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Abstract 
This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical 
job sizes, dynamic job arrivals, incompatible job families, and sequence-dependent family setup time on the single batch- processor, where 
split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for this 
problem; then, it is solved by ߝ-constraint method. Since this problem is NP-hard, a bi-objective genetic algorithm (BOGA) is offered for 
real-sized problems. The efficiency of the proposed BOGA is evaluated to be compared with many test problems by ߝ-constraint method 
based on performance measures. The results show that the proposed BOGA is found to be more efficient and faster than the ߝ-constraint 
method in generating Pareto fronts in most cases. 

Keywords: Batch Processing; Incompatible Job Family; Release Date; Split Job Size; Family Setup Time. 

1. Introduction & Literature Review 

In recent decades, a batch-scheduling problem is a usual 
category of production planning in most industries. The 
main reasons of batch processing are avoidance of setup 
times and material handling costs (Baker 1943). Rui et al. 
(2012) divided batching into two types: serial batching 
and parallel batching. In a serial batching, the length of a 
batch is equivalent to the sum of the processing times of 
jobs in it. In a parallel batching, several jobs are processed 
in a batch simultaneously on a processor at the same time, 
such that all the jobs in the batch start and complete their 
process at the same time. The processing time of a batch 
is equivalent to the biggest processing time of jobs in it. 
The batching parallel machine (BPM) is able to process a 
group of jobs as long as the sum of job sizes in the batch 
is less than or equal to the capacity of the machine. Once 
a batch is processed, the BPM cannot be interrupted; no 
jobs can be removed from the machine until the process is 
completed. To date, BPM problem has attracted many 
investigators (Pinedo 2008; Rui et al., 2012;Dauzère-
Pérès and Mönch 2013;Guo et al. 2013). They are 
commonly used to test electronic assemblies to detect 
early failures and burn in oven. This problem is motivated 
by the burn-in operation found in the final testing phase in 
semiconductor manufacturing. This problem is important 
because the scheduling of batching operations has a 
significant economic impact. These operations constitute 
a bottleneck in the final testing phase; consequently, 
efficient scheduling to maximize throughput is of great 
concern in productivity and on- time delivery 

management. On the other hand, optimizing a single-
objective generally may lead to deterioration of other 
possible objectives. Many industries, such as 
semiconductor manufacturing, have trade-offs in their 
scheduling where multiple objectives need to be 
considered in order to optimize the overall performance of 
the system.Crauwelsand Potts (1996) studied the BPM 
problem. Perhaps, for the first time, they represented local 
search heuristics for single batch machine scheduling to 
minimize the number of late jobs. Considering jobs with 
different sizes, Wang & Uzsoy (2002) gave complexity 
results for Cmax and ΣCj criteria and provided some 
heuristics and a branch-and-bound algorithm. A branch-
and-bound procedure for minimizing Cmax was also 
developed by Dupont & Dhaenens (2002). Sung et al. 
(2002) minimized makespan on a single burn in oven with 
job family and dynamic job arrivals (Cheng et al., 2013). 
Rafiee et al. (2010) represented a branch and price 
algorithm to minimize make-span on a single batch-
processing machine with non-identical job sizes. This 
paper considers non-identical job sizes that are allowed to 
split job size into the batches. Therefore, split job size will 
interrupt job sizes on the batches. 
In most BPM studies, jobs are compatible for batching; 
however, considered jobs belong to incompatible job 
families, meaning that every job assigned to a batch must 
belong to the same family, and that jobs belonging to the 
same family share a common processing time, which is 
also the batch processing time. 
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In literature, researches considered the various aims; 
Malvea&Uzsoy (2007) studied BPM with different 
performance measures in the case of incompatible job 
families in which each job has unit size. They also 
presented exact and approximate solutions for single and 
parallel batch processing machines problems. Dupont & 
Dhaenens (2002) suggested an exact procedure for 
minimizing the makespan on a batch processing machine 
with non-identical job sizes. Yao & Jiang (2012) offered a 
branch and bound algorithm for minimizing total 
completion time on a single batch processing machine 
with incompatible job families and dynamic job arrivals. 
Perez et al. (2005) minimized total weighted tardiness on 
a single batch processing machine with incompatible job 
families. Most studies have considered single objective 
optimization. Sometimes, many industries such as 
semiconductor manufacturing consider both of their 
customer’s requirements such as assuring on-time 
reception and their manufacture’s requirements, such as 
reducing work-in-process inventory. For example, Liu et 
al. (2009) presented a bi-criterion scheduling problem 
with equal processing times on a batch processing 
machine. Xu et al.(2013) considered a bi-objective 
scheduling problem on batch machines recently. This 
paper considers a multi-objective optimization problem 
that aims to minimize makespan and maximum tardiness 
simultaneously. Hence, lower ܥ௠௔௫ leads to higher 
productivity and higher throughput level for the 

