵݎ +  ௝,௜∀௝,௜வଵ(5)݌
௝,௜ܥ ≥ ௞,௜ܥ + ௝,௜݌ ܯ− ∙ ൫3 − ௝ܺ,௜,௞ − ௝ܻ ,௜,௟ − ௞ܻ,௜,௟൯ 
∀௝ழ௡,௞வ௝,௜,௟                                                                        (6) 
௞,௜ܥ ≥ ௝,௜ܥ + ௞,௜݌ ܯ− ∙ ௝ܺ,௜,௞ ܯ− ∙ ൫2 − ௝ܻ,௜,௟ − ௞ܻ,௜,௟൯ 
∀௝ழ௡,௞வ௝,௜,௟                                                                        (7) 
௠௔௫ܥ ≥  ௝,௠∀௝                                                                (8)ܥ
௝ܶ ≥ ௝,௠ܥ − ௝݀			∀௝                    (9) 
௝,௜ܥ ≥ 0∀௝,௜                                                                     (10) 
௝ܺ,௜,௞ ∈ {0, 1}∀௝,௜,௞வ௝                                                      (11) 
௝ܻ,௜,௟ ∈ {0, 1}∀௝,௜,௟                                                           (12) 

 
In Equations (1) and (2), the makespan and the total 

tardiness are calculated, respectively. The first two 
constraint sets together ensure the construction of a 
feasible sequence. The subsequent constraint sets are to 
schedule the sequence obtained in the first two sets and 
compute the completion times, tardiness and makespan of 
the relevant schedule. More specifically, Constraint set 
(3) specifies which machine in each stage is assigned to 
each job. Constraint set (4) ensures that the completion 
time of every job on machine 1 is larger than its 
processing time on the machine. Constraint set (5) says 



that once the process of a job on a machine is completed, 
the process of the job on the next machine must begin 
without any interruption. Constraint sets (6) and (7) are 
the dichotomous pairs of constraints relating to each 
possible job pair. They ensure that one machine processes 
at most one job at a time. Finally, Constraint sets (8) and 
(9) are used for obtaining the makespan and job tardiness, 
respectively, and Constraint sets (10), (11) and (12) define 
the decision variables. 

3. The Multi-Objective Simulated Annealing 
Algorithm 

Many real-world problems involve simultaneous 
optimization of several objectives.As mentioned before, 
finding an optimal solution for large-sized problems in a 
reasonable computational time by using traditional 
approaches and optimization tools (like solving 
mathematical models) is very difficult.Thus,a 
mathematical model for this problem in big size of job 
and machine is not suitable.  

 The objectives often compete and conflict with 
themselves. A multi-objective optimization problem 
containing the simultaneous minimization of ݌ 
uncorrelated objectives can be defined as follows: 
minZ = ቀ ଵ݂(ݔ), ଶ݂(ݔ), … , ௣݂(ݔ)ቁ 

s. t.  ϵܺݔ
 

(13) 

whereݔ is the decision vector (or a feasible solution), ܺ is 
the set of feasible solution space, ௟݂(ݔ) is the݈th objective 
function value of solution ݔ. 

In the multi-objective optimization problems, the 
simplest method is “a priori” one where objectives are 
first weighted and then combined into a single value. For 
instance, given two objectives ଵ݂ and ଶ݂ , a linear 
combination, such as ܼ = ݓ ଵ݂ + (1 − (ݓ ଵ݂  where 
0 ≤ ݓ ≤ 1 , converts the master multi-objective 
optimization problem into a single-objective problem. 
However, giving a priori to ݓis a shortcoming that this 
method suffers from. Moreover, in the case that ଵ݂ and ଶ݂ 
are measured in different units, this method is likely to be 
misleading. Therefore, “a posteriori” method can be more 
appealing. In this method, the traditional concept of 
“optimum” solution does not apply. In fact, we may 
obtain a set of solutions which all are equally good due to 
the fact that it cannot be exactly clarified which one is 
better or worse. That is, all solutions in the set are the 
“best” solutions for the problem in a multi-objective 
scenario, rather than one optimum solution in a single-
objective concept. 

