
Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 65-78
DOI: 10.22094/joie.2018.792.1505

65

An Efficient Bi-Objective Genetic Algorithm for the Single Batch-
Processing Machine Scheduling Problem with Sequence-Dependent

Family Setup Time and Non-Identical Job Sizes

Javad Rezaeiana,* , Yaser Zarookb
a
Department of Industrial Engineering, Mazandaran University of Science and Technology

Received 12 July2 017; Revised 30 November 2017; Accepted 19 February 2018

Abstract
This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical
job sizes, dynamic job arrivals, incompatible job families, and sequence-dependent family setup time on the single batch- processor, where
split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for this
problem; then, it is solved by ߝ-constraint method. Since this problem is NP-hard, a bi-objective genetic algorithm (BOGA) is offered for
real-sized problems. The efficiency of the proposed BOGA is evaluated to be compared with many test problems by ߝ-constraint method
based on performance measures. The results show that the proposed BOGA is found to be more efficient and faster than the ߝ-constraint
method in generating Pareto fronts in most cases.

Keywords: Batch Processing; Incompatible Job Family; Release Date; Split Job Size; Family Setup Time.

1. Introduction & Literature Review

In recent decades, a batch-scheduling problem is a usual
category of production planning in most industries. The
main reasons of batch processing are avoidance of setup
times and material handling costs (Baker 1943). Rui et al.
(2012) divided batching into two types: serial batching
and parallel batching. In a serial batching, the length of a
batch is equivalent to the sum of the processing times of
jobs in it. In a parallel batching, several jobs are processed
in a batch simultaneously on a processor at the same time,
such that all the jobs in the batch start and complete their
process at the same time. The processing time of a batch
is equivalent to the biggest processing time of jobs in it.
The batching parallel machine (BPM) is able to process a
group of jobs as long as the sum of job sizes in the batch
is less than or equal to the capacity of the machine. Once
a batch is processed, the BPM cannot be interrupted; no
jobs can be removed from the machine until the process is
completed. To date, BPM problem has attracted many
investigators (Pinedo 2008; Rui et al., 2012;Dauzère-
Pérès and Mönch 2013;Guo et al. 2013). They are
commonly used to test electronic assemblies to detect
early failures and burn in oven. This problem is motivated
by the burn-in operation found in the final testing phase in
semiconductor manufacturing. This problem is important
because the scheduling of batching operations has a
significant economic impact. These operations constitute
a bottleneck in the final testing phase; consequently,
efficient scheduling to maximize throughput is of great
concern in productivity and on- time delivery

management. On the other hand, optimizing a single-
objective generally may lead to deterioration of other
possible objectives. Many industries, such as
semiconductor manufacturing, have trade-offs in their
scheduling where multiple objectives need to be
considered in order to optimize the overall performance of
the system.Crauwelsand Potts (1996) studied the BPM
problem. Perhaps, for the first time, they represented local
search heuristics for single batch machine scheduling to
minimize the number of late jobs. Considering jobs with
different sizes, Wang & Uzsoy (2002) gave complexity
results for Cmax and ΣCj criteria and provided some
heuristics and a branch-and-bound algorithm. A branch-
and-bound procedure for minimizing Cmax was also
developed by Dupont & Dhaenens (2002). Sung et al.
(2002) minimized makespan on a single burn in oven with
job family and dynamic job arrivals (Cheng et al., 2013).
Rafiee et al. (2010) represented a branch and price
algorithm to minimize make-span on a single batch-
processing machine with non-identical job sizes. This
paper considers non-identical job sizes that are allowed to
split job size into the batches. Therefore, split job size will
interrupt job sizes on the batches.
In most BPM studies, jobs are compatible for batching;
however, considered jobs belong to incompatible job
families, meaning that every job assigned to a batch must
belong to the same family, and that jobs belonging to the
same family share a common processing time, which is
also the batch processing time.