bottleneck operation. ௠ܶ௔௫, which represents most 
violations of due dates, is related to customer’s on-time 
delivery. In the literature of multi-objective optimization 
problem, Husseinzadeh et al. (2010) presented a multi-
objective genetic algorithm for minimizing makespan and 
maximum tardiness under situation of non-identical job 
size on a BPM problem; therefore, already, contradiction 
between two aims has been proven. According to the 
mentioned studies, to get closer batch processing problem 
to the real word, a common set of constraints has been 
removed in this paper. These constraints consists of non-
identical job sizes where split size of jobs is allowed 
between batches, dynamic job arrivals, incompatible job 
families, and sequence-dependent family setup time on 
the single batch_ processor. In the literature of scheduling 
problem, including abbreviations ߙ ,ߛ | ߚ | ߙ shows 
number of machines, ߚ shows special conditions, and ߛ
shows objective functions of the problem; therefore, this 
problem is presented as 1|ݎ௝,ݏ௝, B, incompatible family, 
split job size|ܥ௠௔௫, ௠ܶ௔௫, meaning that the single batch 
processing machine scheduling problem is allowed to 
operate under dynamic job arrivals, incompatible job 
families, and non-identical job sizes which split job size. 
The objective functions are minimization of ܥ௠௔௫ and 

௠ܶ௔௫, respectively. Fig.1 shows a graphic illustration of 
the problem. 

Recently, solving the batch machine scheduling problems 
using meta-heuristic algorithms and approximate methods 
has become interesting by researchers. Melouk et al. 
(2004) represented a simulated annealing for minimizing 
make-span on single batch processing machine with non-
identical job sizes. Damodaran et al. (2006) introduced a 

genetic algorithm for minimizing make-span on a batch-
processing machine with non-identical job sizes. Malvea 
and Uzsoy (2007) presented a genetic algorithm for 
minimizing maximum lateness on parallel identical batch 
processing machines with dynamic job arrivals and 
incompatible job families. Koh et al.(2005) proposed a 

Fig.1. Illustration of the problem 
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hybrid genetic algorithm based on a random key 
representation to minimize makespan and total weighted 
completion time on a BPM problem with incompatible 
job families and arbitrary jobs size. A hybrid genetic 
algorithm was presented on identical parallel patch-
processing machines with non-identical job sizes by 
Husseinzadeh et al. (2008). Rui et al. (2012) presented an 
ant colony optimization and mixed integer programming 
(MIP) for minimizing make-span on a BPM problem with 

dynamic job arrivals and arbitrary job size. According to 
the mentioned studies with a fewer number of 
assumptions than this paper, this is a NP-hard problem, 
since it reduces to 1|ݏ௝, B|ܥ௠௔௫ problem which is well 
known to be NP-hard (Melouk et al. 2004). Therefore, in 
this paper, a BOGA is presented to solve the large-sized 
problem. 

    The rest of the paper is organized as follows: in Section 
2, a problem definition and a Mixed Integer Linear 
Programming (MILP) model are presented; then, to 
validate a new mathematical model and contradiction 
between the objectives, an example is solved by ߝ-
constraint method in lingo9 software. In Section 3, 
the structure of a bi-objective genetic algorithm and 
the analysis and discussion of this proposed 
approach are presented. Some experimentations and 
comparison are shown in section 4. Finally, in section 
5, conclusion and suggestions for future researches are 
presented. 

2. Problem Formulation 
2.1. Problem description 

This paper focuses on a BPM problem with the following 
assumptions: 

 There are N jobs with dynamic arrivals 
and predefined due dates that are agreeable.  

 A single processor has a limited capacity B, and 
job j has a specified size  ௝ܵ  that is not more than 
machine capacity. 

 Total job sizes of a batch should not be more 
than machine capacity B. 

 Each job can be divided on the size in several 
batches. 

 Each batch should be processed only for 
once; namely, it should not be interrupted.  

 The machine only can process several jobs of a 
family in each batch simultaneously, and jobs of 
different families must be processed separately.  

 The jobs of a family have equal processing 
times, and processing time of a batch is equal to 
processing time of the family assigned to the 
batch, and each opened batch belongs to only a 
family. 

