
A Mathematical Model and a Solution Method for Hybrid Flow Shop
Scheduling

Esmaeil Najafia, Bahman Naderib, Hasan Sadeghic, Mehdi Yazdanid,*
a Assistant Professor, Department of Industrial Engineering, Science & Research Branch, Islamic Azad University, , Tehran, Iran

 b Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, University of Kharazmi, Karaj, Iran
c BSc, Young Researchers Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran

 dInstructor, Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, , Qazvin, Iran

Received 12 September, 2011; Revised 9 February, 2012; Accepted 27 March, 2012

Abstract

 This paper studies the hybrid flow shop scheduling where the optimization criterion is the minimization of total tardiness. First, the
problem is formulated as a mixed integer linear programming model. Then, to solve large problem sizes, an artificial immune algorithm
hybridized with a simple local search in form of simulated annealing is proposed. Two experiments are carried out to evaluate the model
and the algorithm. In the first one, the general performance of the model and the proposed algorithm is experimented. In the next one, the
presented algorithm is compared against some other algorithms. The results support high performance of the proposed algorithm.
Keyword: Scheduling, Hybrid flow shop, Mathematical model, Mixed integer linear program, Artificial immune algorith

1. Introduction

Scheduling problems are the allocation of resources to
perform a set of activities in a period of time (Pinedo, 2008).
Flow shop scheduling is one of the well-recognized
scheduling systems in which a set of n jobs need to be
processed in a set of m stages where each one has one
machine. The jobs visit stages in the same route, starting
from stage 1 to stage m. Many assumptions are considered
by researchers to actualize the problem of flow shops. They
hybridize the flow shop with another classical scheduling
problem called parallel machines. In this case, each stage has
a certain number of identical machines in parallel, and each
job is processed at only one machine among machines at
each stage. By duplicating machines in parallel, the capacity
of stages is balanced; the overall capacities of the shop floor
is increased; or the impact of bottleneck stages on the overall
shop floor capacities is either eliminated or reduced (Naderi
et al., 2010a; Behnamian and Fatemi Ghomi, 2011).

The hybrid flow shop scheduling (HFS) problem has
several applications in real industrial settings including
automobile manufacture (Kurz and Askin, 2006) and printed
circuit board manufacture (Zandieh et al., 2006). Each job j
requires a fixed and pre-determined amount of processing
time at each stage i. This amount is denoted by pji.
Moreover, all jobs are independent and available for process

at time 0. At each stage i, there is a number of im identical
machines. All machines are continuously available. Each
machine l can at most process a job j at a time. Each job j is
processed by exactly one machine. The process of a job j at
stage i cannot be interrupted. There is no transportation time
between stages. There are incapacitated buffers between
stages. Therefore, if a job needs a machine that is busy
processing another job; it can wait indefinitely until it is
available. (Naderi and Ruiz, 2010).

It is common in the scheduling literature to look for a
sequence of jobs that minimizes the maximum completion
time (or makespan) which coincides with the time at which
the last job in the sequence finishes at the last machine. Other
frequently considered criteria are total tardiness (TT)
minimization, denoted as  jT , where jT is the tardiness
of job j at the shop. TT is more realistic case of makespan
(Ruiz and Allahverdi, 2007) and calculated as follows.

max(0)j j jT ,C - d
where jC and jd are completion time and due date of

job j.
The HFS problem is classified as an NP-hard problem

(Jin et al., 2006). Due to the inherent complexity of hybrid
flow shop scheduling, no effective exact method has been * Corresponding author E-mail address: M_Yazdani@qiau.ac.ir