*Corresponding author Email address: j.rezaeian@ustmb.ac.ir

Javad Rezaeian et al./An Efficient Bi-Objective Genetic Algorithm…

66

In literature, researches considered the various aims;
Malvea&Uzsoy (2007) studied BPM with different
performance measures in the case of incompatible job
families in which each job has unit size. They also
presented exact and approximate solutions for single and
parallel batch processing machines problems. Dupont &
Dhaenens (2002) suggested an exact procedure for
minimizing the makespan on a batch processing machine
with non-identical job sizes. Yao & Jiang (2012) offered a
branch and bound algorithm for minimizing total
completion time on a single batch processing machine
with incompatible job families and dynamic job arrivals.
Perez et al. (2005) minimized total weighted tardiness on
a single batch processing machine with incompatible job
families. Most studies have considered single objective
optimization. Sometimes, many industries such as
semiconductor manufacturing consider both of their
customer’s requirements such as assuring on-time
reception and their manufacture’s requirements, such as
reducing work-in-process inventory. For example, Liu et
al. (2009) presented a bi-criterion scheduling problem
with equal processing times on a batch processing
machine. Xu et al.(2013) considered a bi-objective
scheduling problem on batch machines recently. This
paper considers a multi-objective optimization problem
that aims to minimize makespan and maximum tardiness
simultaneously. Hence, lower ܥ௠௔௫ leads to higher
productivity and higher throughput level for the

bottleneck operation. ௠ܶ௔௫, which represents most
violations of due dates, is related to customer’s on-time
delivery. In the literature of multi-objective optimization
problem, Husseinzadeh et al. (2010) presented a multi-
objective genetic algorithm for minimizing makespan and
maximum tardiness under situation of non-identical job
size on a BPM problem; therefore, already, contradiction
between two aims has been proven. According to the
mentioned studies, to get closer batch processing problem
to the real word, a common set of constraints has been
removed in this paper. These constraints consists of non-
identical job sizes where split size of jobs is allowed
between batches, dynamic job arrivals, incompatible job
families, and sequence-dependent family setup time on
the single batch_ processor. In the literature of scheduling
problem, including abbreviations ߙ ,ߛ | ߚ | ߙ shows
number of machines, ߚ shows special conditions, and ߛ
shows objective functions of the problem; therefore, this
problem is presented as 1|ݎ௝,ݏ௝, B, incompatible family,
split job size|ܥ௠௔௫, ௠ܶ௔௫, meaning that the single batch
processing machine scheduling problem is allowed to
operate under dynamic job arrivals, incompatible job
families, and non-identical job sizes which split job size.
The objective functions are minimization of ܥ௠௔௫ and

௠ܶ௔௫, respectively. Fig.1 shows a graphic illustration of
the problem.

Recently, solving the batch machine scheduling problems
using meta-heuristic algorithms and approximate methods
has become interesting by researchers. Melouk et al.
(2004) represented a simulated annealing for minimizing
make-span on single batch processing machine with non-
identical job sizes. Damodaran et al. (2006) introduced a

genetic algorithm for minimizing make-span on a batch-
processing machine with non-identical job sizes. Malvea
and Uzsoy (2007) presented a genetic algorithm for
minimizing maximum lateness on parallel identical batch
processing machines with dynamic job arrivals and
incompatible job families. Koh et al.(2005) proposed a

Fig.1. Illustration of the problem

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 65-78

67

hybrid genetic algorithm based on a random key
representation to minimize makespan and total weighted
completion time on a BPM problem with incompatible
job families and arbitrary jobs size. A hybrid genetic
algorithm was presented on identical parallel patch-
processing machines with non-identical job sizes by
Husseinzadeh et al. (2008). Rui et al. (2012) presented an
ant colony optimization and mixed integer programming
(MIP) for minimizing make-span on a BPM problem with

dynamic job arrivals and arbitrary job size. According to
the mentioned studies with a fewer number of
assumptions than this paper, this is a NP-hard problem,
since it reduces to 1|ݏ௝, B|ܥ௠௔௫ problem which is well
known to be NP-hard (Melouk et al. 2004). Therefore, in
this paper, a BOGA is presented to solve the large-sized
problem.

 The rest of the paper is organized as follows: in Section
2, a problem definition and a Mixed Integer Linear
Programming (MILP) model are presented; then, to
validate a new mathematical model and contradiction
between the objectives, an example is solved by ߝ-
constraint method in lingo9 software. In Section 3,
the structure of a bi-objective genetic algorithm and
the analysis and discussion of this proposed
approach are presented. Some experimentations and
comparison are shown in section 4. Finally, in section
5, conclusion and suggestions for future researches are
presented.