 There is setup time between two batches of 
different job families. 

 The machine is assumed available continuously 
and breakdown is not allowed. 

 The machine cannot be idle when at least a 
non- completed job exists. 

2.2. Mathematical description of the problem 

This section provides a brief description of the 
mathematics, a set of jobs N= {J1, J2, … , Jn}, a set of job 
family M={F1, F2, … ,Fm}, and a set of K={B1, B2, … , 

Bk}. The following indices, parameters, and decision 
variables are used throughout the paper. 
Indices: 

݆ index for jobs                   (݆ ൌ 1, 2, … , ݊ሻ

݅ index for families            ሺ݅ ൌ 1, 2, … , ݉ሻ
݇ index for batchesሺ݇ ൌ 1, 2, … , ݇ሻ

݌ index for sequence of batchesሺ݌ ൌ 1, 2, … , ሻ݌
Parameters: 

௝Sizeݏ of job ݆

௝݀Due date of job ݆
௝Releaseݎ date of job ݆
௜Processing݌ time of family ݅ 
ܤ Capacity of a single processor 
ܯ Number of family

௜ܰNumber of jobs of family i 
௜Setܨ of job of family ݅
Matrix setup time of between job families  

Decision variables 

 if job j of family I is assigned to the batch k ,1=ܘܓܑܒ܆
which is processed in position p on the machine; 0, 
otherwise 
 size of job j of family i assigned to batch k which = ܘܓܑܒۿ
is processed in position p on the machine (integer) 

૚=൜ି࢖ᇲ࢑ᇲ࢏ᇲ࢐࢖࢑࢏࢐ࢆ
1     , if ܘܓܑܒ܆ ൈ ૚ିܘᇲܓᇲܑ′ܒ܆ ൌ 1
0           , otherwise

࢖࢑࢏࢐ࢃ ൌ ௝ܺ௜௞௣ ൈ ௜௞௣ܥ

 start time of batch k of family I in position p on =ܘܓܑ܂܁
the machine 
completion time of batch k of family i in position p =ܘܓ۱ܑ
on the machine 
 completion time job j =ܒ۱
 tardiness of job j =ܒ܂
 earliness of job j =ܒ۳

2.3. The mathematical modeling 

In this subsection, objective functions and constraints are 
formulated as follows: 

݉݅݊ ଵݖ ൌ ௠௔௫ܥ

ሺ1ሻ
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݉݅݊ ଶݖ ൌ ௠ܶ௔௫ ሺ2ሻ

:ݐݏ

෍ ௝ܺ௜௞௣ ൑ ݇׊      1

௠

௜ୀଵ

, ݆, ݌ ሺ3ሻ

෍ ܳ௝௜௞௣ ൑ ݇׊ܤ
௝אி௜

, ݅, ݌ ሺ4ሻ

෍ ෍ ܳ௝௜௞௣ ൌ ,݅׊௝ݏ ݆ א ݅ܨ

௞

௞ୀଵ

௣

௣ୀଵ

ሺ5ሻ

෍ ෍ ݌݆݇݅ܺ ൑ ,݅׊݆ݏ ݆ א  ݅ܨ

݇

݇ൌ1

௣

௣ୀଵ

ሺ6ሻ

ܳ௝௜௞௣ ൑ ௝ܺ௜௞௣ כ ,݅׊௝ݏ ݆ א ,݅ܨ ݇, ݌ ሺ7ሻ

௝ܺ௜௞௣ ൑ ܳ௝௜௞௣݅׊, ݆ א ,݅ܨ ݇, ݌ (8) 

௝ܺ௜௞௣ כ ௝ݎ ൑ ܵ ௜ܶ௞௣݅׊, ݆ א ,݅ܨ ݇, ݌ ሺ9ሻ

ܵܶ௜ᇲ௞ᇲ௣ିଵ ൅ ܲ௜ᇲ ൅ ܼ
െ1݌Ԣ݅Ԣ݇Ԣ݆݌݆݇݅

כ ௜݌ݑݐ݁ݏ ′,௜ ൑ ܵ ௜ܶ௞௣

݌׊ ൒ 2 , ,݅׊ ݅ ′, ݆ א ,௜ܨ ݆′ א ௜ܨ ′ , ݇, ݇ ′
ሺ10ሻ

௝ܺ௜௞௣ ൅ ௝ܺ ′௜ᇲ௞ᇲ௣ିଵ ൑ ܼ
െ1݌Ԣ݅Ԣ݇Ԣ݆݌݆݇݅

൅ ݌׊1 ൒ 2 , ,݅׊ ݅ ′, ݆ א ,௜ܨ ݆′ א ௜ܨ ′ , ݇, ݇′ (11) 

