
A Multi-objective Simulated Annealing Algorithm for Solving the
Flexible no-wait Flowshop Scheduling Problem with Transportation

Times
Bahman Naderia,*, Hassan Sadeghib

aAssistant Professor, Young Researchers Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran
bBsc, Young Researchers Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Received 17 May, 2011; Revised 19 August, 2011; Accepted 13 November, 2011

Abstract

This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the make span and total weighted tardiness,
in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in a
reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper, therefore, presents
a new multi-objective simulated annealing algorithm (MOSA). A set of experimental instances are carried out to evaluate the algorithm by
advanced multi-objective performance measures. In fact, the performance of the algorithm is carefully evaluated in terms of the available
algorithms by means of multi-objective performance measures and statistical tools. The results show that compared with other algorithms, a
variant of our proposed MOSA produces a good performance.
Keywords: No-wait hybrid flowshop scheduling; Multi-objective simulated annealing algorithm; Makespan; Total weighted tardiness.

1. Introduction

A flowshop problem has a set of n jobs {J1, J2,…,Jn}
and a set of m machines. All jobs visit machines in the
same processing route, starting with machine 1 and
finishing with machine m. The hybrid no-wait flowshop
scheduling (HNFS) can be defined by a set of ݊ jobs that
need to be processed by a set of ݉stages. The jobs visit
stages by the same order starting with stage 1, then stage
2 until stage݉ (Pinedo, 2008). It is known that the
solution of HNFS is necessarily permutation flowshop-
like too(these quences of jobs in all stages are the same).

Due to some characteristics of the circumstances and
processing technology, the operations of a job must be
performed without any waiting between stages, which is
known as no-wait restriction. The operations of a job can
be performed in any order, but they must be performed
without any interruption in the stages and without any
waiting between the stages. That is, each job must be
processed continuously from its start to its completion
(i.e. no-wait constraint). Hence, if necessary, the start of a
job in one stage must be postponed so that the completion
of this operation coincides with the beginning of the
operation in another stage.

The following assumptions usually characterize the
HNFS. Setup times are negligible. All the jobs are

Independent and available for the process at time zero. All
machines in each stage are continuously available. Each
machine in each stage can process at most one job at a
time. Each job can be processed by at most one machine
at a time in each stage. The process of a job on a machine
cannot be interrupted. Moreover, transportation times are
considered in this problem. The transportation time from
machine i-1 to machine ݅ is denoted by Tfand the
transportation time from machinei to machine i-1 is
denoted by Tb. The time to load and unload the transporter
is included in the transportation time. When the
transporter leaves the first machine, it always returns in
time Tf + Tbto take the next job. This transportation time
can be either job-dependent or job-independent. We
assume that all transportations are job-independent, and
transportations between two machines have to be done by
one transporter.

The aim of production scheduling is to discover the
job sequence to optimize one or some objectives. One of
the most commonly used objectives is the minimization of
makespan (ܥ௠௔௫). Even for the best solution regarding the
makespan, it is likely that a large number of jobs are
completed after their due dates. In this case, the
simultaneous consideration of the total tardiness (or	ܶܶ)

*Corresponding author E-mail addresses: bahman.naderi@aut.ac.ir

minimization could result in a higher productivity.
Therefore, we investigate the case of minimizing these
two objectives.In fact, in this research we investigate the
case of minimizing TT and Cmax.

Almost all of the studies done are single-objective no-
wait flowshop scheduling problems. The earliest research
on the single-objective no-wait flowshop scheduling
wasconducted by Wismer(1972). Later, different genetic
algorithms were applied by Chen and Neppalli(1996) as
well as Aldowaisan and Allahverdi(2004). Among the
other metaheuristics, one could refer the reader to
theparticle swarm optimization by Pan et al.(2008), the
ant colony optimization by Shyu et al.(2004) and the tabu
search by Grabowski and Pempera(2005).There are also
some studies on multi-objective HNFS problems.For
instance, Tavakkoli-Moghaddam et al. (2007)proposeda
multi-objective immune algorithm for the NFS to
minimize the weighted mean completion time and the
weighted mean tardiness.In another study, Khalili and
Tavakkoli-Moghaddam(2012)developed a new multi-
objective electromagnetism algorithm for a bi-objective
flowshop scheduling problem. To evaluate the
performance of the proposed algorithm, we use a set of
instances taken from the literature. Using multi-objective
performance measures and statistical tools, the
performance of the proposed algorithms are compared
withthat of the available multi-objective immune
algorithm (MOIA) proposed by Tavakoli-Moghaddam
et.al(2007).Khalili(2012)also proposed an iterated local
search algorithm for flexible flow lines with sequence
dependent setup times to minimize the total weighted
completion. In the same vein, Khalili(2012) studied multi-
objective no-wait hybrid flowshop scheduling problems to
minimize both makespan and total tardiness.