Journal of Optimization in Industrial Engineering 10 (2012) 65-72

65

developed so far to tackle these problems within a reasonable
amount of time. Hence, a variety of algorithms divided into
two main groups, heuristics and meta-heuristics, have been
applied to solve these problems to find optimal or near
optimal schedule (Kurz and Askin, 2003; Kurz and Askin,
2004). Kurz and Askin (2003) examined scheduling rules for
sequence dependent setup time hybrid flow shops. They
explored three classes of heuristics. The first class of
heuristics (cyclic heuristics) is based on simplistic
assignment of jobs to machines with little or no regard for the
setup times. The second class of heuristics is based on the
insertion heuristic for the traveling salesman problem (TSP).
The third class of heuristics is based on Johnson’s rule. They
proposed eight heuristics (CH, RCH, SPTCH, FTMIH,
CTMIH, MMIH, 1,g Johnson’s rule, g/2, g/2 Johnson’s rule)
and compared the performance of those on a set of test
problems.

Moreover, Kurz and Askin (2004) formulated the
sequence dependent setup time hybrid flow shops as an
integer programming model. Because of the difficulty in
solving the IP model directly, they developed a random keys
genetic algorithm (RKGA). Problem data was generated to
evaluate the RKGA with other scheduling heuristics rules,
which they proposed aforetime. Zandieh et al. (2006) studied
the same problem and proposed an artificial immune
algorithm. This algorithm’s structure is similar to RKGA, yet
it employs affinity procedure. A complete survey of
scheduling problems with setup times is given by Allahverdi
et al (2008).

With respect to the corresponding explanation, in this
paper we explore HFS problems to minimize total tardiness.
A mathematical model is proposed, and then a Hybrid
artificial immune algorithm is presented to solve the
problem.

The rest of the paper is organized as follows. Section 2
proposes the mixed integer linear program. Section3
develops an artificial immune algorithm. Section 4 evaluates
the model and algorithm. Section 5 concludes the paper and
proposes some future search directions.

2. Mathematical Model for the Hybrid Flow Shop
Problem

The purpose of using mathematical models is to
explicitly define all the characteristics of a scheduling
problem (Pan, 2007). Furthermore, mathematical models
could be utilized in many solution methods such as branch
and bound, dynamic programming and branch and price.
Therefore, effective model presentation is of interest (Naderi
and Ruiz, 2010; Matta, 2009). This paper develops one
mixed integer linear programming model for HFS problems.
As mentioned earlier, in HFS, solving the problem is
equivalent to sequencing jobs on stages as well as assigning
jobs to machines inside each stage. Therefore, the model
finds both job sequence and job assignment. The following
parameters and indices are used in the model.

n Number of jobs

m Number of machines

j,k,t
Index for jobs/positions where
 1,2,...., n

jd Due date of job j

i Index for stages where  1,2,....,m

im Number of machines in stage i

l
Index for machines at stage i where
 1,2,...., im

j,iO Operation of job j at stage i

j,ip Processing time of job at stage

M A large positive number

The following binary variables are defined.

X j,i,k Binary variable taking value 1 if job j
occupies position k at stage i, and 0
otherwise.

Yi,k,l Binary variable taking value 1 if the job in
position k of stage i is processed on machine
l, and 0 otherwise.

i,kS The starting time of the job in position k at
stage i

j,iF The starting time of the job j at stage i

jT

The tardiness of the job j

The model formulates the problem as follows.

Minimize
=1


n

j
j

T (1)

Subject to:

=1

1
n

k

X j,i,k  j,i (2)

=1

1
n

j

X j,i,k  i,k (3)

=1

1
mi

l

X i,k ,l  i,k (4)

, 1 ,  j i j iF F p j ,i  j,i m (5)

  X
j =1

n

i,k i ,t j,i ,t. j ,iS S p+

> 1, < ti,l,k k (6)

Esmaeil Najafi et al./ A Mathematical Model and a Solution Method...

66

, (1)j iS F M  i,k j,i,kX

, (1)j iS F M  i,k j,i,kX

 i,k, j

 i,k, j

(7)

(8)

,m
1

.