For example, consider a given bi-objective problem 
with two minimization objectives ଵ݂and ଶ݂ . Let ݔଵ and ݔଶ 
be two solutions of this problem. If solution ݔଵ  has a 
better ଵ݂ value than solutionݔଶ and yet a worse ଶ݂ value, it 
is evident that neither solution is better than the other in a 
multi-objective sense. Now, consider the third solutionݔଷ 

where ଵ݂(ݔଵ) < ଵ݂(ݔଷ)and ଶ݂(ݔଵ) < ଶ݂(ݔଷ). In this case, 
it can be said that ݔଷ  is worse than ݔଵ . To properly 
compare solutions in the multi-objective optimization 
problems, some definitions are needed. The following 
definitionsare presented for the minimization cases. 
 
Definition 1: strong (or strict) domination.The solution 

ଵݔ  is said to strongly dominate the 
solution ݔଶ  ( ଵݔ ≺≺ ଶݔ ) if ௝݂(ݔଵ) <
௝݂(ݔଶ)∀௝ୀଵ,ଶ,…,௣; solution ݔଵ is better than 
 .ଶ for all the objectivesݔ

Definition 2: domination.The solution ݔଵ  is said to 
dominate the solution ݔଶ (ݔଵ ≺  ଶ) ifݔ
1) ௝݂(ݔଵ) ≯ ௝݂(ݔଶ)∀௝ୀଵ,ଶ,…,௣; solution ݔଵ is 
not worse than ݔଶ for all the objectives. 

2) ௝݂(ݔଵ) < ௝݂(ݔଶ)∃௝ୀଵ,ଶ,…,௣; solution ݔଵ is 
better than ݔଶ for at least one objective. 

Definition 3: weak domination.The solution ݔଵ is said to 
weakly dominate the solution ݔଶ 
( ଵݔ ≼ ଶݔ ) if ௝݂(ݔଵ) ≯ ௝݂(ݔଶ)∀௝ୀଵ,ଶ,…,௣ ; 
solution ݔଵ  is not worse than ݔଶ  for all 
the objectives. 

Definition 4: incomparable domination. Solutions ݔଵ 
and ݔଶ  are said to be incomparable 
ଵݔ||ଶݔ ଶorݔ||ଵݔ) ) if ௝݂(ݔଵ) ≰ ௝݂(ݔଶ)  nor 
௝݂(ݔଵ) ≱ ௝݂(ݔଶ)∀௝ୀଵ,ଶ,…,௣. 

 
Note that all the above definitions are extendable to 

sets of solutions. For example, suppose ܣ and ܤare two 
sets of solutions for a multi-objective optimization 
problem. The set ܣ is set to (strongly) dominate ܤ if for 
every solutionݔ௜ϵܤ , there is at least the solution ݔ௝ϵܣ 
(strongly) dominatingݔ௜.  
 
Definition 5: Pareto optimal set. Among the set of 

solutions ܣ, the subset ܣᇱ is said to be the 
Pareto optimal set if and only if it 
includes only and all solutions ݔ௜ϵܣ not 
dominated by any other solutions in 
 .ܣ௝ϵݔ

 
An approximation of the Pareto optimal set is said to 

be good if it is close to this set. Furthermore, a good 
spread of solutions is also desirable, i.e., an 
approximation set is good if the whole Pareto optimal set 
is adequately covered. 

3.1. Introduction of the traditional simulated annealing 

Simulated annealing (SA) belongs to the class of 
stochastic search algorithms known as meta-heuristics. It 
is a fast local search-based algorithm designed to provide 
good optimal or near-optimal solutions within a 
reasonable computation time(Kirkpatrick et al., 1983). Ever 
since its introduction, the SA has shown a high 
performance in large combinatorial optimization 



problems, particularly in scheduling problems (Kubotani 
and Yoshimura, 2003;Minellaetal., 2008). The rationale for 
this algorithm comes from an analogy between the 
physical annealing of solid materials and optimization 
problems. It can be regarded as an enhanced version of 
local search or iterative improvement. Figure 1 shows the 
general outline of the traditional SA. 
 