Similarly, in this paper we presentthe multi-objective
no-wait flowshop scheduling problemwith
minimizingboth makespan and total tardiness.
Specifically, we proposea high performing novelmulti-
objective solution method based onthe simulated
annealingalgorithm.

The rest of the paper is organized as follows. Section
2describes the mathematical mode of the problem, and
Section 3 presents the multi-objective simulated annealing
(MOSA). Then Section 4 describes the experimental
design to evaluate the proposed algorithms. Finally,
Section 5 gives some interesting conclusions and
suggestions for future studies.

2. The Mathematical Model for Hybrid No-Wait
Flowshop Scheduling Problems

This paper presents a mixed integer linear program
model for hybrid no-wait flowshop scheduling problems.
In the mathematical model which is based on finding job
in the sequence, the following parameters and indices are
used.

n Number of jobs

m Number of machines
݆, ݇ Indices for jobs where ݆, ݇ = {1, 2, …	, ݊}
݅ Indices for machines where ݅ = {1, 2, …	, ݉}
݉௜ Number of machines in stage ݅
݈ Indices for machines at stage ݅ where

{1, 2,…	 ,݉௜}
 ݅ ௝,௜ Processing time of job ݆ on machine݌
 ݅ ௝௜ Transportation time of job ݆ from machineݎ

to machine ݅+1
௝݀ Due date of job ݆

M A large positive number

In the following part, the mathematical model is

explained.

௝ܺ,௜,௞ Binary variable taking value 1 if job j is

processed after job k at stage i, and 0
otherwise. k>j

௝ܻ,௜,௟ Binary variable taking value 1 if job j is
processed at stage i on machine l, and 0
otherwise.

C୨,୧ Continuous variable for the completion time
of job j at stage i

C୫ୟ୶ Continuous variable for makespan.
௞ܶ Continuous variable for the tardiness of job k

The model formulates the problem as follows:
Minimize ܼଵ = ௠௔௫ (1)ܥ

ܼଶ =෍ ௞ܶ

௡

௞ୀଵ

(2)

subject to:
∑ ௝ܻ,௜,௟
௠೔
௟ୀଵ = 1						∀௝,௜ (3)

௝,ଵܥ ௝,ଵ (4)݌	≤
௝,௜ܥ = ௝,௜ିଵܥ + ௝௜ିଵݎ + ௝,௜∀௝,௜வଵ(5)݌
௝,௜ܥ ≥ ௞,௜ܥ + ௝,௜݌ ܯ− ∙ ൫3 − ௝ܺ,௜,௞ − ௝ܻ ,௜,௟ − ௞ܻ,௜,௟൯
∀௝ழ௡,௞வ௝,௜,௟ (6)
௞,௜ܥ ≥ ௝,௜ܥ + ௞,௜݌ ܯ− ∙ ௝ܺ,௜,௞ ܯ− ∙ ൫2 − ௝ܻ,௜,௟ − ௞ܻ,௜,௟൯
∀௝ழ௡,௞வ௝,௜,௟ (7)
௠௔௫ܥ ≥ ௝,௠∀௝ (8)ܥ
௝ܶ ≥ ௝,௠ܥ − ௝݀			∀௝ (9)
௝,௜ܥ ≥ 0∀௝,௜ (10)
௝ܺ,௜,௞ ∈ {0, 1}∀௝,௜,௞வ௝ (11)
௝ܻ,௜,௟ ∈ {0, 1}∀௝,௜,௟ (12)

In Equations (1) and (2), the makespan and the total

tardiness are calculated, respectively. The first two
constraint sets together ensure the construction of a
feasible sequence. The subsequent constraint sets are to
schedule the sequence obtained in the first two sets and
compute the completion times, tardiness and makespan of
the relevant schedule. More specifically, Constraint set
(3) specifies which machine in each stage is assigned to
each job. Constraint set (4) ensures that the completion
time of every job on machine 1 is larger than its
processing time on the machine. Constraint set (5) says

that once the process of a job on a machine is completed,
the process of the job on the next machine must begin
without any interruption. Constraint sets (6) and (7) are
the dichotomous pairs of constraints relating to each
possible job pair. They ensure that one machine processes
at most one job at a time. Finally, Constraint sets (8) and
(9) are used for obtaining the makespan and job tardiness,
respectively, and Constraint sets (10), (11) and (12) define
the decision variables.

3. The Multi-Objective Simulated Annealing
Algorithm

Many real-world problems involve simultaneous
optimization of several objectives.As mentioned before,
finding an optimal solution for large-sized problems in a
reasonable computational time by using traditional
approaches and optimization tools (like solving
mathematical models) is very difficult.Thus,a
mathematical model for this problem in big size of job
and machine is not suitable.