2. Problem Formulation
2.1. Problem description

This paper focuses on a BPM problem with the following
assumptions:

 There are N jobs with dynamic arrivals
and predefined due dates that are agreeable.

 A single processor has a limited capacity B, and
job j has a specified size ௝ܵ that is not more than
machine capacity.

 Total job sizes of a batch should not be more
than machine capacity B.

 Each job can be divided on the size in several
batches.

 Each batch should be processed only for
once; namely, it should not be interrupted.

 The machine only can process several jobs of a
family in each batch simultaneously, and jobs of
different families must be processed separately.

 The jobs of a family have equal processing
times, and processing time of a batch is equal to
processing time of the family assigned to the
batch, and each opened batch belongs to only a
family.

 There is setup time between two batches of
different job families.

 The machine is assumed available continuously
and breakdown is not allowed.

 The machine cannot be idle when at least a
non- completed job exists.

2.2. Mathematical description of the problem

This section provides a brief description of the
mathematics, a set of jobs N= {J1, J2, … , Jn}, a set of job
family M={F1, F2, … ,Fm}, and a set of K={B1, B2, … ,

Bk}. The following indices, parameters, and decision
variables are used throughout the paper.
Indices:

݆ index for jobs (݆ ൌ 1, 2, … , ݊ሻ

݅ index for families ሺ݅ ൌ 1, 2, … , ݉ሻ
݇ index for batchesሺ݇ ൌ 1, 2, … , ݇ሻ

݌ index for sequence of batchesሺ݌ ൌ 1, 2, … , ሻ݌
Parameters:

௝Sizeݏ of job ݆

௝݀Due date of job ݆
௝Releaseݎ date of job ݆
௜Processing݌ time of family ݅
ܤ Capacity of a single processor
ܯ Number of family

௜ܰNumber of jobs of family i
௜Setܨ of job of family ݅
Matrix setup time of between job families

Decision variables

 if job j of family I is assigned to the batch k ,1=ܘܓܑܒ܆
which is processed in position p on the machine; 0,
otherwise
 size of job j of family i assigned to batch k which = ܘܓܑܒۿ
is processed in position p on the machine (integer)

૚=൜ି࢖ᇲ࢑ᇲ࢏ᇲ࢐࢖࢑࢏࢐ࢆ
1 , if ܘܓܑܒ܆ ൈ ૚ିܘᇲܓᇲܑ′ܒ܆ ൌ 1
0 , otherwise

࢖࢑࢏࢐ࢃ ൌ ௝ܺ௜௞௣ ൈ ௜௞௣ܥ

 start time of batch k of family I in position p on =ܘܓܑ܂܁
the machine
completion time of batch k of family i in position p =ܘܓ۱ܑ
on the machine
 completion time job j =ܒ۱
 tardiness of job j =ܒ܂
 earliness of job j =ܒ۳

2.3. The mathematical modeling

In this subsection, objective functions and constraints are
formulated as follows:

݉݅݊ ଵݖ ൌ ௠௔௫ܥ

ሺ1ሻ

Javad Rezaeian et al./An Efficient Bi-Objective Genetic Algorithm…

68

݉݅݊ ଶݖ ൌ ௠ܶ௔௫ ሺ2ሻ

:ݐݏ

෍ ௝ܺ௜௞௣ ൑ ݇׊ 1

௠

௜ୀଵ

, ݆, ݌ ሺ3ሻ

෍ ܳ௝௜௞௣ ൑ ݇׊ܤ
௝אி௜

, ݅, ݌ ሺ4ሻ

෍ ෍ ܳ௝௜௞௣ ൌ ,݅׊௝ݏ ݆ א ݅ܨ

௞

௞ୀଵ

௣

௣ୀଵ

ሺ5ሻ

෍ ෍ ݌݆݇݅ܺ ൑ ,݅׊݆ݏ ݆ א ݅ܨ

݇

݇ൌ1

௣

௣ୀଵ

ሺ6ሻ

ܳ௝௜௞௣ ൑ ௝ܺ௜௞௣ כ ,݅׊௝ݏ ݆ א ,݅ܨ ݇, ݌ ሺ7ሻ

௝ܺ௜௞௣ ൑ ܳ௝௜௞௣݅׊, ݆ א ,݅ܨ ݇, ݌ (8)