 
   
 


n

j
k

T F Xj j,m ,k j,ip

 ,, F , 0j i jS Ti,k

 , 0,1X j,i,k i,k,lY

 j

(9)

(10)

(11)

In (1), total tardiness is calculated. Constraint set (2) states
that every job occupies exactly one position at each stage.
Constraint set (3) ensures that every position at each stage is
occupied exactly once. Constraint set (4) enforces that each
job is assigned to one machine, among available machines at
each stage. Constraint set (5) ensures that j,iO starts after the

completion of j,i-1O . Constraint set (6) assures that if the job

in position k at stage i cannot begin before the completion of
its previous jobs at the same machine. In other words, it
holds the assumption that one machine can process at most
one job at a time. Constraint sets (7) and (8) make the
relation between each job and its position at each stage.
Constraint set (9) calculates the tardiness of jobs. Finally,
Constraint sets (10) and (11) define the decision variables.

To formulate a problem with n jobs and m stages, the
model needs) inm(n+ m binary variables, (nm n)2

continuous variables and 2 2(nm m n m m n n)   3
constraints.

3. Artificial Immune Algorithm

The artificial immune algorithm (AIA) is an
approximation algorithms and classified as population-based
meta-heuristic (Prakash et al., 2008). The original intention is
inspired by the simulation of the physiological immune
system of natural living organisms defending the body from
foreign pathogens (bacteria or virus). The mechanisms work
by first recognizing foreign substances known as antigens.
The immune systems then generate a set of antibodies to
eliminate the antigens. The mechanisms are able to recognize
which antibodies are better at eliminating the antigens and
produce more variations of those antibodies in the next
generation of antibodies. Each antibody is assigned a value
called Affinity showing the capability of that antibody to
eliminate antigens. The antigen, affinity and antibody in the
AIA are equivalent to the problem to be solved, objective
function and feasible solution for a conventional
optimization method, respectively.

Three commonly applied types of AIAs are cloning
selection algorithm, immune network algorithm and negative
selection algorithm. It is known that cloning selection

algorithms are more suitable in tackling scheduling problems
(Naderi et al., 2009b). The main operators are cloning
selection and affinity maturation. When an antigen is
detected, those antibodies that best recognize this antigen
will proliferate by cloning. This process is called cloning
selection principle. Affinity maturation consists of two basic
concepts: hypermutation and receptor editing.
Hypermutation is similar to mutation in genetic algorithms
with the following distinctive specifications. Mutation
corresponds to the creation of new solutions which are
structurally and behaviorally similar to their creators but not
exactly the same with a fixed rate while in hypermutation;
inferior antibodies are mutated at higher rate than the good
antibodies suffer. The procedure of hypermutation is handled
by receptor editing.

3.1. The proposed immune system algorithm

The proposed AIA searches a problem space with a
population of antibodies each of which is an encoded
solution. An affinity value is assigned to each antibody
according to its performance. The more desirable the
antibody, the higher this value becomes. The population
evolves by a set of operators until some stopping criterion is
met. A typical iteration of AIA, generation, proceeds
according to an author-defined affinity function and the
number of the clones that would be proliferated from each
antibody is calculated. All the proliferated clones are put in a
mutating pool. A selection mechanism chooses the clones in
the current mutating pool in such a way that clones with
lower TT have higher chances of being selected. The
selected clones hypermutate and generate new antibodies,
namely offspring. Afterwards, the new population is
evaluated again and the whole process repeats.

In the following subsection, we introduce the
specifications of the proposed AIA. To this end, we first
present our antibody representation (encoding scheme)
which makes a solution recognizable for the algorithm. Then,
we present the operators that we use in the proposed
algorithm.

3.2. Antibody representation and initialization

In AIA, each antibody represents a solution. We use job-
based representation to encode a solution. In job-based
representation, the permutation of jobs in the first stage is
determined, and then by a dispatching rule the jobs are
assigned to the machines. In the proposed algorithm, the job
is assigned to the first available machine at each stage. In
HFS problems, the first available machine results in the
earliest completion time. The sequence of jobs in subsequent
stages is according to their completion time in the previous
stage. The proposed algorithm starts form NEH algorithm
(Nawaz et al., 1983), and random solutions form feasible
region.