 The objectives often compete and conflict with
themselves. A multi-objective optimization problem
containing the simultaneous minimization of ݌
uncorrelated objectives can be defined as follows:
minZ = ቀ ଵ݂(ݔ), ଶ݂(ݔ), … , ௣݂(ݔ)ቁ

s. t. ϵܺݔ

(13)

whereݔ is the decision vector (or a feasible solution), ܺ is
the set of feasible solution space, ௟݂(ݔ) is the݈th objective
function value of solution ݔ.

In the multi-objective optimization problems, the
simplest method is “a priori” one where objectives are
first weighted and then combined into a single value. For
instance, given two objectives ଵ݂ and ଶ݂ , a linear
combination, such as ܼ = ݓ ଵ݂ + (1 − (ݓ ଵ݂ where
0 ≤ ݓ ≤ 1 , converts the master multi-objective
optimization problem into a single-objective problem.
However, giving a priori to ݓis a shortcoming that this
method suffers from. Moreover, in the case that ଵ݂ and ଶ݂
are measured in different units, this method is likely to be
misleading. Therefore, “a posteriori” method can be more
appealing. In this method, the traditional concept of
“optimum” solution does not apply. In fact, we may
obtain a set of solutions which all are equally good due to
the fact that it cannot be exactly clarified which one is
better or worse. That is, all solutions in the set are the
“best” solutions for the problem in a multi-objective
scenario, rather than one optimum solution in a single-
objective concept.

For example, consider a given bi-objective problem
with two minimization objectives ଵ݂and ଶ݂ . Let ݔଵ and ݔଶ
be two solutions of this problem. If solution ݔଵ has a
better ଵ݂ value than solutionݔଶ and yet a worse ଶ݂ value, it
is evident that neither solution is better than the other in a
multi-objective sense. Now, consider the third solutionݔଷ

where ଵ݂(ݔଵ) < ଵ݂(ݔଷ)and ଶ݂(ݔଵ) < ଶ݂(ݔଷ). In this case,
it can be said that ݔଷ is worse than ݔଵ . To properly
compare solutions in the multi-objective optimization
problems, some definitions are needed. The following
definitionsare presented for the minimization cases.

Definition 1: strong (or strict) domination.The solution

ଵݔ is said to strongly dominate the
solution ݔଶ (ଵݔ ≺≺ ଶݔ) if ௝݂(ݔଵ) <
௝݂(ݔଶ)∀௝ୀଵ,ଶ,…,௣; solution ݔଵ is better than
 .ଶ for all the objectivesݔ

Definition 2: domination.The solution ݔଵ is said to
dominate the solution ݔଶ (ݔଵ ≺ ଶ) ifݔ
1) ௝݂(ݔଵ) ≯ ௝݂(ݔଶ)∀௝ୀଵ,ଶ,…,௣; solution ݔଵ is
not worse than ݔଶ for all the objectives.

2) ௝݂(ݔଵ) < ௝݂(ݔଶ)∃௝ୀଵ,ଶ,…,௣; solution ݔଵ is
better than ݔଶ for at least one objective.

Definition 3: weak domination.The solution ݔଵ is said to
weakly dominate the solution ݔଶ
(ଵݔ ≼ ଶݔ) if ௝݂(ݔଵ) ≯ ௝݂(ݔଶ)∀௝ୀଵ,ଶ,…,௣ ;
solution ݔଵ is not worse than ݔଶ for all
the objectives.

Definition 4: incomparable domination. Solutions ݔଵ
and ݔଶ are said to be incomparable
ଵݔ||ଶݔ ଶorݔ||ଵݔ)) if ௝݂(ݔଵ) ≰ ௝݂(ݔଶ) nor
௝݂(ݔଵ) ≱ ௝݂(ݔଶ)∀௝ୀଵ,ଶ,…,௣.

Note that all the above definitions are extendable to

sets of solutions. For example, suppose ܣ and ܤare two
sets of solutions for a multi-objective optimization
problem. The set ܣ is set to (strongly) dominate ܤ if for
every solutionݔ௜ϵܤ , there is at least the solution ݔ௝ϵܣ
(strongly) dominatingݔ௜.

Definition 5: Pareto optimal set. Among the set of

solutions ܣ, the subset ܣᇱ is said to be the
Pareto optimal set if and only if it
includes only and all solutions ݔ௜ϵܣ not
dominated by any other solutions in
 .ܣ௝ϵݔ

An approximation of the Pareto optimal set is said to

be good if it is close to this set. Furthermore, a good
spread of solutions is also desirable, i.e., an
approximation set is good if the whole Pareto optimal set
is adequately covered.

