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Abstract   

 This paper studies the hybrid flow shop scheduling where the optimization criterion is the minimization of total tardiness. First, the 
problem is formulated as a mixed integer linear programming model. Then, to solve large problem sizes, an artificial immune algorithm 
hybridized with a simple local search in form of simulated annealing is proposed. Two experiments are carried out to evaluate the model 
and the algorithm. In the first one, the general performance of the model and the proposed algorithm is experimented. In the next one, the 
presented algorithm is compared against some other algorithms. The results support high performance of the proposed algorithm. 
Keyword: Scheduling, Hybrid flow shop, Mathematical model, Mixed integer linear program, Artificial immune algorith

1. Introduction 

Scheduling problems are the allocation of resources to 
perform a set of activities in a period of time (Pinedo, 2008). 
Flow shop scheduling is one of the well-recognized 
scheduling systems in which a set of n jobs need to be 
processed in a set of m stages where each one has one 
machine. The jobs visit stages in the same route, starting 
from stage 1 to stage m. Many assumptions are considered 
by researchers to actualize the problem of flow shops. They 
hybridize the flow shop with another classical scheduling 
problem called parallel machines. In this case, each stage has 
a certain number of identical machines in parallel, and each 
job is processed at only one machine among machines at 
each stage. By duplicating machines in parallel, the capacity 
of stages is balanced; the overall capacities of the shop floor 
is increased; or the impact of bottleneck stages on the overall 
shop floor capacities is either eliminated or reduced (Naderi 
et al., 2010a; Behnamian and Fatemi Ghomi, 2011). 

The hybrid flow shop scheduling (HFS) problem has 
several applications in real industrial settings including 
automobile manufacture (Kurz and Askin, 2006) and printed 
circuit board manufacture (Zandieh et al., 2006). Each job j 
requires a fixed and pre-determined amount of processing 
time at each stage i. This amount is denoted by pji. 
Moreover, all jobs are independent and available for process  

 

 
 
 
 

at time 0. At each stage i, there is a number of im  identical 
machines. All machines are continuously available. Each 
machine l can at most process a job j at a time. Each job j is 
processed by exactly one machine. The process of a job j at 
stage i cannot be interrupted. There is no transportation time 
between stages. There are incapacitated buffers between 
stages. Therefore, if a job needs a machine that is busy 
processing another job; it can wait indefinitely until it is 
available. (Naderi and Ruiz, 2010). 

It is common in the scheduling literature to look for a 
sequence of jobs that minimizes the maximum completion 
time (or makespan) which coincides with the time at which 
the last job in the sequence finishes at the last machine. Other 
frequently considered criteria are total tardiness (TT) 
minimization, denoted as  jT , where jT  is the tardiness 
of job j at the shop. TT is more realistic case of makespan 
(Ruiz and Allahverdi, 2007) and calculated as follows. 

max(0 )j j jT ,C - d  
where jC  and jd  are completion time and due date of 

job j. 
The HFS problem is classified as an NP-hard problem 

(Jin et al., 2006). Due to the inherent complexity of hybrid 
flow shop scheduling, no effective exact method has been * Corresponding author E-mail address: M_Yazdani@qiau.ac.ir 

Journal of Optimization in Industrial Engineering 10 (2012) 65-72

65



developed so far to tackle these problems within a reasonable 
amount of time. Hence, a variety of algorithms divided into 
two main groups, heuristics and meta-heuristics, have been 
applied to solve these problems to find optimal or near 
optimal schedule (Kurz and Askin, 2003; Kurz and Askin, 
2004). Kurz and Askin (2003) examined scheduling rules for 
sequence dependent setup time hybrid flow shops. They 
explored three classes of heuristics. The first class of 
heuristics (cyclic heuristics) is based on simplistic 
assignment of jobs to machines with little or no regard for the 
setup times. The second class of heuristics is based on the 
insertion heuristic for the traveling salesman problem (TSP). 
The third class of heuristics is based on Johnson’s rule. They 
proposed eight heuristics (CH, RCH, SPTCH, FTMIH, 
CTMIH, MMIH, 1,g Johnson’s rule, g/2, g/2 Johnson’s rule) 
and compared the performance of those on a set of test 
problems. 