Journal of Optimization in Industrial Engineering 10 (2012) 65-72

67

3.3. Cloning selection procedure

The capability of each antibody to fight against antigens
is measured through affinity. Antibodies with higher affinity
value are better at eliminating antigens. In our case, it was
necessary to consider the following issues: 1- The antigen is
our optimization problem. 2- An antibody is an encoded
solution. 3- Since the objective is the minimization of TT,
better antibodies (solutions) are those results in lower TT (i.e.
they can fight against the antigen better). Since the higher
affinity value means the better antibody, we define the
following function to calculate each antibody’s affinity:
Affinity (t) = 1/ TT (t) (12)

The lower the TT, the higher the affinity value becomes.
The probability of the cloning of each antibody to transfer
into the mutating pool is directly proportional to its affinity
value. Therefore, the antibodies with lower TT more likely
have a lot of clones. The mutating pool has a fixed size of
pop-size clones. One of them is fulfilled by the best antibody.
To fulfill the rest, we apply a selection mechanism (popsize-
1) times, and each time, an antibody is copied into the pool.
We use ranking selection (Goldberg, 1989).

3.4. Affinity maturing procedure

In Affinity maturing procedure, all of the clones existing
in the pool undergo an operator which makes a random
change in the clones. This operator is called hypermutation.
Dependent on the affinity value, each clone suffer different
rate of change. The inferior clones undergo high rate of
hypermutation whereas better clones suffer a slight change.
As a low rate hypermutation, we utilize SHIFT mutation. In
SHIFT mutation, a randomly selected operation is randomly
relocated in the sequence. As high rate hypermutation, we
use an operator working as follows: The positions of two
randomly selected operations are swapped. In addition to the
operators we just defined, we need a criterion to determine
the condition under which we exploit one of the operators.
We define a criterion as such: each clone (t) undergoes the
low rate hypermutation

If TT(t) TT(best antibody) 0.1
TT(best antibody)


 (13)

Otherwise, it undergoes the high rate hypermutation.
Contrary to previous work (Engin et al., 2004) in which the
offspring are accepted only if they have lower TT than their
creators, we use simple simulated annealing-like acceptance
criterion. Besides the acceptance of better offspring, inferior
offspring might be accepted by the following random
mechanism:

TT(Offespring) TT(Creator)
if random exp

20
   

 
 (14)

where random is a random number between (0, 1). This
allows the algorithm easily to avoid getting trapped into local
optima. It is necessary to indicate that we apply the elite
strategy meaning that the best clone is directly copied into

the next generation. Figure 1 presents the general outline of
the proposed AIA.

Procedure AIA

Initialize (population and Best)

while the stopping criterion is not met do

for t = 1 to pop-size do

Apply ranking selection

Put the selected antibody into the mutating pool

Endfor

for t = 1 to pop-size do

Take the t-th antibody of the pool

if (TT(t)-Best)/Best < 0.1 do

Apply low rate hypermutation

elseif

Apply high rate hypermutation

endfor

Update Best

Endwhile

Fig. 1. Pseudo code of the proposed AIA

3.5. The hybridization of the proposed artificial immune
algorithm

Many researchers concluded that hybrid approaches for
job shops could end up with high quality results (Zhang et
al., 2008; Heinonen and Pettersson, 2007). The purpose of
the hybridization is to overcome shortcomings of each
algorithm. AIA is known to be a meta-heuristic powerful in
diversification. Preliminary tests demonstrated that the
performance of AIA is significantly influenced if we
hybridize it with another algorithm which is powerful in
intensification. We examined several meta-heuristics; it
finally turned out that hybridization with a local search-based
meta-heuristic can obtain convincing results. Among the
local search-based meta-heuristic, simulated annealing (SA)
is known to be a very fast algorithm possessing intensifying
operators. Therefore, we have been galvanized into the
hybridization of the AIA and SA. In this case, our hybrid
algorithms have a diversification technique to investigate
new and unknown areas in the search space, and
intensification technique to make use of knowledge obtained
at points previously visited to assist to find promising
solutions. After all, the combination of the flexible and
effective population-based algorithm to search for the
optimal solution and the convergent characteristics of
simulated annealing provides the rationale for developing a
hybrid artificial immune algorithm (HAIA) strategy to solve
job shops with sequence dependent setup times and flexible
machine availability constraints to minimize total tardiness.