3.1. Introduction of the traditional simulated annealing

Simulated annealing (SA) belongs to the class of
stochastic search algorithms known as meta-heuristics. It
is a fast local search-based algorithm designed to provide
good optimal or near-optimal solutions within a
reasonable computation time(Kirkpatrick et al., 1983). Ever
since its introduction, the SA has shown a high
performance in large combinatorial optimization

problems, particularly in scheduling problems (Kubotani
and Yoshimura, 2003;Minellaetal., 2008). The rationale for
this algorithm comes from an analogy between the
physical annealing of solid materials and optimization
problems. It can be regarded as an enhanced version of
local search or iterative improvement. Figure 1 shows the
general outline of the traditional SA.

Procedureof the traditional simulated annealing
ݐ = ଴ܶ

ݔ = ݊݋݅ݐܽݖ݈݅ܽ݅ݐ݅݊݅
%Initial solution by another algorithm

௕௘௦௧ݔ = ݔ
whilestopping criterion is not metdo
 for iter = 1 tomaxdo
s = move ݔby an operator %generating a

neighbor solution from x
 if݂(ݏ) < % then(ݔ)݂

Acceptance criterion
ݔ = ݏ

 if݂(ݏ) < % then(௕௘௦௧ݔ)݂
check with the best solution

௕௘௦௧ݔ = ݏ
endif
 else
if݉݋݀݊ܽݎ < (ݏ)݂)−}	݌ݔ݁ − ((ݔ)݂ ⁄ݐ }then

ݔ = ݏ
endif
endif
endfor
ݐ = ߙ ∙ % ݐ

temperature decrease
Endwhile

Fig. 1.The general outline of the traditional simulated annealing

3.2. Multi-objective parametric simulated annealing

A typical SA starts with an initial solution and
examines the possibility of improving it by repeatedly
making small local changes in the incumbent solution
until a stopping criterion is fulfilled. The SA performs this
procedure in a way that occasionally permits changes that
deteriorate the incumbent solution to increase the chance
of leaving a local optimum. The probability of accepting
worse solutions depends on the change in the goodness
and the annealing temperature. The SA is commonly said
to be the oldest among the meta-heuristics that has an
explicit strategy to avoid local optima. Itstarts at a high
temperature (଴ܶ), so most of the moves are accepted at
first steps of the procedure. The probability of doing such
a move is decreased during the search.

3.2.1. Encoding scheme and initialization

The most frequently used encoding scheme for the
flowshop is a simple permutation of jobs. The relative
order of jobs in the permutation indicates the processing
order of jobs on the first machine in the shop. To qualify

our encoding scheme using the SA, the permutation of
jobs is shown through random keys (RK). Each job is
assigned a real number whose integer part is the machine
number to which the job is assigned and whose fractional
part is used to sort the jobs assigned to each machine.

The initial solution is produced by the NEH(Khalili
and Tavakoli-Moghadam, 2012). This algorithm checks 100
neighbors at each temperatureݐ௜. The SA starts at a high
temperature (ݐ଴) and the temperature is slightly lowered
under a certain mechanism which is called cooling
schedule when the procedure proceeds. In this paper, we
use the exponential cooling schedule,ݐ௜ = ߙ ∙ ௜ିଵݐ ,where
,(0ߙ 1) is the temperature decreasing rate.

The fundamental idea is to generate a new job
sequence ݒ a random rule from the neighborhood of
incumbent sequenceݔ. The new solution ݒ is assessed by
a mechanism called acceptance criterion to decide
whether accept theݒor reject it. Clearly, if the ݒ improves
theݔ, it is accepted. Moreover, the worse solution might
be accepted by a probability function depending on the
difference between the goodness of the two solutions and
current temperatureݐ௜. Therefore, there is a higher chance
of accepting the worse solution in higher temperatures.

3.2.2. Moving operator

Last but not least, t୧ an operator is employed to
generate a neighbor solution ݒ from the current candidate
solution ݔ by making a slight change in it. This operator
performs so as to avoid producing infeasible solutions. In
this paper, we take into consideration two different move
operators:

1) Swap: The positions of two randomly selected jobs are
swapped. For example, consider a problem with ݊	 = 	5
and some permutation {3, 5, 2, 4, 1}. Suppose the two
randomly selected jobs are jobs 5 and 4. The
corresponding positions are exchanged; therefore, we
have {3, 4, 2, 5, 1}.

2) Single point: One randomly selected job is randomly
relocated. Consider the previous permutation {3, 5, 2,
4, 1}. Suppose the selected job is job 4 and the new
randomly chosen position becomes 2. Therefore, the
new solution becomes {3, 4, 5, 2, 1}.