Moreover, Kurz and Askin (2004) formulated the 
sequence dependent setup time hybrid flow shops as an 
integer programming model. Because of the difficulty in 
solving the IP model directly, they developed a random keys 
genetic algorithm (RKGA). Problem data was generated to 
evaluate the RKGA with other scheduling heuristics rules, 
which they proposed aforetime. Zandieh et al. (2006) studied 
the same problem and proposed an artificial immune 
algorithm. This algorithm’s structure is similar to RKGA, yet 
it employs affinity procedure. A complete survey of 
scheduling problems with setup times is given by Allahverdi 
et al (2008).  

With respect to the corresponding explanation, in this 
paper we explore HFS problems to minimize total tardiness. 
A mathematical model is proposed, and then a Hybrid 
artificial immune algorithm is presented to solve the 
problem.  

The rest of the paper is organized as follows. Section 2 
proposes the mixed integer linear program. Section3 
develops an artificial immune algorithm. Section 4 evaluates 
the model and algorithm. Section 5 concludes the paper and 
proposes some future search directions. 

2. Mathematical Model for the Hybrid Flow Shop 
Problem 

The purpose of using mathematical models is to 
explicitly define all the characteristics of a scheduling 
problem (Pan, 2007). Furthermore, mathematical models 
could be utilized in many solution methods such as branch 
and bound, dynamic programming and branch and price. 
Therefore, effective model presentation is of interest (Naderi 
and Ruiz, 2010; Matta, 2009). This paper develops one 
mixed integer linear programming model for HFS problems. 
As mentioned earlier, in HFS, solving the problem is 
equivalent to sequencing jobs on stages as well as assigning 
jobs to machines inside each stage. Therefore, the model 
finds both job sequence and job assignment. The following 
parameters and indices are used in the model. 

 

 
n  Number of jobs 

m  Number of machines 

j,k,t  
Index for jobs/positions where 
 1,2,...., n  

jd   Due date of job j 

i Index for stages where  1,2,....,m  

im   Number of machines in stage i 

l 
Index for machines at stage i where 
 1,2,...., im  

j,iO  Operation of job j at stage i 

j,ip  Processing time of job  at stage  

M  A large positive number  
 
The following binary variables are defined. 

X j,i,k  Binary variable taking value 1 if job j 
occupies position k at stage i, and 0 
otherwise. 

Yi,k,l  Binary variable taking value 1 if the job in 
position k of stage i is processed on machine 
l, and 0 otherwise. 

i,kS  The starting time of the job in position k at 
stage i 

j,iF  The starting time of the job j at stage i 

jT
 

The tardiness of the job j 

 
The model formulates the problem as follows.  

Minimize
=1


n

j
j

T     (1) 

Subject to: 

=1

1
n

k

X j,i,k   j,i  (2) 

=1

1
n

j

X j,i,k   i,k  (3) 

=1

1
mi

l

X i,k ,l   i,k  (4) 

, 1 ,  j i j iF F p j ,i   j,i m  (5) 

  X
j =1

n

i,k i ,t j,i ,t. j ,iS S p+

 

> 1, < ti,l,k k  (6) 
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, (1 )j iS F M  i,k j,i,kX  
  

, (1 )j iS F M  i,k j,i,kX  

 i,k, j  
 

 i,k, j  

 
(7) 
 
(8) 
 

,m
1

.