௝ܺ௜௞௣ כ ௝ݎ ൑ ܵ ௜ܶ௞௣݅׊, ݆ א ,݅ܨ ݇, ݌ ሺ9ሻ

ܵܶ௜ᇲ௞ᇲ௣ିଵ ൅ ܲ௜ᇲ ൅ ܼ
െ1݌Ԣ݅Ԣ݇Ԣ݆݌݆݇݅

כ ௜݌ݑݐ݁ݏ ′,௜ ൑ ܵ ௜ܶ௞௣

݌׊ ൒ 2 , ,݅׊ ݅ ′, ݆ א ,௜ܨ ݆′ א ௜ܨ ′ , ݇, ݇ ′
ሺ10ሻ

௝ܺ௜௞௣ ൅ ௝ܺ ′௜ᇲ௞ᇲ௣ିଵ ൑ ܼ
െ1݌Ԣ݅Ԣ݇Ԣ݆݌݆݇݅

൅ ݌׊1 ൒ 2 , ,݅׊ ݅ ′, ݆ א ,௜ܨ ݆′ א ௜ܨ ′ , ݇, ݇′ (11)

2 כ ௝ܼ௜௞௣௝ᇲ௜ᇲ௞ᇲ௣ିଵ ൑ ݌݆݇݅ܺ ൅ ݆ܺ′݅Ԣ݇Ԣ݌െ1݌׊ ൒ 2 , ,݅׊ ݅′, ݆ א ,݅ܨ ݆′ א ′݅ܨ , ݇, ݇′ (12)

௝ܺ ′௜ᇲ௞ᇲ௣ାଵ ൑ ܺ௝௜௞௣݅׊, ݅ ′, ݆ א ,௜ܨ ݆′ א ௜ܨ ′ , ݇, ݇ ′, ݌ (13)

௜௞௣ܥ ൌ ܵ ௜ܶ௞௣ ൅ ௜ܲ݇׊, ݅, ݌ ሺ14ሻ

௝ܥ ൒ ௝ܹ௜௞௣݅׊, ݆ א ,௜ܨ ݇, ݌ ሺ15ሻ

௝ܹ௜௞௣ ൑ .ܯ ௝ܺ௜௞௣ , ௝ܹ௜௞௣ ൑ , ௜௞௣ܥ ௝ܹ௜௞௣ ൒ ௜௞௣ܥ െ ൫1 െ ௝ܺ௜௞௣൯. ܯ , ௝ܹ௜௞௣ ൒ 0
,݅׊ ݆ א ,௜ܨ ݇, ݌

(16)

௝ܥ ൅ ௝ܧ െ ௝ܶ ൌ ௝݀ ሺ17ሻ

௠௔௫ܥ ൒ ݆׊௝ܥ ሺ18ሻ

௠ܶ௔௫ ൒ ௝݆ܶ׊ ሺ19ሻ

௝ܺ௜௞௣ ൌ , 1 ݎ݋ 0 ܳ௝௜௞௣ ൒ ݎ݁݃݁ݐ݊݅& 0 ሺ20ሻ

Equations (1) and (2) show the objective functions, the
makespan, and the maximum tardiness, respectively. The
makespan of BPM problems is equal to the completion
time of the last batch and maximum tardiness is equal to
maximum deviation of the job’s due date. Eq. (3) ensures

that each batch only belongs to a family. Eq. (4) ensures
that the sum of the size of jobs assigned to a batch do not
exceed machine’s capacity. Eq. (5) guarantees the size of
each job. Eq. (6) ensures that job j can be in maximum
number of batch equivalent to ݏ௝. Eqs. (7) and (8) ensure

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 65-78

69

the relation between decision variables. Constraint sets (9,
10) represent the starting time of batches. Constraint sets
(11, 12) are determined for linearization of Eq. (10). Eq.
(13) guarantees sequence of processing batches on the
machine. Eq. (14) calculates the completion time of each
batch. Constraint sets (15-16) calculate completion time
of each job linearly. Eq. (17) determines earliness and
tardiness of each job. Constraint sets (18) and (19)
determine ܥ௠௔௫and ௠ܶ௔௫, respectively. Eq. (20)
represents binary restriction and integer restriction on the
decision variables.