Our strategy to hybridize AIA with SA is as follows.
After cloning, we apply the SA to the best clone in the

Esmaeil Najafi et al./ A Mathematical Model and a Solution Method...

68

mutating pool, not all the clones because applying the SA to
all the clones would result in a very algorithm. In the
following subsection, we briefly introduce the simulated
annealing that we use.

Simulated Annealing (SA) is a local search-based meta-
heuristic to solve combinational optimization problems. SA
got its existence from the physical annealing of solid metal.
In annealing, a metal is first heated to a high temperature and
then cooled down with a very slow rate to the room
temperature. The fundamental idea of SAs is to generate a
new job sequence s by a random rule from the neighborhood
of present sequence x. This new sequence is accepted or
rejected by another random rule. A parameter t, called the
temperature, controls the acceptance rule. The variation
between objective values of two candidate solutions is
computed ΔC = TT(s) – TT(x). If ΔC ≤ 0, sequence s is

accepted. Otherwise, sequence is accepted with probability
equal to exp (ΔC / ti). The algorithm proceeds by trying a
fixed number of neighborhood moves at each temperature ti,
while temperature is gradually decreased. The procedure is
repeated until a stopping criterion is met. In our algorithm,
SA proceeds until in five consecutive temperatures, no
improvement is made.

Simulated annealing starts from an initial solution, and a
series of moves are made according to a user-define
annealing schedule. In this research, the initial solution is one
clone in the current mutating pool. The algorithm checks 20
neighbors at temperature ti. The moving operator generates a
neighbor (solution) from the current candidate solution by
making a slight change in it. These operators must work in
such a way that infeasible solutions are avoided. Since many
researchers concluded that in SAs, SHIFT operator is
superior to other operators like SWAP and INVESION
(Naderi et al., 2009a), we generate new solution using
SHIFT operator. In Shift operator, one of the job numbers is
randomly selected and it is randomly relocated into a new
position in sequence. For operation assignment, 10 random
assignment is generated and the best is selected. Here, we use
exponential cooling schedule, ti =α .ti- ∈1 (where α (0, 1) is
temperature decrease rate), which is often believed to be an
excellent cooling recipe (Schneider et al., 1998). Figure 2
shows the general pseudo code of the proposed SA.

Procedure SA

Initialization (the one clone in the mutating pool)
counter = 0
while counter <= 5 do

for i = 1 to 20 do
Generate a new neighbor from current solution
Acceptance criterion
Update the best solution so far found

end for
if the best solution is improved in this temperature do

counter = 0
else

counter = counter + 1
endif
Temperature reduction

end while

Fig. 2. Pseudo code of the proposed SA

4. Experimental Evaluation

In this section, the performance of the proposed HAIA is
evaluated by comparing with RKGA proposed by (Kurz and
Askin, 2004), and NEH (Nawaz et al., 1983), artificial
immune algorithm (AIA) by (Zandieh et al., 2006). We
conduct an experimental evaluation. The algorithms are
implemented in Borland C++ and run on a PC with 2.0 GHz
Intel Core 2 Duo and 2 GB of RAM memory. We use
Relative Percentage Deviation (RPD) as performance
measure to compare the methods. When the TT of each
algorithm has been obtained for its examples, the best
solution obtained for each example (named Minsol) by any
of the algorithms is calculated. RPD is obtained by the given
formula below (Naderi et al., 2010b):

sol sol

sol
.100




Alg Min
RPD

Min
 (15)

where solAlg is the TT obtained for a given algorithm
and instance. Obviously, lower values of RPI are preferred.
The stopping criterion is n2×g×1.5 milliseconds computation
time for the algorithms. This stopping criterion not only
permits for more time as the number of jobs or machines
increases, but also is more sensitive toward a rise in number
of jobs than number of stages.