2 כ ௝ܼ௜௞௣௝ᇲ௜ᇲ௞ᇲ௣ିଵ ൑ ݌݆݇݅ܺ ൅ ݆ܺ′݅Ԣ݇Ԣ݌െ1݌׊ ൒ 2 , ,݅׊ ݅′, ݆ א ,݅ܨ ݆′ א ′݅ܨ , ݇, ݇′ (12) 

௝ܺ ′௜ᇲ௞ᇲ௣ାଵ ൑ ܺ௝௜௞௣݅׊, ݅ ′, ݆ א ,௜ܨ ݆′ א ௜ܨ ′ , ݇, ݇ ′, ݌ (13) 

௜௞௣ܥ ൌ ܵ ௜ܶ௞௣ ൅ ௜ܲ݇׊, ݅, ݌ ሺ14ሻ

௝ܥ ൒ ௝ܹ௜௞௣݅׊, ݆ א ,௜ܨ ݇, ݌ ሺ15ሻ

௝ܹ௜௞௣ ൑ .ܯ ௝ܺ௜௞௣   , ௝ܹ௜௞௣ ൑ ,     ௜௞௣ܥ ௝ܹ௜௞௣ ൒ ௜௞௣ܥ െ ൫1 െ ௝ܺ௜௞௣൯. ܯ , ௝ܹ௜௞௣ ൒ 0
,݅׊ ݆ א ,௜ܨ ݇, ݌

(16) 

௝ܥ ൅ ௝ܧ െ ௝ܶ ൌ ௝݀ ሺ17ሻ

௠௔௫ܥ ൒ ݆׊௝ܥ ሺ18ሻ

௠ܶ௔௫ ൒ ௝݆ܶ׊ ሺ19ሻ

௝ܺ௜௞௣ ൌ ,    1  ݎ݋  0 ܳ௝௜௞௣ ൒ ݎ݁݃݁ݐ݊݅& 0 ሺ20ሻ

  
Equations (1) and (2) show the objective functions, the 
makespan, and the maximum tardiness, respectively. The 
makespan of BPM problems is equal to the completion 
time of the last batch and maximum tardiness is equal to 
maximum deviation of the job’s due date. Eq. (3) ensures 

that each batch only belongs to a family. Eq. (4) ensures 
that the sum of the size of jobs assigned to a batch do not 
exceed machine’s capacity. Eq. (5) guarantees the size of 
each job. Eq. (6) ensures that job j can be in maximum 
number of batch equivalent to ݏ௝. Eqs. (7) and (8) ensure 
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the relation between decision variables. Constraint sets (9, 
10) represent the starting time of batches. Constraint sets 
(11, 12) are determined for linearization of Eq. (10). Eq. 
(13) guarantees sequence of processing batches on the 
machine. Eq. (14) calculates the completion time of each 
batch. Constraint sets (15-16) calculate completion time 
of each job linearly. Eq. (17) determines earliness and 
tardiness of each job. Constraint sets (18) and (19) 
determine ܥ௠௔௫and ௠ܶ௔௫, respectively. Eq. (20) 
represents binary restriction and integer restriction on the 
decision variables. 

     To validate the proposed mathematical model and  
inconsistency between objectives, a small test problem is 
provided with the following data: N=5, ிܰ=2 ,B=4, 
ଵܯ ൌ ሼ1,2,5ሽ , ܯଶ ൌ ሼ3,4ሽ, ݌௜={3,2}, ݎ௝={3,8,5,5,5} , 
 ௝={2,2,2,2,2} , ݀j={7,13,11,8,8},  family setupݏ

time=ቂ0 1
1 0

ቃ.

 Using ߝ-constraint method in lingo 9, we could get Pareto 
frontier as in Fig.3 where batch and sequence are shown 
in Fig.2: 

3. Proposed Bi-Objective Genetic Algorithm 
There are different methods to solve multi-objective 
optimization problems such as weighted average of the 
objectives, goal programming, ߝ-constraint method 
(Gendreau 2009; Mavrotas 2009), and many versions of 
multi-objective evolutionary algorithms (MOEAs) 

(Arabani et al., 2011; Hui et al., 2013; Rezaeian et al., 
2013). Herein, by using the structure of non-dominated 
sorting genetic algorithm (NSGAII) presented by Deb et 
al. (2002), a bi-objective genetic algorithm (BOGA) is 
represented for this problem. Fig.4 shows diagram of the 
proposed BOGA. 