 To validate the proposed mathematical model and
inconsistency between objectives, a small test problem is
provided with the following data: N=5, ிܰ=2 ,B=4,
ଵܯ ൌ ሼ1,2,5ሽ , ܯଶ ൌ ሼ3,4ሽ, ݌௜={3,2}, ݎ௝={3,8,5,5,5} ,
 ௝={2,2,2,2,2} , ݀j={7,13,11,8,8}, family setupݏ

time=ቂ0 1
1 0

ቃ.

 Using ߝ-constraint method in lingo 9, we could get Pareto
frontier as in Fig.3 where batch and sequence are shown
in Fig.2:

3. Proposed Bi-Objective Genetic Algorithm
There are different methods to solve multi-objective
optimization problems such as weighted average of the
objectives, goal programming, ߝ-constraint method
(Gendreau 2009; Mavrotas 2009), and many versions of
multi-objective evolutionary algorithms (MOEAs)

(Arabani et al., 2011; Hui et al., 2013; Rezaeian et al.,
2013). Herein, by using the structure of non-dominated
sorting genetic algorithm (NSGAII) presented by Deb et
al. (2002), a bi-objective genetic algorithm (BOGA) is
represented for this problem. Fig.4 shows diagram of the
proposed BOGA.

Fig.3. Pareto optimal front

Fig.2. Non-dominated solution of constraint method

Javad Rezaeian et al./An Efficient Bi-Objective Genetic Algorithm…

70

3.1. Solution coding and initialization

Initialization is one of the main steps of GA which
randomly generates initial population of individuals (Pt).
Figures 5 and 6 show coding and decoding of a
chromosome for a given example in section 2
respectively. Each chromosome consists of N batches

where N random numbers from [0, 1] are used as keys to
represent a sequence of batches, and there are B.N gens
where the values of gens are generated by the following
pseudocode:

Pseudo code 1. Solution coding

Fori=1, 2…, ࡹ
Number of ∑ ష૚࢏ࡲ,…,૚ࡲא࢐࢐ࡿ

, . . . , ∑ ࢏ࡲ,…,૚ࡲא࢐࢐ࡿ
 will be assigned to the gens of B.ି࢏ࡺ૚, … , ૚ି࢏ࡺሺ࡮ ൅ (࢏ࡺ

Randomly.
End

Batches belong to family1 {ܬଵ, ,ଶܬ ,ଷܬ} ହ} Batches belong to family2ܬ {ସܬ

Start

Initial population
Gen=0

Front=1

Gen=gen+1

Is population
classified?

Parent’s selection

Crossover

Mutation &elitism

Population
Filled?

Gen<max(
gen)

Front=1

Is population
classified?

Select front1 as pare
to optimal

Stop

Identify non‐
dominated

solution

Front=Front
+1

Identify non dominated solution

Calculate crowding distance for
each solution

Front=Front+1

Fig.4. Structure of the proposed BOGA

Dummy fitness based on ranking

yes

No

yes

No

No

yes

yes

No

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 65-78

71

 0.5 0.2 0.4 0.1 0.3
Fig. 5. Chromosome structure

 0.5 0.2 0.4 0.1 0.3

 0.1 0.2 0.3 0.5

Fig. 6. Decode of the chromosome

3.2. Evaluation & selection

The solutions are arranged in different fronts by non-
dominated sorting. For each solution of the ith front, a
dummy fitness value (௜) will be assigned whose݇݊ܽݎ
value of Pareto front is lower than other fronts. Based on
the fitness values, two parents are selected by the roulette
wheel technique where chromosomes with higher fitness
are most likely to be selected for crossover. The fitness
value is calculated based on a geometric distribution as
follows:

 ௜= (1/populationݏݏ݁݊ݐ݅ܨ
size)*ሺ1 െ 1/populationsizeሻ ௥௔௡௞೔

3.3. Generation
By using the following operators, the new generation will
be produced as follows:
 Step1: some of elite solutions will be moved to the next
generation according to elitism operator1 presented in
subsection 3.3.4.
 Step2: two selected parents by roulette wheel will be
crossed by cross operator1 and cross operator2 with the
same probability.
 Step3: the generated offspring from step2 will be
mutated.

 Step4: the generated offspring of steps 2 and 3 will be
checked by elitism operator2.
Step5: Repeat steps 2 and 4 until the next generation is
completed.