 
   
 


n

j
k

T F Xj j,m ,k j,ip

 
 ,, F , 0j i jS Ti,k  

 , 0,1X j,i,k i,k,lY  
 

 
 j  

 
 
 

(9) 
 
(10) 
 
(11) 

In (1), total tardiness is calculated. Constraint set (2) states 
that every job occupies exactly one position at each stage. 
Constraint set (3) ensures that every position at each stage is 
occupied exactly once. Constraint set (4) enforces that each 
job is assigned to one machine, among available machines at 
each stage. Constraint set (5) ensures that j,iO  starts after the 

completion of j,i-1O . Constraint set (6) assures that if the job 

in position k at stage i cannot begin before the completion of 
its previous jobs at the same machine. In other words, it 
holds the assumption that one machine can process at most 
one job at a time. Constraint sets (7) and (8) make the 
relation between each job and its position at each stage. 
Constraint set (9) calculates the tardiness of jobs. Finally, 
Constraint sets (10) and (11) define the decision variables. 

To formulate a problem with n  jobs and m  stages, the 
model needs ) inm(n+ m binary variables, ( nm n)2   

continuous variables and 2 2( nm m n m m n n)   3   
constraints.  

3. Artificial Immune Algorithm 

The artificial immune algorithm (AIA) is an 
approximation algorithms and classified as population-based 
meta-heuristic (Prakash et al., 2008). The original intention is 
inspired by the simulation of the physiological immune 
system of natural living organisms defending the body from 
foreign pathogens (bacteria or virus). The mechanisms work 
by first recognizing foreign substances known as antigens. 
The immune systems then generate a set of antibodies to 
eliminate the antigens. The mechanisms are able to recognize 
which antibodies are better at eliminating the antigens and 
produce more variations of those antibodies in the next 
generation of antibodies. Each antibody is assigned a value 
called Affinity showing the capability of that antibody to 
eliminate antigens. The antigen, affinity and antibody in the 
AIA are equivalent to the problem to be solved, objective  
function and feasible solution for a conventional 
optimization method, respectively. 

Three commonly applied types of AIAs are cloning 
selection algorithm, immune network algorithm and negative 
selection algorithm. It is known that cloning selection 

algorithms are more suitable in tackling scheduling problems 
(Naderi et al., 2009b). The main operators are cloning 
selection and affinity maturation. When an antigen is 
detected, those antibodies that best recognize this antigen 
will proliferate by cloning. This process is called cloning 
selection principle. Affinity maturation consists of two basic 
concepts: hypermutation and receptor editing. 
Hypermutation is similar to mutation in genetic algorithms 
with the following distinctive specifications. Mutation 
corresponds to the creation of new solutions which are 
structurally and behaviorally similar to their creators but not 
exactly the same with a fixed rate while in hypermutation; 
inferior antibodies are mutated at higher rate than the good 
antibodies suffer. The procedure of hypermutation is handled 
by receptor editing. 

3.1. The proposed immune system algorithm 

The proposed AIA searches a problem space with a 
population of antibodies each of which is an encoded 
solution. An affinity value is assigned to each antibody 
according to its performance. The more desirable the 
antibody, the higher this value becomes. The population 
evolves by a set of operators until some stopping criterion is 
met. A typical iteration of AIA, generation, proceeds 
according to an author-defined affinity function and the 
number of the clones that would be proliferated from each 
antibody is calculated. All the proliferated clones are put in a 
mutating pool. A selection mechanism chooses the clones in 
the current mutating pool in such a way that clones with 
lower TT have higher chances of being selected. The 
selected clones hypermutate and generate new antibodies, 
namely offspring. Afterwards, the new population is 
evaluated again and the whole process repeats. 

In the following subsection, we introduce the 
specifications of the proposed AIA. To this end, we first 
present our antibody representation (encoding scheme) 
which makes a solution recognizable for the algorithm. Then, 
we present the operators that we use in the proposed 
algorithm. 