4.1. Data generation

We need three sets of instances, one for parameter tuning
section, another for general performance evaluation of model
and algorithm, and the other one for relative performance
evaluation of the algorithm. Data required for a problem
consists of the number of jobs (n), range of processing times
(pji), number of stages (m) and due dates (dj) a stage for each
job. Each stage requires data defining how many machines
exist at that stage (mi).

For the first set, we have

n = {20, 60, 100} and m = {2, 4, 8}

The number of machines at each stage could be a fixed
value of 2 machines or uniformly distributed over (1, 4). The
processing times are generated by the uniform distribution
over range (1, 99). The due dates are generated as follows.

,
1

(1)


 
  
 
 


m

j j i
j

d rand p

where rand is a random number uniformly distributed
over (0, 1). Therefore, there are 18 combinations of n, m, mi
and pji. Table 1 shows the problem size factors and their
levels.

For the second set, we have

n = {5, 6, 7} and m = {2, 3}

The number of machines at each stage could be a fixed
value of 2 machines or uniformly distributed over (1, 3). The
processing times are generated by the uniform distribution

Journal of Optimization in Industrial Engineering 10 (2012) 65-72

69

over range (1, 99). Therefore, there are 12 combinations of n,
m, mi and pji. One instance is generated in each problem
size. Since the sizes are small, the set is called small-sized
instances.

For the third set, we consider the levels presented in
Table 1 and for each combination we generate 10 instances.
Therefore, it sums up to 180 instances. This set is called
large-sized instances.

Table 1
Factors and their levels

Factors Levels

Number of Jobs {20, 60, 100}

Number of stages {2, 4, 8}

Machine distribution {2, U(1, 4)}

Processing Time U (1, 99)

4.2. Parameter tuning

It is known that the great choice of parameters of an
algorithm can influence the performance of that algorithm.
Our proposed HAIA has only one parameter, pop-size. The
first set of instances is used in this section. We consider the
values of  10, 20,30, 40d . Therefore, we have 4
different HAIAs.

All the instances in the first set are solved by the HAIAs.
To analyze the results, we carried out an analysis of variance
(ANOVA) and the least significant deference (LSD) at the
95% confidence level (Montgomery, 2000). Figure 3 shows
the means plot and LSD intervals. Regarding the results, we
concluded that the value of pop-size = 20 is the best value for
this parameter.

Fig. 3. Means plot and LSD intervals of different levels of pop-size

4.3. Numerical evaluation

In this section, we assess the model and the algorithm. To
this end, we first test the capability of the model to solve
different problem sizes. Then, the algorithm is compared
with the optimal solutions of the model. In the second
experiment, we compare the algorithm with some other
available algorithms.

4.3.1. Small-sized instances

This section evaluates the general performance of model
and algorithm with 12 small-sized instances generated in
section 4.1. The model is given a time limit of 2000 sec.
Table 2 shows the results of the experiment. In this table, the
first three columns present the problem size. The fourth one
shows the computational time for the model to solve an
instance with the corresponding size and the last one reports
the optimality gap of the presented algorithm against the
solution of the model.

The MILP model is capable of solving 11 out of 12
instances. Now, we compare HAIA algorithm against the
optimal solutions of the MILP model. HAIA optimally
solves 10 of 12 instances (83%).