3.3.1. Crossover operator1

This operator will combine two random parents for
generating new offspring, as shown in Fig.7. The
performance of this operator is illustrated according to
pseudo code 2:

௟ܸଵ௜The value of the lth gen of the ith family of 1th parent.
௟ܸଶ௜The value of the lth gen of the ith family of 2th

offspring.
௟ܸ௜The value of the lth gen of the ith family of offspring.

ܸԢ௟௜The value of the lth gen of the ith family of modified
offspring.
 The values of gens of each offspring will be calculated
as follows:

௟ܸ௜ ൌ ௟ܸଵ௜ ൅ ௟ܸଶ௜ ; ݅׊ ൌ 1, . . , ௙ܰ , ݈׊ ൌ 1, . . , ௜ܰ . ܤ
In addition, the values of gens of modified offspring

will be calculated by the following pseudocode:

Pseudo code 2. Crossover operator 1

࢏࢒Ԣࢂ ൌ ሾ૙ሿ૚ൈ࡮.ࡺ
For ࢏׊ ൌ ૚, ૛, … , ࡹ
Forࢠ ൌ ૚, ૛, … , ∑ ࢏ࡲא࢐࢐ࡿ

ሽ࢏࢒ࢂሼ࢞ࢇࡹ ൌ ࢒׊ , ࢏כ࢒ࢂ ൌ ૚, … , .࡮ ࢏ࡺ

࢏כ࢒Ԣࢂ ൌ ෍ ࢐ࡿ ൅ ࢠ
ష૚࢏ࡲ,…,૚ࡲא࢐

ൌ0࢏כ࢒ࢂ
End
End

0 0 0 0 0 10 9 0 7 0 0 83 0 0 4 2 1 5 6

4ܬ 2ܬ 3ܬ ,1ܬ 5ܬ

,1ܬ 3ܬ 4ܬ 2ܬ 5ܬ

Sequence of batches

ܻܶܲܯܧ

Javad Rezaeian et al./An Efficient Bi-Objective Genetic Algorithm…

72

Parent1

 0.5 0.2 0.4 0.1 0.3

Parent2

 0.2 0.7 0.5 0.4 0.1

Offspring

 0.7 0.9 0.9 0.5 0.4

 Offspring modified

 3 4 5 2 1

 : Offspring decoding

Fig. 7. Crossover operator1

3.3.2. Crossover operator 2

In this operator, two parents are combined to produce two
offspring. At first, a random integer number between [1,

௙ܰ-1] will be produced and, then, the batches of two

selected parents will be changed together from cut-point.
This operator improves the sequence of job families as
shown in Fig.8.

Cross point

 Parent 1

 0.5 0.2 0.4 0.1 0.3

 Parent 2

 0.2 0.7 0.5 0.4 0.1

Offspring 1

 0.5 0.2 0.4 0.1 0.3

Offspring 2
 0.2 0.7 0.5 0.4 0.1

Fig. 8. Crossover operator 2

3.3.3. Mutation To maintain local optimum, the multi-swapping mutation
is used as a mutation operator. Herein, the contents of two

0 10 9 0 7 0 0 80 0 0 03 0 0 4 2 1 5 6

0 2 5 0 3 1 4 6 8 7 9 10 0 0 0 0 0 0 0 0

8 17 18 10 0 0 0 03 2 5 4 5 2 9 12 7 0 0 8

10 8 7 9 3 0 2 1 5 6 0 4 0 0 0 0 0 0 0 0

,3ܬ ,1ܬ 4ܬ 2ܬ ,2ܬ 5ܬ

0 0 0 03 0 0 4 2 1 5 6 0 10 9 0 7 0 0 8

0 0 0 00 2 5 0 3 1 4 6 8 7 9 10 0 0 0 0

2 1 5 6 8 7 9 1 0 0 0 0 00 0 0 03 0 0 4

0 10 9 0 3 1 4 6 0 2 5 0 0 0 0 0 7 0 0 8

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 65-78

73

random genes of each family are swapped. Fig.9 shows the performance of this operator:
Swap 0, 4 Swap 7, 10

Mutate

Fig. 9. Multiswapping mutation operator

3.3.4. Elitism operators

 Herein, two elitism operators are applied as follows: at
first, a number of the best solutions of the last generation
are transferred to the next generation. Then, generated
offspring must be compared with solutions of the worst
frontier of the last generation; if it dominated all of them,
then it will enter the next generation.