Procedureof the traditional simulated annealing 
ݐ = ଴ܶ 

ݔ =                                               ݊݋݅ݐܽݖ݈݅ܽ݅ݐ݅݊݅
%Initial solution by another algorithm 

௕௘௦௧ݔ =  ݔ
whilestopping criterion is not metdo 
         for iter = 1 tomaxdo 
s =  move ݔby an operator              %generating a 

neighbor solution from x 
                   if݂(ݏ) <  %                          then(ݔ)݂

Acceptance criterion 
ݔ =  ݏ

                            if݂(ݏ) <  %          then(௕௘௦௧ݔ)݂
check with the best solution 

௕௘௦௧ݔ =  ݏ
endif 
                   else 
if݉݋݀݊ܽݎ < (ݏ)݂)−}	݌ݔ݁ − ((ݔ)݂ ⁄ݐ }then 

ݔ =  ݏ
endif 
endif 
endfor 
ݐ = ߙ ∙  %                                                      ݐ

temperature decrease 
Endwhile 

Fig. 1.The general outline of the traditional simulated annealing 
 

3.2. Multi-objective parametric simulated annealing 

A typical SA starts with an initial solution and 
examines the possibility of improving it by repeatedly 
making small local changes in the incumbent solution 
until a stopping criterion is fulfilled. The SA performs this 
procedure in a way that occasionally permits changes that 
deteriorate the incumbent solution to increase the chance 
of leaving a local optimum. The probability of accepting 
worse solutions depends on the change in the goodness 
and the annealing temperature. The SA is commonly said 
to be the oldest among the meta-heuristics that has an 
explicit strategy to avoid local optima. Itstarts at a high 
temperature ( ଴ܶ), so most of the moves are accepted at 
first steps of the procedure. The probability of doing such 
a move is decreased during the search. 

3.2.1. Encoding scheme and initialization 

The most frequently used encoding scheme for the 
flowshop is a simple permutation of jobs. The relative 
order of jobs in the permutation indicates the processing 
order of jobs on the first machine in the shop. To qualify 

our encoding scheme using the SA, the permutation of 
jobs is shown through random keys (RK). Each job is 
assigned a real number whose integer part is the machine 
number to which the job is assigned and whose fractional 
part is used to sort the jobs assigned to each machine. 

The initial solution is produced by the NEH(Khalili 
and Tavakoli-Moghadam, 2012). This algorithm checks 100 
neighbors at each temperatureݐ௜. The SA starts at a high 
temperature (ݐ଴) and the temperature is slightly lowered 
under a certain mechanism which is called cooling 
schedule when the procedure proceeds. In this paper, we 
use the exponential cooling schedule,ݐ௜ = ߙ ∙ ௜ିଵݐ ,where 
,(0ߙ 1) is the temperature decreasing rate. 

The fundamental idea is to generate a new job 
sequence ݒ a random rule from the neighborhood of 
incumbent sequenceݔ. The new solution ݒ is assessed by 
a mechanism called acceptance criterion to decide 
whether accept theݒor reject it. Clearly, if the ݒ improves 
theݔ, it is accepted. Moreover, the worse solution might 
be accepted by a probability function depending on the 
difference between the goodness of the two solutions and 
current temperatureݐ௜. Therefore, there is a higher chance 
of accepting the worse solution in higher temperatures. 