4.3.2. Large-sized instances

We evaluated the algorithms with the 180 large-sized
instances generated in section 4.1. Table 3 shows the results
of the experiments, averaged for each combination of n and
m. HAIA outperforms the other algorithms with RPD of
1.50%. The second best is AIA with RPD of 2.82%. The
worst performing algorithms are NEH and RKGA with RPD
of 9.21% and 6.83%.

For further precise analysis of the results, we carried out
ANOVA. Means plot and LSD intervals at the 95%
confidence level for the type of methods factor are shown in
Figure 4. As it could be seen, HAIA statistically supersedes
the other algorithms. To analyze the possible effects of the
number of jobs factor on the algorithms, we computed the
performance of the algorithms in the different values of jobs.
Figure 5 depicts the interaction between factors type of
algorithm and the number of jobs. The proposed HAIA
keeps a robust performance on various range of jobs, while
NEH outperforms RKGA in the case of n = 100.

Esmaeil Najafi et al./ A Mathematical Model and a Solution Method...

70

Table 2
The results of models evaluation

 HAIA (RPD)
MILP model:
Computational time
(in sec.)

Problem size
No. mi m n

0% 1 {2,2} 2 5 1
0% 1 {1,2} 2 2
0% 2 {2,2,2} 3 3
0% 2 {1,3,2} 3 4
0% 159 {2,2} 2 6 5
0% 84 {2,1} 2 6
0% 110 {2,2,2} 3 7
4% 730 {3,3,2} 3 8
0% 857 {2,2} 2 7 9
0% 174 {1,3} 2 10
0% 241 {2,2,2} 3 11
3% 2000 {2,2,3} 3 12

5. Conclusion and Future Research

In this paper, we investigated hybrid flow shop
scheduling problems. Our optimization criterion was total
tardiness. First, the problem under consideration was
formulated as a mixed integer linear programming model.
This model is capable of solving instances up to 10 jobs.
Then, an effective immune system algorithm was applied to
tackle the problem. In this algorithm, some novel operators
based on insertion operators are developed.
Table 3
Average relative percentage deviation for the algorithms grouped by n and m

Instances
Algorithms

NEH RKGA AIA HAIA

20×2 10.71 4.81 1.45 1.05

20×4 9.66 5.41 1.67 1.01

20×8 10.12 4.6 1.9 1.09

60×2 9.04 7.23 3.87 1.28

60×4 8.07 6.56 3.21 2.19

60×8 9.58 6.15 3.77 2.01

100×2 7.92 8.17 2.96 1.79

100×4 9.4 8.63 3.35 2.08

100×8 8.41 9.9 3.16 0.99

Average 9.21 6.83 2.82 1.50

Fig. 4. Means plot and LSD intervals for the type algorithm

Fig. 5. Means plot for the interaction between factors type algorithm

and number of jobs

The algorithm is also enhanced by hybridizing it with a
simple local search. To evaluate the performance of the
algorithm, we conducted two experiments. We first
compared the algorithm with optimal solutions of the model
on small-sized instances. Then, we compared the algorithm
with some existing algorithms in the literature. The results
supported the effectiveness of both the proposed model and
the algorithm.

Journal of Optimization in Industrial Engineering 10 (2012) 65-72

71

As future research, it could be interesting to work on a
multi-population immune system algorithm for the problem
and compare its performances with the other algorithms. The
evaluation of novel meta-heuristics like electromagnetism-
like algorithm for the problem under consideration could also
be revealing. Another direction is to apply the immune
system algorithm to other scheduling problems like job shops
and open shops. The multi-objective case of hybrid flow
shop could be considered as an interesting topic for future
research.

6. References

[1] Allahverdi A., C. T. Ng, Cheng, T. C. E. and Kovalyov, Y.
M., (2008). A survey of scheduling problems with setup
times or costs. European Journal of Operational Research.
187(3): 985–1032.

[2] Behnamian, J. and Fatemi Ghomi, S. M. T., (2011).
Hybrid flow shop scheduling with machine and resource-
dependent processing times, Applied Mathematical
Modelling, 35(3), 1107-1123.