3.2. Antibody representation and initialization 

In AIA, each antibody represents a solution. We use job-
based representation to encode a solution. In job-based 
representation, the permutation of jobs in the first stage is 
determined, and then by a dispatching rule the jobs are 
assigned to the machines. In the proposed algorithm, the job 
is assigned to the first available machine at each stage. In 
HFS problems, the first available machine results in the 
earliest completion time. The sequence of jobs in subsequent 
stages is according to their completion time in the previous 
stage. The proposed algorithm starts form NEH algorithm 
(Nawaz et al., 1983), and random solutions form feasible 
region. 
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3.3. Cloning selection procedure 

The capability of each antibody to fight against antigens 
is measured through affinity. Antibodies with higher affinity 
value are better at eliminating antigens. In our case, it was 
necessary to consider the following issues: 1- The antigen is 
our optimization problem. 2- An antibody is an encoded 
solution. 3- Since the objective is the minimization of TT, 
better antibodies (solutions) are those results in lower TT (i.e. 
they can fight against the antigen better). Since the higher 
affinity value means the better antibody, we define the 
following function to calculate each antibody’s affinity: 
Affinity (t) = 1/ TT (t) (12) 

The lower the TT, the higher the affinity value becomes. 
The probability of the cloning of each antibody to transfer 
into the mutating pool is directly proportional to its affinity 
value. Therefore, the antibodies with lower TT more likely 
have a lot of clones. The mutating pool has a fixed size of 
pop-size clones. One of them is fulfilled by the best antibody. 
To fulfill the rest, we apply a selection mechanism (popsize-
1) times, and each time, an antibody is copied into the pool. 
We use ranking selection (Goldberg, 1989).  

3.4. Affinity maturing procedure 

In Affinity maturing procedure, all of the clones existing 
in the pool undergo an operator which makes a random 
change in the clones. This operator is called hypermutation. 
Dependent on the affinity value, each clone suffer different 
rate of change. The inferior clones undergo high rate of 
hypermutation whereas better clones suffer a slight change. 
As a low rate hypermutation, we utilize SHIFT mutation. In 
SHIFT mutation, a randomly selected operation is randomly 
relocated in the sequence. As high rate hypermutation, we 
use an operator working as follows: The positions of two 
randomly selected operations are swapped. In addition to the 
operators we just defined, we need a criterion to determine 
the condition under which we exploit one of the operators. 
We define a criterion as such: each clone (t) undergoes the 
low rate hypermutation 

If TT(t) TT(best antibody) 0.1
TT(best antibody)


    (13) 

Otherwise, it undergoes the high rate hypermutation. 
Contrary to previous work (Engin et al., 2004) in which the 
offspring are accepted only if they have lower TT than their 
creators, we use simple simulated annealing-like acceptance 
criterion. Besides the acceptance of better offspring, inferior 
offspring might be accepted by the following random 
mechanism:  

TT(Offespring) TT(Creator)
if random exp

20
   

 
 (14) 

where random is a random number between (0, 1). This 
allows the algorithm easily to avoid getting trapped into local 
optima. It is necessary to indicate that we apply the elite 
strategy meaning that the best clone is directly copied into 

the next generation. Figure 1 presents the general outline of 
the proposed AIA. 
 

Procedure AIA 

 

Initialize (population and Best) 