3.2.2. Moving operator 

Last but not least, t୧ an operator is employed to 
generate a neighbor solution ݒ from the current candidate 
solution ݔ by making a slight change in it. This operator 
performs so as to avoid producing infeasible solutions. In 
this paper, we take into consideration two different move 
operators: 

1) Swap: The positions of two randomly selected jobs are 
swapped. For example, consider a problem with ݊	 = 	5 
and some permutation {3, 5, 2, 4, 1}. Suppose the two 
randomly selected jobs are jobs 5 and 4. The 
corresponding positions are exchanged; therefore, we 
have {3, 4, 2, 5, 1}. 

2) Single point: One randomly selected job is randomly 
relocated. Consider the previous permutation {3, 5, 2, 
4, 1}. Suppose the selected job is job 4 and the new 
randomly chosen position becomes 2. Therefore, the 
new solution becomes {3, 4, 5, 2, 1}. 

3.2.3. Acceptance criterion 

As mentioned before, inthe single-objective SA, the 
variation is calculatedܥ = If ∆C .(ݔ)݂	(ݒ)݂ ≤ 0, 
solutionݒ is accepted. Otherwise, solutionݒ is accepted 
with a probability equal to ௥ܲ = exp(ܥ	ݐ/௜). In the 
multi-objective SA, there are several objectives and thus 
an effective criterion should consider all of them. 
Consequently, it cannot be straightforward. There are, 
among the others, four different frequently used criteria in 
the literature (Kubotani and Yoshimura, 2003): 



1) Rule SL ௥ܲ = minቊ1, expቆ
∑ ௝ݓ ∙ ∆ ௝݂
௣
௝ୀଵ

௜ݐ
ቇቋ 

(14) 

2) Rule C ௥ܲ = min ቊ1,min
௝
ቆexp ൜

௝ݓ ∙ ∆ ௝݂

௜ݐ
ൠቇቋ 

(15) 

3) Rule W ௥ܲ = min ቊ1,max
௝
ቆexp ൜

௝ݓ ∙ ∆ ௝݂

௜ݐ
ൠቇቋ 

(16) 

where ∆ ௝݂ = ௝݂(ݒ) − ௝݂(ݔ), ∑ ௝ݓ
௣
௝ୀଵ = 1 and ݓ௝is the 

weight of the݆th objective. ݐ௜also donates the current 
temperature. 

The fourth criterion is a more complicated criterion, 
named parameterized acceptance criterion (PAC). Let 

݁(௟)ϵܴ௣(݈ = 1,… ,  dimensional unit vector such-݌ be a  (݌
that only the ݈th element is one and the others are zero, 
and let ݑ be a unit vector definedas ݑ	 = 	 ቀ ଵ

√௣
, ଵ
√௣
, … , ଵ

√௣
ቁ. 

The vector ܽ(௟) is defined by: 
 

ܽ(௟) =
(௟)݁|ߣ| + (1 − ݑ(|ߣ|
(௟)݁|ߣ|‖ + (1 −  ‖ݑ(|ߣ|

 

(17) 

whereߣ is a parameter such that −1 ≤ ߣ ≤ 1. Finally, the 
PAC is defined by: 

 

4) ௥ܲ =

⎩
⎪⎪
⎨

⎪⎪
⎧
minቐ1,min

௟
ቐexp ቎

1
௜ݐ
෍ ௝ܽ

(௟)
௣

௝ୀଵ

∙ ௝ݓ ∙ ∆ ௝݂቏ቑቑ , −1 ≤ ߣ < 0

minቐ1,min
௟
ቐexp ቎

1
௜ݐ
෍ ௝ܽ

(௟)
௣

௝ୀଵ

∙ ௝ݓ ∙ ∆ ௝݂቏ቑቑ , 0 ≤ ߣ ≤ 1

 

(18)

where ௝ܽ
(௟) represent the ݆th element of the vector ܽ(௟). In 

our case, we assume that the weights are equal; therefore, 
they can be omitted from the above formulas. Figure 2 
shows the behavior of the PAC regarding different values 
of ߣ in the bi-objective case (2 = ݌). In this figure, the 
gray regions represent areas where the candidate solutions 

are certainly accepted and the broken lines indicate the 
contour lines of the acceptance probability. In the PAC, 
when 0 ,1− = ߣ and 1 are equivalent to Rules SL, C and 
W, respectively. An SA algorithm for each of these four 
acceptance criteria is developed, namely SLSA, CSA, 
WSA and PACSA. 