Fig.3. Pareto optimal front 

Fig.2. Non-dominated solution of constraint method 
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3.1. Solution coding and initialization 

Initialization is one of the main steps of GA which 
randomly generates initial population of individuals (Pt). 
Figures 5 and 6 show coding and decoding of a 
chromosome for a given example in section 2 
respectively. Each chromosome consists of N batches 

where N random numbers from [0, 1] are used as keys to 
represent a sequence of batches, and there are B.N gens 
where the values of gens are generated by the following 
pseudocode: 

Pseudo code 1. Solution coding 

Fori=1, 2…,  ࡹ
Number of ∑ ష૚࢏ࡲ,…,૚ࡲא࢐࢐ࡿ

, . . . ,  ∑ ࢏ࡲ,…,૚ࡲא࢐࢐ࡿ
 will be assigned to the gens of B.ି࢏ࡺ૚, … , ૚ି࢏ࡺሺ࡮ ൅  (࢏ࡺ

Randomly. 
End 

Batches belong to family1 {ܬଵ, ,ଶܬ ,ଷܬ} ହ}            Batches belong to family2ܬ  {ସܬ

Start

Initial population 
Gen=0 

Front=1 

Gen=gen+1 

Is population 
classified? 

Parent’s selection 

Crossover 

Mutation &elitism 

Population        
Filled? 

Gen<max(
gen) 

Front=1 

Is population 
classified? 

Select front1 as pare
to optimal 

Stop  

Identify non‐
dominated 

solution 

Front=Front
+1 

Identify non dominated solution

Calculate crowding distance for 
each solution 

Front=Front+1 

Fig.4. Structure of the proposed BOGA 

Dummy fitness based on ranking

yes

No 

yes

No 

No 

yes

yes

No 
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                               0.5                  0.2                    0.4                    0.1                  0.3 
Fig. 5. Chromosome structure 

                                   0.5                   0.2                 0.4                 0.1                    0.3

                                   0.1                   0.2                 0.3                0.5         

Fig. 6. Decode of the chromosome 

3.2. Evaluation & selection 

The solutions are arranged in different fronts by non-
dominated sorting. For each solution of the ith front, a 
dummy fitness value (  ௜) will be assigned whose݇݊ܽݎ
value of Pareto front is lower than other fronts. Based on 
the fitness values, two parents are selected by the roulette 
wheel technique where chromosomes with higher fitness 
are most likely to be selected for crossover. The fitness 
value is calculated based on a geometric distribution as 
follows: 

 ௜= (1/populationݏݏ݁݊ݐ݅ܨ
size)*ሺ1 െ 1/populationsizeሻ ௥௔௡௞೔

3.3. Generation   
By using the following operators, the new generation will 
be produced as follows: 
   Step1: some of elite solutions will be moved to the next 
generation according to elitism operator1 presented in 
subsection 3.3.4. 
    Step2: two selected parents by roulette wheel will be 
crossed by cross operator1 and cross operator2 with the 
same probability. 
   Step3: the generated offspring from step2 will be 
mutated. 

   Step4: the generated offspring of steps 2 and 3 will be 
checked by elitism operator2. 
Step5: Repeat steps 2 and 4 until the next generation is 
completed. 

3.3.1. Crossover operator1 

This operator will combine two random parents for 
generating new offspring, as shown in Fig.7. The 
performance of this operator is illustrated according to 
pseudo code 2: 

௟ܸଵ௜The value of the lth gen of the ith family of 1th parent. 
௟ܸଶ௜The value of the lth gen of the ith family of 2th

offspring. 
௟ܸ௜The value of the lth gen of the ith family of offspring. 