while the stopping criterion is not met do 

for t = 1 to pop-size do 

Apply ranking selection 

Put the selected antibody into the mutating pool 

Endfor 

for t = 1 to pop-size do 

Take the t-th antibody of the pool 

if (TT(t)-Best)/Best < 0.1 do 

Apply low rate hypermutation 

elseif 

Apply high rate hypermutation 

endfor 

Update Best 

Endwhile 

Fig. 1. Pseudo code of the proposed AIA 

3.5. The hybridization of the proposed artificial immune 
algorithm 

Many researchers concluded that hybrid approaches for 
job shops could end up with high quality results (Zhang et 
al., 2008; Heinonen and Pettersson, 2007). The purpose of 
the hybridization is to overcome shortcomings of each 
algorithm. AIA is known to be a meta-heuristic powerful in 
diversification. Preliminary tests demonstrated that the 
performance of AIA is significantly influenced if we 
hybridize it with another algorithm which is powerful in 
intensification. We examined several meta-heuristics; it 
finally turned out that hybridization with a local search-based 
meta-heuristic can obtain convincing results. Among the 
local search-based meta-heuristic, simulated annealing (SA) 
is known to be a very fast algorithm possessing intensifying 
operators. Therefore, we have been galvanized into the 
hybridization of the AIA and SA. In this case, our hybrid 
algorithms have a diversification technique to investigate 
new and unknown areas in the search space, and 
intensification technique to make use of knowledge obtained 
at points previously visited to assist to find promising 
solutions. After all, the combination of the flexible and 
effective population-based algorithm to search for the 
optimal solution and the convergent characteristics of 
simulated annealing provides the rationale for developing a 
hybrid artificial immune algorithm (HAIA) strategy to solve 
job shops with sequence dependent setup times and flexible 
machine availability constraints to minimize total   tardiness.  

Our strategy to hybridize AIA with SA is as follows. 
After cloning, we apply the SA to the best clone in the 
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mutating pool, not all the clones because applying the SA to 
all the clones would result in a very algorithm. In the 
following subsection, we briefly introduce the simulated 
annealing that we use. 

Simulated Annealing (SA) is a local search-based meta-
heuristic to solve combinational optimization problems. SA 
got its existence from the physical annealing of solid metal. 
In annealing, a metal is first heated to a high temperature and 
then cooled down with a very slow rate to the room 
temperature. The fundamental idea of SAs is to generate a 
new job sequence s by a random rule from the neighborhood 
of present sequence x. This new sequence is accepted or 
rejected by another random rule. A parameter t, called the 
temperature, controls the acceptance rule. The variation 
between objective values of two candidate solutions is 
computed ΔC = TT(s) – TT(x). If ΔC ≤ 0, sequence s is 

accepted. Otherwise, sequence  is accepted with probability 
equal to exp (ΔC / ti). The algorithm proceeds by trying a 
fixed number of neighborhood moves at each temperature ti, 
while temperature is gradually decreased. The procedure is 
repeated until a stopping criterion is met. In our algorithm, 
SA proceeds until in five consecutive temperatures, no 
improvement is made.  

Simulated annealing starts from an initial solution, and a 
series of moves are made according to a user-define 
annealing schedule. In this research, the initial solution is one 
clone in the current mutating pool. The algorithm checks 20 
neighbors at temperature ti. The moving operator generates a 
neighbor (solution) from the current candidate solution by 
making a slight change in it. These operators must work in 
such a way that infeasible solutions are avoided. Since many 
researchers concluded that in SAs, SHIFT operator is 
superior to other operators like SWAP and INVESION 
(Naderi et al., 2009a), we generate new solution using 
SHIFT operator. In Shift operator, one of the job numbers is 
randomly selected and it is randomly relocated into a new 
position in sequence. For operation assignment, 10 random 
assignment is generated and the best is selected. Here, we use 
exponential cooling schedule, ti =α .ti- ∈1 (where α  (0, 1) is 
temperature decrease rate), which is often believed to be an 
excellent cooling recipe (Schneider et al., 1998). Figure 2 
shows the general pseudo code of the proposed SA. 

Procedure SA 
 
Initialization (the one clone in the mutating pool) 
counter = 0 
while counter <= 5 do 

for i = 1 to 20 do 
Generate a new neighbor from current solution 
Acceptance criterion 
Update the best solution so far found 

end for 
if the best solution is improved in this temperature do 

counter = 0 
else 

counter = counter + 1 
endif 
Temperature reduction 

end while 

Fig. 2. Pseudo code of the proposed SA 

4. Experimental Evaluation 

In this section, the performance of the proposed HAIA is 
evaluated by comparing with RKGA proposed by (Kurz and 
Askin, 2004), and NEH (Nawaz et al., 1983), artificial 
immune algorithm (AIA) by (Zandieh et al., 2006). We 
conduct an experimental evaluation. The algorithms are 
implemented in Borland C++ and run on a PC with 2.0 GHz 
Intel Core 2 Duo and 2 GB of RAM memory. We use 
Relative Percentage Deviation (RPD) as performance 
measure to compare the methods. When the TT of each 
algorithm has been obtained for its examples, the best 
solution obtained for each example (named Minsol) by any 
of the algorithms is calculated. RPD is obtained by the given 
formula below (Naderi et al., 2010b): 