 
     

ߣ = −1 −1 ≤ ߣ ≤ ߣ 0 = 0 0 ≤ ߣ ≤ ߣ 1 = 1 
 

Fig. 2. Parameterized acceptance criterion 

3.2.4. Updating the Pareto archive set 

A Pareto archive set is usually designed to hold a 
limited number of non-dominated solutions. During the 
search, when a new non-dominated solution is obtained, it 
is put to the archive set if the archive set is not full. If a 
new solution enters the archive set, any solution in the 
archive dominated by this solution is removed from the 
set. Once the archive becomes full, a new non-dominated 
solution enters the archive if its distance to all the non-
dominated solutions is greater than that to a pre-
determined threshold. The distance between the new non-
dominated solution and a given non-dominated solution in 
the archive is measured based on the Euclidean distance. 
The motivation is to keep diverse non-dominated 

solutions without losing any existing non-dominated 
solutions in the archive. The general procedure of our 
proposed SA is as follows. 
 
ProcedureSimulated annealing 
 
Step 1: Initialize (initial solution, initial temperature, ݎ = 0) 
Step 2: Generate a new solution from the incumbent solution by 
an operator. 
Step 3: Accept this new solution if it satisfies the acceptance 
criterion. 
Step 4: Increase ݎ by one unit. If ݎ > 100, go to Step 2; 
otherwise, go to Step 5. 
Step 5: Decrease the temperature, and put ݎ = 0. 
Step 6: If the stopping criterion is not met, go to Step 2; 
otherwise, Stop. 

Δ ଵ݂ 

Δ ଶ݂ 



4. Experimental Evaluation 

In this section, the performance of our proposed 
algorithms (i.e. SLSA, CSA, WSA and PASCA) is 
evaluated in terms of a benchmark. These algorithms are 
implemented in Borland C++ and run on a PC with 2.0 
GHz Intel Core 2 Duo and 2 GB of RAM memory.The 
tested algorithms are SLSA, CSA, WSA, PACSA and 
MOIA proposed by (Tavakkoli-Moghaddam et al., 2007). 
These algorithms are stopped after a running time of 
5×n×m milliseconds. Recently, the computational time is 
considered as a stopping criterion(Montgomery, 2000). 

In multi-objective cases, performance quality 
measures (PQM)are more challenging. Many of the 
PQMs used in the literature have a serious drawback 
known as being non-Pareto-compliant. It means they can 
assign a better goodness to a given approximation Pareto 
set ܣ  and a worse one to another set ܤ  even whenܤ 
dominatesܣ. Unfortunately, it is even shown by (Knowles 
et al., 2006) that these PQMs not only are non-Pareto 
compliant, but also provide wrong and misleading results 
more often than not. As examples for these misleading 
PQMs, one may state, among other PQMs, the 
generational distance or maximum deviation from the best 
Pareto set (Geiger, 2007; Rahimi-Vahed and Mirghorbani, 
2007). After all, three PQMs are known to give reliable 
analyses(Knowles et al., 2006)and overcome the mentioned 
shortcoming. These three PQMs sorted from easy to 
complicated are as follows: 
1) Dominance ranking: To compare two approximation 

Pareto sets ܣ and ܤ , one can rank a given 
algorithm over another one by counting the 
number of points in ܣ dominated by or equal to 
points in ܤ. 

2) Quality indicator: This is a function that assigns a real 
number to a full Pareto approximation set. The 
two major types of this PQM are hyper volume 
( ுܫ ) and unary epsilon indicator ( ఌଵܫ ), 
respectively, proposed by Zitzler and Thiele (1999) 
and Zitzler et al. (2003). 