3.2.3. Acceptance criterion

As mentioned before, inthe single-objective SA, the
variation is calculatedܥ = If ∆C .(ݔ)݂	(ݒ)݂ ≤ 0,
solutionݒ is accepted. Otherwise, solutionݒ is accepted
with a probability equal to ௥ܲ = exp(ܥ	ݐ/௜). In the
multi-objective SA, there are several objectives and thus
an effective criterion should consider all of them.
Consequently, it cannot be straightforward. There are,
among the others, four different frequently used criteria in
the literature (Kubotani and Yoshimura, 2003):

1) Rule SL ௥ܲ = minቊ1, expቆ
∑ ௝ݓ ∙ ∆ ௝݂
௣
௝ୀଵ

௜ݐ
ቇቋ

(14)

2) Rule C ௥ܲ = min ቊ1,min
௝
ቆexp ൜

௝ݓ ∙ ∆ ௝݂

௜ݐ
ൠቇቋ

(15)

3) Rule W ௥ܲ = min ቊ1,max
௝
ቆexp ൜

௝ݓ ∙ ∆ ௝݂

௜ݐ
ൠቇቋ

(16)

where ∆ ௝݂ = ௝݂(ݒ) − ௝݂(ݔ), ∑ ௝ݓ
௣
௝ୀଵ = 1 and ݓ௝is the

weight of the݆th objective. ݐ௜also donates the current
temperature.

The fourth criterion is a more complicated criterion,
named parameterized acceptance criterion (PAC). Let

݁(௟)ϵܴ௣(݈ = 1,… , dimensional unit vector such-݌ be a (݌
that only the ݈th element is one and the others are zero,
and let ݑ be a unit vector definedas ݑ	 = 	 ቀ ଵ

√௣
, ଵ
√௣
, … , ଵ

√௣
ቁ.

The vector ܽ(௟) is defined by:

ܽ(௟) =
(௟)݁|ߣ| + (1 − ݑ(|ߣ|
(௟)݁|ߣ|‖ + (1 − ‖ݑ(|ߣ|

(17)

whereߣ is a parameter such that −1 ≤ ߣ ≤ 1. Finally, the
PAC is defined by:

4) ௥ܲ =

⎩
⎪⎪
⎨

⎪⎪
⎧
minቐ1,min

௟
ቐexp ቎

1
௜ݐ
෍ ௝ܽ

(௟)
௣

௝ୀଵ

∙ ௝ݓ ∙ ∆ ௝݂቏ቑቑ , −1 ≤ ߣ < 0

minቐ1,min
௟
ቐexp ቎

1
௜ݐ
෍ ௝ܽ

(௟)
௣

௝ୀଵ

∙ ௝ݓ ∙ ∆ ௝݂቏ቑቑ , 0 ≤ ߣ ≤ 1

(18)

where ௝ܽ
(௟) represent the ݆th element of the vector ܽ(௟). In

our case, we assume that the weights are equal; therefore,
they can be omitted from the above formulas. Figure 2
shows the behavior of the PAC regarding different values
of ߣ in the bi-objective case (2 = ݌). In this figure, the
gray regions represent areas where the candidate solutions

are certainly accepted and the broken lines indicate the
contour lines of the acceptance probability. In the PAC,
when 0 ,1− = ߣ and 1 are equivalent to Rules SL, C and
W, respectively. An SA algorithm for each of these four
acceptance criteria is developed, namely SLSA, CSA,
WSA and PACSA.

ߣ = −1 −1 ≤ ߣ ≤ ߣ 0 = 0 0 ≤ ߣ ≤ ߣ 1 = 1

Fig. 2. Parameterized acceptance criterion

3.2.4. Updating the Pareto archive set

A Pareto archive set is usually designed to hold a
limited number of non-dominated solutions. During the
search, when a new non-dominated solution is obtained, it
is put to the archive set if the archive set is not full. If a
new solution enters the archive set, any solution in the
archive dominated by this solution is removed from the
set. Once the archive becomes full, a new non-dominated
solution enters the archive if its distance to all the non-
dominated solutions is greater than that to a pre-
determined threshold. The distance between the new non-
dominated solution and a given non-dominated solution in
the archive is measured based on the Euclidean distance.
The motivation is to keep diverse non-dominated

solutions without losing any existing non-dominated
solutions in the archive. The general procedure of our
proposed SA is as follows.

ProcedureSimulated annealing

Step 1: Initialize (initial solution, initial temperature, ݎ = 0)
Step 2: Generate a new solution from the incumbent solution by
an operator.
Step 3: Accept this new solution if it satisfies the acceptance
criterion.
Step 4: Increase ݎ by one unit. If ݎ > 100, go to Step 2;
otherwise, go to Step 5.
Step 5: Decrease the temperature, and put ݎ = 0.
Step 6: If the stopping criterion is not met, go to Step 2;
otherwise, Stop.