ܸԢ௟௜The value of the lth gen of the ith family of modified 
offspring. 
   The values of gens of each offspring will be calculated 
as follows: 

௟ܸ௜ ൌ ௟ܸଵ௜ ൅ ௟ܸଶ௜   ;   ݅׊ ൌ 1, . . , ௙ܰ ,  ݈׊ ൌ 1, . . , ௜ܰ . ܤ
In addition, the values of gens of modified offspring 

will be calculated by the following pseudocode: 

Pseudo code 2. Crossover operator 1 

࢏࢒Ԣࢂ ൌ ሾ૙ሿ૚ൈ࡮.ࡺ 
For  ࢏׊ ൌ ૚, ૛, … , ࡹ
Forࢠ ൌ ૚, ૛, … , ∑ ࢏ࡲא࢐࢐ࡿ

ሽ࢏࢒ࢂሼ࢞ࢇࡹ ൌ ࢒׊    ,       ࢏כ࢒ࢂ ൌ ૚, … , .࡮ ࢏ࡺ

࢏כ࢒Ԣࢂ ൌ ෍ ࢐ࡿ ൅ ࢠ
ష૚࢏ࡲ,…,૚ࡲא࢐

ൌ0࢏כ࢒ࢂ
End
End 

 

0      0     0      0 0     10     9     0 7     0        0    83     0      0      4 2     1       5     6 

4ܬ 2ܬ 3ܬ ,1ܬ 5ܬ

,1ܬ  3ܬ 4ܬ 2ܬ 5ܬ

Sequence of batches

ܻܶܲܯܧ
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Parent1 

                         0.5                        0.2                            0.4                     0.1                              0.3 

Parent2 

                           0.2                   0.7                    0.5                          0.4                           0.1 

Offspring 

                             0.7                    0.9                          0.9                       0.5                      0.4 

                                                                                                                                       Offspring modified 

                          3                            4                             5                       2                                 1 

 : Offspring decoding 

Fig. 7. Crossover operator1 

3.3.2. Crossover operator 2 

In this operator, two parents are combined to produce two 
offspring. At first, a random integer number between [1, 

௙ܰ-1] will be produced and, then, the batches of two 

selected parents will be changed together from cut-point. 
This operator improves the sequence of job families as 
shown in Fig.8. 

Cross point 
                

   Parent 1 

                0.5                       0.2                         0.4                     0.1                         0.3

 Parent 2 

                 0.2                       0.7                           0.5                      0.4                        0.1 

Offspring 1 

              0.5                            0.2                       0.4                         0.1                        0.3 

Offspring 2 
                0.2                          0.7                         0.5                    0.4                          0.1 

Fig. 8. Crossover operator 2 

3.3.3. Mutation To maintain local optimum, the multi-swapping mutation 
is used as a mutation operator. Herein, the contents of two 

0     10     9     0 7     0        0    80      0     0      03     0      0      4 2     1       5     6 

0     2      5      0 3     1       4     6 8     7     9     10    0     0      0    0 0      0     0      0

8    17    18   10 0      0     0      03     2      5      4 5     2     9    12 7     0        0    8

10     8     7     9 3     0      2     1 5     6      0     4 0      0     0      0 0    0     0    0

,3ܬ ,1ܬ 4ܬ 2ܬ ,2ܬ  5ܬ

0      0     0     03     0      0     4 2     1      5     6 0     10     9    0 7     0      0    8

0      0     0      00     2      5      0 3     1       4     6 8     7     9     10 0      0      0     0

2     1       5    6 8    7     9    1 0 0      0      0    00      0     0     03     0      0     4 

0     10     9    0 3     1      4     6  0    2      5      0 0      0     0      0 7     0       0    8
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random genes of each family are swapped. Fig.9 shows the performance of this operator: 
Swap 0, 4                                                                Swap 7, 10 

Mutate 

Fig. 9. Multiswapping mutation operator 

3.3.4. Elitism operators 

 Herein, two elitism operators are applied as follows: at 
first, a number of the best solutions of the last generation 
are transferred to the next generation. Then, generated 
offspring must be compared with solutions of the worst 
frontier of the last generation; if it dominated all of them, 
then it will enter the next generation. 

3.4. Parameters setting 

The proposed algorithm uses parameters as number of 
generation, population size, crossover rate, or mutation 
rate. The performance of an Evaluation Algorithm (EA) is 
generally sensitive to the setting of the parameters 
influencing the search behavior and the quality of 
convergence. It is highly desirable to set these parameters 
to the levels that produce high-quality solutions. Herein, 
the parameters are set by test problems in subsection 4.1, 
and the results are given in Table 1. 

Table 1 
Parameters setting 

Problem size Cross over 
rate (1) 

Cross over 
rate (2) 

Mutation 
rate 

Elitism Population size Number of generation 

S 0.425 0.425 0.05 0.1 50 30 
M 0.42 0.42 0.06 0.1 150 100 
L 0.415 0.415 0.07 0.1 200 150 

4. Computational Experiments 

4.1. Test problem instances  

To evaluate the effectiveness of the proposed BOGA, 18 
numerical examples (small, medium, and large-scale 
sizes) are generated in which their data are produced 
randomly. To cover various types of problems, some 

factors are identified: number of jobs and number of 
family jobs. Also, job sizes, release dates, processing 
times, and due dates are generated from discrete uniform 
distribution. The parameters and their levels are shown in 
Table 2. 