3) Empirical attainment function: The relative frequency 
that each region is attained by the approximation 
set is calculated(Knowles et al., 2006). 

Since both dominance ranking and empirical 
attainment function compare algorithms in pairs, they are 
impractical PQMs for cases in which several algorithms 
are compared.Moreover, in the case of empirical 
attainment function, the results of each pair comparison 
should be graphically analyzed. All in all, the best choice 
for our case is quality indicators. We employ both hyper 
volume (ܫு ) and unary epsilon (ܫఌଵ ) indicators, because 
compared with a single indicator, the combination of 
quality indicators could provide more precise conclusions. 
If the results of the two quality indicators are in conflict 
with one another on preference ranking of two 
approximation sets, the two sets are incomparable. Each 

of the two quality indicators could be described as 
follows: 

The hyper volume indicator (ܫு ): It calculates the 
hypervolume (or the area in bi-objective cases) covered 
by the approximation Pareto set given by one algorithm. 
In order to measure this quantity, the area must be 
bounded by a reference point (usually a point that is 
dominated by all the points). The higher values of ܫு 
correspond to higher quality. Comparing the two sets ܣ 
andܣ ,ܤ is preferable if ܫு(ܣ) >  .(ܤ)ுܫ

The unary epsilon indicator ( ఌଵܫ ): For the two 

approximation sets ܣand ܫ ,ܤఌଵ(ܤ,ܣ) equals to 

 

(ܤ,ܣ)ఌଵܫ = max
௫ఢ஺

min
௬ఢ஻

max
ଵஸ௟ஸ௣

௟݂(ݔ)
௟݂(ݕ)

 
(19) 

Although this binary indicator seemingly needs to 
compare all algorithms in pairs, Knowles et al. (2006) 
proposed a version in which the approximation set ܤ is 
any reference set, usually the best-known Pareto set. 
Another advantage of this replacement is to measure how 
much worse an approximation set is with respect to the 
best-known Pareto set in the best case. 

To obtainܫఌଵ, we first normalize the objective function 
values using Eq. (19). In this case, the normalized ܫఌଵ 
indicator ranges between one and two; and ܫఌଵ = 1 for a 
given algorithm implies that its approximation set is not 
dominated by the best-known one. For a given instance, 
the reference set is the best Pareto set that is the 
combination of all the approximation Pareto sets obtained 
by any of the algorithms.  

4.1. Parameter tuning 

The proposed SA has two parameters {Initial 
temperature ( ଴ܶ), cooling rate (ߙ)} and move operators. In 
the case of PACSA, we have another parameter (λ). We 
also consider two levels of−0.5 and	0.5. Finally, the 
value of 0.5shows the better performance. 

The considered levels of {Initial temperature ( ଴ܶ), 
cooling rate (ߙ)} and the move operators are as follows: 

a) 3 levels ({100, 0.98}, {150, 0.97}, {250, 0.96}) 
b) Move operator (MO): 2 levels (SO, SPO).  
Therefore, 3×2=6 different SAs are obtained by these 

levels and all the 75 instances are solved by them. The 
results are first transformed into the hyper volume 
indicator and the unary epsilon indicator and then 
analyzed by the means of the analysis of variance 
(ANOVA) and the least significant differences (LSD) test 
at the 95% confidence level. As shown in Figure 
3,popsize = 6 provides statistically better results than the 
other values of 4 ,2 ݁ݖ݅ݏ݌݋݌ and 8. There is a statistically 
significant difference between the two move operators 
and in fact the SPO performs better. 