Δ ଵ݂

Δ ଶ݂

4. Experimental Evaluation

In this section, the performance of our proposed
algorithms (i.e. SLSA, CSA, WSA and PASCA) is
evaluated in terms of a benchmark. These algorithms are
implemented in Borland C++ and run on a PC with 2.0
GHz Intel Core 2 Duo and 2 GB of RAM memory.The
tested algorithms are SLSA, CSA, WSA, PACSA and
MOIA proposed by (Tavakkoli-Moghaddam et al., 2007).
These algorithms are stopped after a running time of
5×n×m milliseconds. Recently, the computational time is
considered as a stopping criterion(Montgomery, 2000).

In multi-objective cases, performance quality
measures (PQM)are more challenging. Many of the
PQMs used in the literature have a serious drawback
known as being non-Pareto-compliant. It means they can
assign a better goodness to a given approximation Pareto
set ܣ and a worse one to another set ܤ even whenܤ
dominatesܣ. Unfortunately, it is even shown by (Knowles
et al., 2006) that these PQMs not only are non-Pareto
compliant, but also provide wrong and misleading results
more often than not. As examples for these misleading
PQMs, one may state, among other PQMs, the
generational distance or maximum deviation from the best
Pareto set (Geiger, 2007; Rahimi-Vahed and Mirghorbani,
2007). After all, three PQMs are known to give reliable
analyses(Knowles et al., 2006)and overcome the mentioned
shortcoming. These three PQMs sorted from easy to
complicated are as follows:
1) Dominance ranking: To compare two approximation

Pareto sets ܣ and ܤ , one can rank a given
algorithm over another one by counting the
number of points in ܣ dominated by or equal to
points in ܤ.

2) Quality indicator: This is a function that assigns a real
number to a full Pareto approximation set. The
two major types of this PQM are hyper volume
(ுܫ) and unary epsilon indicator (ఌଵܫ),
respectively, proposed by Zitzler and Thiele (1999)
and Zitzler et al. (2003).

3) Empirical attainment function: The relative frequency
that each region is attained by the approximation
set is calculated(Knowles et al., 2006).

Since both dominance ranking and empirical
attainment function compare algorithms in pairs, they are
impractical PQMs for cases in which several algorithms
are compared.Moreover, in the case of empirical
attainment function, the results of each pair comparison
should be graphically analyzed. All in all, the best choice
for our case is quality indicators. We employ both hyper
volume (ܫு) and unary epsilon (ܫఌଵ) indicators, because
compared with a single indicator, the combination of
quality indicators could provide more precise conclusions.
If the results of the two quality indicators are in conflict
with one another on preference ranking of two
approximation sets, the two sets are incomparable. Each

of the two quality indicators could be described as
follows:

The hyper volume indicator (ܫு): It calculates the
hypervolume (or the area in bi-objective cases) covered
by the approximation Pareto set given by one algorithm.
In order to measure this quantity, the area must be
bounded by a reference point (usually a point that is
dominated by all the points). The higher values of ܫு
correspond to higher quality. Comparing the two sets ܣ
andܣ ,ܤ is preferable if ܫு(ܣ) > .(ܤ)ுܫ

The unary epsilon indicator (ఌଵܫ): For the two

approximation sets ܣand ܫ ,ܤఌଵ(ܤ,ܣ) equals to

(ܤ,ܣ)ఌଵܫ = max
௫ఢ஺

min
௬ఢ஻

max
ଵஸ௟ஸ௣

௟݂(ݔ)
௟݂(ݕ)

(19)

Although this binary indicator seemingly needs to
compare all algorithms in pairs, Knowles et al. (2006)
proposed a version in which the approximation set ܤ is
any reference set, usually the best-known Pareto set.
Another advantage of this replacement is to measure how
much worse an approximation set is with respect to the
best-known Pareto set in the best case.

To obtainܫఌଵ, we first normalize the objective function
values using Eq. (19). In this case, the normalized ܫఌଵ
indicator ranges between one and two; and ܫఌଵ = 1 for a
given algorithm implies that its approximation set is not
dominated by the best-known one. For a given instance,
the reference set is the best Pareto set that is the
combination of all the approximation Pareto sets obtained
by any of the algorithms.

4.1. Parameter tuning

The proposed SA has two parameters {Initial
temperature (଴ܶ), cooling rate (ߙ)} and move operators. In
the case of PACSA, we have another parameter (λ). We
also consider two levels of−0.5 and	0.5. Finally, the
value of 0.5shows the better performance.