sol sol

sol
.100




Alg Min
RPD

Min
 (15) 

where solAlg is the TT obtained for a given algorithm 
and instance. Obviously, lower values of RPI are preferred. 
The stopping criterion is n2×g×1.5 milliseconds computation 
time for the algorithms. This stopping criterion not only 
permits for more time as the number of jobs or machines 
increases, but also is more sensitive toward a rise in number 
of jobs than number of stages. 

4.1. Data generation 

We need three sets of instances, one for parameter tuning 
section, another for general performance evaluation of model 
and algorithm, and the other one for relative performance 
evaluation of the algorithm. Data required for a problem 
consists of the number of jobs (n), range of processing times 
(pji), number of stages (m) and due dates (dj) a stage for each 
job. Each stage requires data defining how many machines 
exist at that stage (mi).  

For the first set, we have  

n = {20, 60, 100} and m = {2, 4, 8} 

The number of machines at each stage could be a fixed 
value of 2 machines or uniformly distributed over (1, 4). The 
processing times are generated by the uniform distribution 
over range (1, 99). The due dates are generated as follows. 

,
1

(1 )


 
  
 
 


m

j j i
j

d rand p  

where rand is a random number uniformly distributed 
over (0, 1). Therefore, there are 18 combinations of n, m, mi 
and pji. Table 1 shows the problem size factors and their 
levels. 

For the second set, we have  

n = {5, 6, 7} and m = {2, 3} 

The number of machines at each stage could be a fixed 
value of 2 machines or uniformly distributed over (1, 3). The 
processing times are generated by the uniform distribution 
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over range (1, 99). Therefore, there are 12 combinations of n, 
m, mi and pji. One instance is generated in each problem 
size. Since the sizes are small, the set is called small-sized 
instances. 

For the third set, we consider the levels presented in 
Table 1 and for each combination we generate 10 instances. 
Therefore, it sums up to 180 instances. This set is called 
large-sized instances. 

Table 1 
Factors and their levels 

Factors Levels 

Number of Jobs  {20, 60, 100} 

Number of stages {2, 4, 8} 

Machine distribution {2, U(1, 4)} 

Processing Time  U (1, 99) 

4.2. Parameter tuning 

It is known that the great choice of parameters of an 
algorithm can influence the performance of that algorithm. 
Our proposed HAIA has only one parameter, pop-size. The 
first set of instances is used in this section. We consider the 
values of  10, 20,30, 40d . Therefore, we have 4 
different HAIAs.  

All the instances in the first set are solved by the HAIAs. 
To analyze the results, we carried out an analysis of variance 
(ANOVA) and the least significant deference (LSD) at the 
95% confidence level (Montgomery, 2000). Figure 3 shows 
the means plot and LSD intervals. Regarding the results, we 
concluded that the value of pop-size = 20 is the best value for 
this parameter. 

 

 
Fig. 3. Means plot and LSD intervals of different levels of pop-size 

4.3. Numerical evaluation 

In this section, we assess the model and the algorithm. To 
this end, we first test the capability of the model to solve 
different problem sizes. Then, the algorithm is compared 
with the optimal solutions of the model. In the second 
experiment, we compare the algorithm with some other 
available algorithms. 

4.3.1. Small-sized instances 

This section evaluates the general performance of model 
and algorithm with 12 small-sized instances generated in 
section 4.1. The model is given a time limit of 2000 sec. 
Table 2 shows the results of the experiment. In this table, the 
first three columns present the problem size. The fourth one 
shows the computational time for the model to solve an 
instance with the corresponding size and the last one reports 
the optimality gap of the presented algorithm against the 
solution of the model. 