 
 



 

Fig. 3. Results of the parameter tuning 

4.2. Experimental results 

In this subsection, the performances of four tested 
algorithms (i.e., SLSA, CSA, WSA, PACSA) are 
evaluated on a set of instances. Data required for an 
instance consist of a number of jobs (݊), a number of 
machines (݉), a range of processing times (݌௝௜) and 
transportation times ( ௙ܶ and ௕ܶ). We generate our 
instances based on the Taillard's benchmark values 
(Taillard, 1993). We have ݊ = {20, 50, 100, 200} and ݉ = 
{5, 10, 20} resulting in 15 combinations of݊ ×݉. The 
processing time in the Taillard’s instances are generated 
from a uniform distribution over the range (1, 99).The 
transportation times ( ௙ܶand ௕ܶ) come from a uniform 
distribution in the range (1, 30) that is 30% of processing  

 

 
time. Different levels of the factors result in 30 different 
scenarios. Then like the Taillard's benchmark, we produce 
10 instances for each scenario. Therefore, we have 300 
instances. To generate due dates of all ݊ jobs, we use an 
approach similar to that of Khalili and Tavakoli-
Moghaddam(2011) [6]. More specifically, for each job j, 
first we compute ௝ܵ = ∑ ൫݌௝௜ + ௝௜൯௠ݐ

௜ୀଵ . Then, the due date 
of each job is obtained as follows: ௝݀ = ௜ܵ(1 +  where (ߚ3
 .is a random number between (0, 1) ߚ

Table 1 summarizes the average hyper volume (ܫு) 
and unary epsilon indicator ( ఌଵܫ ) values for all the 
algorithms obtained in different problem sizes ( ݊ ). 
Among the developed SAs, the PACSA obtains better 
results.

Table 1 
 ఌଵfor the algorithms grouped by݊ܫுandܫ

 Algorithms 

݊ 
CSA PACSA WSA SLSA MOIA 

 ఌଵܫ ுܫ ఌଵܫ ுܫ ఌଵܫ ுܫ ఌଵܫ ுܫ ఌଵܫ ுܫ

20 1.112 1.181 1.129 1.111 1.018 1.212 0.978 1.212 0.982 1.29 
50 1.118 1.188 1.119 1.123 1.111 1.192 0.922 1.311 0.925 1.392 
100 1.1 1.191 1.189 1.134 1.121 1.199 0.712 1.412 0.721 1.412 
200 1.111 1.192 1.141 1.139 1.108 1.29 0.645 1.455 0.799 1.623 

Ave. 1.110 1.188 1.145 1.127 1.090 1.223 0.814 1.348 0.857 1.429 

 

For the further analysis, we carry out the ANOVA 
method. The results show that there is a statistically 
significant difference between the performances of the 
algorithms. The means plot for the different algorithms 
with the least significant difference (LSD) intervals are 
shown in Figure 4. As it illustrates, our proposed PASCA 
provides statistically better results than other methods. 
Figure 5 depicts the performances of the algorithms 
versus the number of jobs for both quality measures. As it 

shows, the proposed parametric SA algorithms keep 
robust performances in different problem sizes. 

 

 

 

 



  
 

Fig. 4. Means plot and LSD intervals for algorithms in both Iୌ and Iεଵ 

  

Number of jobs 

Fig. 5. Means plot for the proposed SA versus the number of jobs in both ܫு and ܫఌଵ 

5. Conclusion and Future Work 

This studyinvestigated the multi-objective hybrid no-
wait flowshop scheduling problem. The aimwasto 
minimizeboth makespan and total tardiness. To 
accomplish this purpose, a novel multi-objective 
simulated algorithm was proposed. After tuning the 
algorithm, an experiment was designed to carefully 
evaluate its performance against some available 
algorithms in the literature. The results were analyzed 
through multi-objective performance measuresand 
statistical tools (ANOVA and LSD). The findings showed 
that the moderate variant of the proposed solution method 
outperforms the others.For furtherstudies, researchersmay 
work on extending the applications of multi-objective SA 
to other optimization problems. It is also interesting to 
study the performance of other novel solution methods for 
the same problem. Furthermore, the problem under 
consideration could be studied by various objectives such 
as total tardiness as well as early and tardy penalties. 
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