The considered levels of {Initial temperature (଴ܶ),
cooling rate (ߙ)} and the move operators are as follows:

a) 3 levels ({100, 0.98}, {150, 0.97}, {250, 0.96})
b) Move operator (MO): 2 levels (SO, SPO).
Therefore, 3×2=6 different SAs are obtained by these

levels and all the 75 instances are solved by them. The
results are first transformed into the hyper volume
indicator and the unary epsilon indicator and then
analyzed by the means of the analysis of variance
(ANOVA) and the least significant differences (LSD) test
at the 95% confidence level. As shown in Figure
3,popsize = 6 provides statistically better results than the
other values of 4 ,2 ݁ݖ݅ݏ݌݋݌ and 8. There is a statistically
significant difference between the two move operators
and in fact the SPO performs better.

Fig. 3. Results of the parameter tuning

4.2. Experimental results

In this subsection, the performances of four tested
algorithms (i.e., SLSA, CSA, WSA, PACSA) are
evaluated on a set of instances. Data required for an
instance consist of a number of jobs (݊), a number of
machines (݉), a range of processing times (݌௝௜) and
transportation times (௙ܶ and ௕ܶ). We generate our
instances based on the Taillard's benchmark values
(Taillard, 1993). We have ݊ = {20, 50, 100, 200} and ݉ =
{5, 10, 20} resulting in 15 combinations of݊ ×݉. The
processing time in the Taillard’s instances are generated
from a uniform distribution over the range (1, 99).The
transportation times (௙ܶand ௕ܶ) come from a uniform
distribution in the range (1, 30) that is 30% of processing

time. Different levels of the factors result in 30 different
scenarios. Then like the Taillard's benchmark, we produce
10 instances for each scenario. Therefore, we have 300
instances. To generate due dates of all ݊ jobs, we use an
approach similar to that of Khalili and Tavakoli-
Moghaddam(2011) [6]. More specifically, for each job j,
first we compute ௝ܵ = ∑ ൫݌௝௜ + ௝௜൯௠ݐ

௜ୀଵ . Then, the due date
of each job is obtained as follows: ௝݀ = ௜ܵ(1 + where (ߚ3
 .is a random number between (0, 1) ߚ

Table 1 summarizes the average hyper volume (ܫு)
and unary epsilon indicator (ఌଵܫ) values for all the
algorithms obtained in different problem sizes (݊).
Among the developed SAs, the PACSA obtains better
results.

Table 1
 ఌଵfor the algorithms grouped by݊ܫுandܫ

 Algorithms

݊
CSA PACSA WSA SLSA MOIA

 ఌଵܫ ுܫ ఌଵܫ ுܫ ఌଵܫ ுܫ ఌଵܫ ுܫ ఌଵܫ ுܫ

20 1.112 1.181 1.129 1.111 1.018 1.212 0.978 1.212 0.982 1.29
50 1.118 1.188 1.119 1.123 1.111 1.192 0.922 1.311 0.925 1.392
100 1.1 1.191 1.189 1.134 1.121 1.199 0.712 1.412 0.721 1.412
200 1.111 1.192 1.141 1.139 1.108 1.29 0.645 1.455 0.799 1.623

Ave. 1.110 1.188 1.145 1.127 1.090 1.223 0.814 1.348 0.857 1.429

For the further analysis, we carry out the ANOVA
method. The results show that there is a statistically
significant difference between the performances of the
algorithms. The means plot for the different algorithms
with the least significant difference (LSD) intervals are
shown in Figure 4. As it illustrates, our proposed PASCA
provides statistically better results than other methods.
Figure 5 depicts the performances of the algorithms
versus the number of jobs for both quality measures. As it

shows, the proposed parametric SA algorithms keep
robust performances in different problem sizes.

Fig. 4. Means plot and LSD intervals for algorithms in both Iୌ and Iεଵ

Number of jobs

Fig. 5. Means plot for the proposed SA versus the number of jobs in both ܫு and ܫఌଵ

5. Conclusion and Future Work

This studyinvestigated the multi-objective hybrid no-
wait flowshop scheduling problem. The aimwasto
minimizeboth makespan and total tardiness. To
accomplish this purpose, a novel multi-objective
simulated algorithm was proposed. After tuning the
algorithm, an experiment was designed to carefully
evaluate its performance against some available
algorithms in the literature. The results were analyzed
through multi-objective performance measuresand
statistical tools (ANOVA and LSD). The findings showed
that the moderate variant of the proposed solution method
outperforms the others.For furtherstudies, researchersmay
work on extending the applications of multi-objective SA
to other optimization problems. It is also interesting to
study the performance of other novel solution methods for
the same problem. Furthermore, the problem under
consideration could be studied by various objectives such
as total tardiness as well as early and tardy penalties.

6. References

[1] Aldowaisan, T.and Allahverdi, A. (2004).New heuristics
for m-machine no-wait flowshop to minimize total
completion time. Omega, 32(5), 345–352.