Table 2 
Random test problem instances 
Problem size Number job Number 

family 
Parameters from discrete uniform 

S 4‐5‐6‐7 2‐3 sj rj pj dj
M 8‐10 2‐3

ሾ1,5ሿ ሾ1,15ሿ ሾ1,10ሿ rj+pj+[1,20]M 15‐20‐30 3
L 50‐70‐100 5

4.2. Performance measures   

In the literature of multi-objective optimization like those 
of Zitzler et al.(2003), Paquete (2005), Knowles et al. 
(2006),Favuzza et al. (2006), and Minella et al. (2008), or 
more recently, Rezaeian et al. (2013) are examples of the 
enormous efforts made to provide the necessary tools for 
a better evaluation and comparison of multi-objective 
algorithms. 

According to the above studies, this paper considers four 
performance measures: the first performance measure is 
the diversification of solutions that is achieved by 
considering the Crowding Distance (CD) proposed by 
Favuzza et al. (2006) as follows: 

Diversification ൌ ෍
CD୧

NNS୧
The second performance measure is the Domain Of points 
of each Solution (DOS) that is achieved by using the 
following equation: 

10     8     0     0 3      0      2     1 6     0      4      5 0      0     0      0 7    0     0    9

3     4      2     1 7     8     7     9  0      0     0      0 10    0     0    0

6     0      0      5 
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ܱܵܦ ൌ ܺ ൅ ܻ
In the above equation, ܺ and ܻ are maximum distances 
between non-dominated solution along the axis of 

௠ܶ௔௫and ܥ௠௔௫ , as shown in Fig.3.  
The third performance measure is the computational time, 
and the last performance measure is the number of non-
dominated solutions (NNS), where these performance 
measures have been used to compare the proposed multi-

objective algorithms by Favuzza et al. (2006) and 
Rezaeian et al. (2013). 
4.3. Computational results and comparisons 
     To evaluate the proposed algorithms, ߝ-constraint and 
BOGA are coded in lingo9 and Matlab7, respectively. 
Each test problem is solved ten times through an HP 
4520s laptop with 4GB of RAM and a 3GHz processor 
running in windows7. In Table 3, the average of results is 
reported under four considered performance measures. 

Table 3 
Computational results (S=small, M=medium, L=large) 

Problem  Size problem ε െ constraint BOGA 

The relative variations of criteria for algorithms are 
calculated by the following relation and are shown in 
Table 4. In this table, negative values illustrate the smaller 

value of BOGA algorithm than ߝ െconstraint method, and 
vice versa. 

ሺܣܩܱܤ ௜ െ ௜ሻݐ݊݅ܽݎݐݏ݊݋ܿ_ߝ ⁄௜ݐ݊݅ܽݎݐݏ݊݋ܿ_ߝ *100 

Table 4  
 Variation percent of the performance measures 

Test problem Variation percent 
Time 

Variation percent 
NDS 

Variation percent 
DOS 

Variation percent 
Diversity 

1 -99.7 0.0 0.0 0.0 
2 -99.1 50.0 -17.6 -13.6 
3 - 98.5 33.3 28.5 36.3 
4 -99.3 0.0 60.0 20.0 
5 -97.9 66.6 100.0 38.8 
6 -99.5 50.0 -14.2 12.5 
7 -98.4 100.0 5.6 -20.0 
8 -98.7 100.0 -16.6 -17.9 
9 -99.1 100.0 52.9 64.2 
10 -98.9 50.0 13.3 15.0 
11 -98.8 200.0 29.6 32.9 
12 -97.7 50.0 13.3 12.8 
13 -99.4 75.0 30.7 25.0 
14 -99.6 120.0 38.6 23.4 
15 -98.3 200.0 25.0 26.3 
16 -97.9 200.0 111.1 164.7 
17 -96.5 133.3 16.6 124.2 
18 -87.8 85.7 20.0 103.5 