The MILP model is capable of solving 11 out of 12 
instances. Now, we compare HAIA algorithm against the 
optimal solutions of the MILP model. HAIA optimally 
solves 10 of 12 instances (83%). 

4.3.2. Large-sized instances 

We evaluated the algorithms with the 180 large-sized 
instances generated in section 4.1. Table 3 shows the results 
of the experiments, averaged for each combination of n and 
m. HAIA outperforms the other algorithms with RPD of 
1.50%. The second best is AIA with RPD of 2.82%. The 
worst performing algorithms are NEH and RKGA with RPD 
of 9.21% and 6.83%. 

For further precise analysis of the results, we carried out 
ANOVA. Means plot and LSD intervals at the 95% 
confidence level for the type of methods factor are shown in 
Figure 4. As it could be seen, HAIA statistically supersedes 
the other algorithms. To analyze the possible effects of the 
number of jobs factor on the algorithms, we computed the 
performance of the algorithms in the different values of jobs. 
Figure 5 depicts the interaction between factors type of 
algorithm and the number of jobs. The proposed HAIA 
keeps a robust performance on various range of jobs, while 
NEH outperforms RKGA in the case of n = 100. 
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Table 2 
The results of models evaluation 

 HAIA (RPD) 
MILP model: 
Computational time 
(in sec.) 

Problem size 
No. mi m n 

0% 1 {2,2} 2 5 1 
0% 1 {1,2} 2  2 
0% 2 {2,2,2} 3  3 
0% 2 {1,3,2} 3  4 
0% 159 {2,2} 2 6 5 
0% 84 {2,1} 2  6 
0% 110 {2,2,2} 3  7 
4% 730 {3,3,2} 3  8 
0% 857 {2,2} 2 7 9 
0% 174 {1,3} 2  10 
0% 241 {2,2,2} 3  11 
3% 2000 {2,2,3} 3  12 

5. Conclusion and Future Research 

In this paper, we investigated hybrid flow shop 
scheduling problems. Our optimization criterion was total 
tardiness. First, the problem under consideration was 
formulated as a mixed integer linear programming model. 
This model is capable of solving instances up to 10 jobs. 
Then, an effective immune system algorithm was applied to 
tackle the problem. In this algorithm, some novel operators 
based on insertion operators are developed.  
Table 3 
Average relative percentage deviation for the algorithms grouped by n and m 

Instances 
Algorithms    

NEH RKGA AIA HAIA 

     

20×2 10.71 4.81 1.45 1.05 

20×4 9.66 5.41 1.67 1.01 

20×8 10.12 4.6 1.9 1.09 

60×2 9.04 7.23 3.87 1.28 

60×4 8.07 6.56 3.21 2.19 

60×8 9.58 6.15 3.77 2.01 

100×2 7.92 8.17 2.96 1.79 

100×4 9.4 8.63 3.35 2.08 

100×8 8.41 9.9 3.16 0.99 

Average 9.21 6.83 2.82 1.50 

 

 

 

 

 

 

 
Fig. 4. Means plot and LSD intervals for the type algorithm 

 
Fig. 5. Means plot for the interaction between factors type algorithm 

and number of jobs 

The algorithm is also enhanced by hybridizing it with a 
simple local search. To evaluate the performance of the 
algorithm, we conducted two experiments. We first 
compared the algorithm with optimal solutions of the model 
on small-sized instances. Then, we compared the algorithm 
with some existing algorithms in the literature. The results 
supported the effectiveness of both the proposed model and 
the algorithm. 
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As future research, it could be interesting to work on a 
multi-population immune system algorithm for the problem 
and compare its performances with the other algorithms. The 
evaluation of novel meta-heuristics like electromagnetism-
like algorithm for the problem under consideration could also 
be revealing. Another direction is to apply the immune 
system algorithm to other scheduling problems like job shops 
and open shops. The multi-objective case of hybrid flow 
shop could be considered as an interesting topic for future 
research. 
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