[2] Altiparmak, F.,Gen, M.,Lin, L. andPaksoy, T. (2006).A
genetic algorithm approach for multi-objective
optimization of supply chain networks. Computers &
Industrial Engineering, 51, 196–215.

[3] Chen, R. andNeppalli, C. (1996).Genetic algorithms
applied to the continuous flow shop problem. Computers
and Industrial Engineering, 30(4), 919–929.

[4] Geiger M. (2007).On operators and search space topology
in multi-objective flowshop scheduling. European Journal
of Operational Research, 181(1), 195-206.

[5] Grabowski, J. and Pempera, J. (2005)Some local search
algorithms for no-wait flow-shop problem withmakespan
criterion. Computers and Operations Research, 32, 2197–
2212.

[6] Khalili, M. and Tavakoli-Moghadam, R. (2012). A multi-
objective electromagnetism algorithm for a bi-objective
flowshop scheduling problem. Journal of Manufacturing
Systems, Article in press, doi:10.1016/j.jmsy.2011.08.002.

[7] Khalili, M. (2012).An iterated local search algorithm for
flexible flow lines with sequence dependent setup times to
minimize total weighted completion. International Journal
of Management Science and Engineering Management,
7(1), 63-66.

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

CSA

PACSA

WSA

SLSA

MOIA

IH

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

٢٠ ۵٢٠٠ ١٠٠ ٠

MOIA

CSA

SLSA

WSA

PACSA

IH

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

1.5
1.55

1.6

٢٠ ۵٢٠٠ ١٠٠ ٠

 ૚ࢿࡵ

[8] Khalili, M. (2012). Multi-objective no-wait hybrid
flowshop scheduling problem with transportation times.
International Journal of Computational Science and
Engineering, Article in press.

[9] Kirkpatrick, S., Gelatt, J. and Vecchi M.
(1983).Optimization by simulated annealing. Science 220,
671-680.

[10] Knowles, J., Thiele, L. and Zitzler, E. (2006).A tutorial on
the performance assessment of stochastic multi-objective
optimizers. Technical Report 214. Computer Engineering
and Networks Laboratory (TIK). ETH Zurich.

[11] Kubotani, H. andYoshimura, K. (2003).Performance
evaluation of acceptance probability functions for multi-
objective SA. Computers & Operations Research, 30, 427-
442.

[12] Minella, G., Ruiz, R. and Ciavotta, M. (2008).A review
and evaluation of multi-objective algorithms for the
flowshop scheduling problem. INFORMS Journal on
Computing, 20, 451-471.

[13] Montgomery, D. (2000).Design and analysis of
experiments. Fifth edition, John Wiley & Sons.

[14] Pan, Q., Tasgetiren, M. and Liang, Y. (2008). A discrete
particle swarm optimization algorithm for the no-wait
flowshop scheduling problem. Computers and Operations
Research, 35, 2807–2839.

[15] Pinedo, M. (2008).Scheduling: Theory, Algorithms, and
Systems. 3th edition, Springer Science+Business Media,
New York.

[16] Rahimi-Vahed, A. and Mirghorbani, S. (2007).A multi-
objective particle swarm for a flowshop scheduling
problem. Journal of Combinatorial Optimization, 13, 79-
102.

[17] Ruiz, R. and Stützle, T. (2008).An iterated greedy
heuristic for the sequence dependent setup times flowshop
problem with makespan and weighted tardiness objectives.
European Journal of Operational Research, 187(3), 1143-
1159.

[18] Shyu, S., Lin, B. and Yin P. (2004).Application of ant
colony optimization for no-wait flowshop scheduling
problem to minimize the total completion time. Computers
and Industrial Engineering, 47, 181–193.

[19] Taillard, E. (1993). Benchmarks for basic scheduling
problems. European Journal of Operational Research,
64(2), 278-285.

[20] Tavakkoli-Moghaddam, R., Vahed, A.
andHosseinMirzaei, A. (2007).A hybrid multi-objective
immune algorithm for a flow shop scheduling problem
with bi-objectives: Weighted mean completion time and
weighted mean tardiness. Information Sciences, 177,
5072–5090.

[21] Wismer, D. (1972). Solution of flowshop-scheduling
problem with no intermediate queues. Operations
Research, 20, 689–697.

[22] Zitzler, E. and Thiele, L. (1999). Multi-objective
evolutionary algorithms: A comparative case study and the
strength Pareto approach. IEEE Transactions evolutionary
Computation, 3, 257-71.

[23] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. and
Fonseca, V. (2003). Performance assessment of multi-
objective optimizers: An analysis and review. IEEE
Transactions evolutionary Computation, 7, 117-132.