Number N ۻ Size Time(S) NNS DOS Diversity Time(S) NNS DOS Diversity 

1 4 2 S 714 2 3 10 2 2 3 10 
2 4 3 S 603 2 17 22 5 3 14 19 
3 5 2 S 698 3 7 11 10 4 9 15 
4 5 3 S 786 2 10 15 5 2 16 18 
5 6 2 S 965 3 11 18 20 5 22 25 
6 6 3 S 851 2 7 8 4 3 6 9 
7 7 2 S 928 4 7.1 10 14 8 7.5 8 
8 7 3 S 1949 5 10.8 12.8 25 10 9 10.5 
9 8 2 M 2920 4 17 15.4 26 8 26 25.3 
10 8 3 M 5015 4 15 20 52 6 17 23 
11 10 2 M 3060 3 10.8 18.5 36 9 14 24.6 
12 10 3 M 3600 4 6 7 80 6 6.8 7.9 
13 15 3 M 3851 4 13 20 23 7 17 25 
14 20 3 M 3625 5 14.5 26 12 11 20.1 32.1 
15 30 3 M 3967 4 12 19 67 12 15 24 
16 50 5 L 4236 6 9 17 86 18 19 45 
17 70 5 L 5469 9 12 19 187 21 14 42.6 
18 100 5 L 5224 7 12.5 22.5 500 13 15 45.8 
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Figs.11-14 are extracted from Table 4. It is seen that there 
is a significant difference between the proposed BOGA 
and ε െ constraint method; Fig.11 shows the CPU time 
of the BOGA which is smaller than ε െ constraint
method in all of the instances; the proposed BOGA 
produces more points than the ε െ constraint method 
(Fig.12), except two cases (i.e., test numbers 1 and 4) 
where both algorithms are equal. In addition, other 
performance measures for the proposed BOGA work 
better than ε െ constraint method (Fig.13-14). In other 
words, the proposed BOGA produces more solutions in a 
wide range of different values, providing a higher degree 
of diversification of solutions. This does not mean that the 
quality of BOGA is better than ε െ constraint method. 
The difference between these algorithms for test number 
13 is shown in Fig. 10. For this case, ε െ
constraint method generates non-dominated optimal
solutions in an unreasonable time, while BOGA obtains 
many diverse solutions in a reasonable time. Table 3 

clarifies that the proposed BOGA performs better than 
ε െ constraint method in most cases according to 4 
defined criteria. In few cases, ε െ constraint method 
performs better than the proposed BOGA (i.e., test 
numbers 2 and 8). Some performance measures of 
ε െ constraint method are carred out better than the 
proposed BOGA; differences are inconsiderable. For 
example, in test number 8,ε െ constraint method has 
produced a domain and diversification value of 10.8 and 
12.8, respectively, where both of them are slightly better 
than the corresponding value for the proposed BOGA; 
however, the proposed BOGA is strongly better in the 
NNS measure and CPU time than ε െ constraint method. 
Finally, this paper considered ε െ constraint method as 
superior algorithm to generate non-dominated optimal
solutions in an unreasonable time, while BOGA is 
identified as superior algorithm to obtain many diverse 
solutions in a reasonable time. 

Fig.10. Comparison of (a) BOGA and (b) constraint method 

Cmax

Tmax

Cmax

Tmax

(a) (b)
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Fig.11. CPU time of proposed algorithms  

Constraint method BOGA

Fig.10. Comparision of (a) BOG and (b) constraint method 



Javad Rezaeian et al./An Efficient Bi-Objective Genetic Algorithm… 

76

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig.12: NNS mesure of proposed algorithms  
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5. Conclusions and Future Research 

In this paper, a new bi objective mixed integer linear 
programming (MILP)model was proposed for a single 
batch processing machine scheduling problem. The 
considered assumptions are as follows: non-identical job 
sizes, incompatible job family, family setup time, split job 
size, and dynamic job arrivals. At first, ε െ constraint
method was applied to solve the problems, since the 
problem is NP-hard, then a BOGA algorithm was also 
presented to solve the problems in real size. According to 
the considered performance measures, two algorithms 
were compared. The comparison results demonstrated the 
effectiveness of the proposed BOGA. Some directions 
that lead to the ability to discover better solutions can be 
summarized as follows: using a mechanism for generating 
the better initial population, localizing the search in 
crossover and mutation stages using heuristics and using 
an effective local search heuristic, which has the ability of 
steering the search quickly towards the Pareto- optimal 
solutions. Moreover, extension of the proposed model to 
the case of scheduling other shop systems, e.g., flow shop 
and parallel batch processing machines are encouraged. 
Developing heuristic algorithms to minimize maximum 
tardiness on a batching machine and providing efficient 
lower bounds for the evaluation of algorithms would be 
interesting directions. 
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