[3] Heinonen J. and Pettersson, F., (2007). Hybrid ant colony
optimization and visibility studies applied to a job-shop
scheduling problem. Applied Mathematics and
Computation, 187, 989–998.

[4] Kurz M. E. and Askin, R. G., (2003). Comparing
scheduling rules for flexible flow lines. International
Journal of Production Economics, 85: 371–388.

[5] Kurz M. E. and Askin, R. G., (2004). Scheduling flexible
flow lines with sequence-dependent setup times. European
Journal of Operational Research. 159(1): 66–82.

[6] Jin Z., Yang, Z. and Ito, T., (2006). Metaheuristic
algorithms for the multistage hybrid flow shop scheduling
problem. International Journal of Production Economics.
100: 322–334.

[7] Goldberg, D. E., (1989). Genetic algorithms in search,
optimization and machine learning. Reading. USA:
Addison-Wesley.

[8] Matta, M. E., (2009). A genetic algorithm for the
proportionate multiprocessor open shop. Computers and
Operations Research, 36, 2601–2618.

[9] Naderi, Ruiz, B. R., Zandieh, M., (2010a). Algorithms for
a realistic variant of flow shop scheduling Computers &
Operations Research, 37, 236 – 246.

[10] Naderi, B., Zandieh, M. and Roshanaei, V., (2009a).
Scheduling hybrid flow shops with sequence dependent
setup times to minimize makespan and maximum
tardiness. International Journal of Advanced
Manufacturing Technology, 41, 1186–1198.

[11] Naderi B., Khalili, M., Tavakkoli-Moghaddam, R.,
(2009b). A hybrid artificial immune algorithm for a
realistic variant of job shops to minimize the total
completion time. Computers and Industrial Engineering,
56, 1494–1501.

[12] Naderi, B. and Ruiz, R., (2010). The distributed
permutation flow shop scheduling problem, Computers
and Operations Research, 37, 754–768.

[13] Naderi, B., FatemiGhomi, S. M. T., Aminnayeri, M.,
Zandieh, M., (2010b). A contribution and new heuristics
for open shop scheduling. Computers and Operations
Research, 37, 213–221.

[14] Nawaz, M., Enscore Jr, E. E. and Ham, I., (1983). A
heuristic algorithm for the m-machine, n-job flow shop
sequencing problem, Omega, International Journal of
Management Sciences. 11(1): 91–95.

[15] Schneider, J., Morgensten, I. and Singer, J. M., (1998).
Bouncing towards the optimum: Improving the results of
Mento Carlo optimization algorithms. Physical Review E,
58(4), 5085–5095.

[16] Pan, C. H., (2007). A study of integer programming
formulations for scheduling problems. International
Journal of Systems Sciences, 28(1), 33–41.

[17] Prakash, A., Khilwani, N., Tiwari, M. K. and Cohen, Y.,
(2008). Modified immune algorithm for job selection and
operation allocation problem in flexible manufacturing
systems. Advances in Engineering Software, 39, 219–232.

[18] Pinedo, M. L., (2008). Scheduling: Theory, Algorithms,
and Systems. 3th edition, Springer Science+Business
Media, New York.

[19] Ruiz R. and Allahverdi, A., (2007). Some effective
heuristics for no-wait flow shops with setup times to
minimize total completion time. Annals of Operations
Research. 156: 143-171.

[20] Zandieh, M., Fatemi Ghomi, S. M. T. and Moattar
Husseini, S. M., (2006). An immune algorithm approach
to hybrid flow shops scheduling with sequence-dependent
setup times. Applied Mathematics and Computations. 180:
111–127.

[21] Zhang, C. Y., Li, P., Rao, Y. and Guan, Z., (2008). A very
fast TS/SA algorithm for the job shop scheduling problem,
Computers and Operations Research, 35, 282–294.

Esmaeil Najafi et al./ A Mathematical Model and a Solution Method...

72