3.4. Parameters setting

The proposed algorithm uses parameters as number of
generation, population size, crossover rate, or mutation
rate. The performance of an Evaluation Algorithm (EA) is
generally sensitive to the setting of the parameters
influencing the search behavior and the quality of
convergence. It is highly desirable to set these parameters
to the levels that produce high-quality solutions. Herein,
the parameters are set by test problems in subsection 4.1,
and the results are given in Table 1.

Table 1
Parameters setting

Problem size Cross over
rate (1)

Cross over
rate (2)

Mutation
rate

Elitism Population size Number of generation

S 0.425 0.425 0.05 0.1 50 30
M 0.42 0.42 0.06 0.1 150 100
L 0.415 0.415 0.07 0.1 200 150

4. Computational Experiments

4.1. Test problem instances

To evaluate the effectiveness of the proposed BOGA, 18
numerical examples (small, medium, and large-scale
sizes) are generated in which their data are produced
randomly. To cover various types of problems, some

factors are identified: number of jobs and number of
family jobs. Also, job sizes, release dates, processing
times, and due dates are generated from discrete uniform
distribution. The parameters and their levels are shown in
Table 2.

Table 2
Random test problem instances
Problem size Number job Number

family
Parameters from discrete uniform

S 4‐5‐6‐7 2‐3 sj rj pj dj
M 8‐10 2‐3

ሾ1,5ሿ ሾ1,15ሿ ሾ1,10ሿ rj+pj+[1,20]M 15‐20‐30 3
L 50‐70‐100 5

4.2. Performance measures

In the literature of multi-objective optimization like those
of Zitzler et al.(2003), Paquete (2005), Knowles et al.
(2006),Favuzza et al. (2006), and Minella et al. (2008), or
more recently, Rezaeian et al. (2013) are examples of the
enormous efforts made to provide the necessary tools for
a better evaluation and comparison of multi-objective
algorithms.

According to the above studies, this paper considers four
performance measures: the first performance measure is
the diversification of solutions that is achieved by
considering the Crowding Distance (CD) proposed by
Favuzza et al. (2006) as follows:

Diversification ൌ ෍
CD୧

NNS୧
The second performance measure is the Domain Of points
of each Solution (DOS) that is achieved by using the
following equation:

10 8 0 0 3 0 2 1 6 0 4 5 0 0 0 0 7 0 0 9

3 4 2 1 7 8 7 9 0 0 0 0 10 0 0 0

6 0 0 5

Javad Rezaeian et al./An Efficient Bi-Objective Genetic Algorithm…

74

ܱܵܦ ൌ ܺ ൅ ܻ
In the above equation, ܺ and ܻ are maximum distances
between non-dominated solution along the axis of

௠ܶ௔௫and ܥ௠௔௫ , as shown in Fig.3.
The third performance measure is the computational time,
and the last performance measure is the number of non-
dominated solutions (NNS), where these performance
measures have been used to compare the proposed multi-

objective algorithms by Favuzza et al. (2006) and
Rezaeian et al. (2013).
4.3. Computational results and comparisons
 To evaluate the proposed algorithms, ߝ-constraint and
BOGA are coded in lingo9 and Matlab7, respectively.
Each test problem is solved ten times through an HP
4520s laptop with 4GB of RAM and a 3GHz processor
running in windows7. In Table 3, the average of results is
reported under four considered performance measures.

Table 3
Computational results (S=small, M=medium, L=large)

Problem Size problem ε െ constraint BOGA

The relative variations of criteria for algorithms are
calculated by the following relation and are shown in
Table 4. In this table, negative values illustrate the smaller

value of BOGA algorithm than ߝ െconstraint method, and
vice versa.

ሺܣܩܱܤ ௜ െ ௜ሻݐ݊݅ܽݎݐݏ݊݋ܿ_ߝ ⁄௜ݐ݊݅ܽݎݐݏ݊݋ܿ_ߝ *100

Table 4
 Variation percent of the performance measures

Test problem Variation percent
Time

Variation percent
NDS

Variation percent
DOS

Variation percent
Diversity

1 -99.7 0.0 0.0 0.0
2 -99.1 50.0 -17.6 -13.6
3 - 98.5 33.3 28.5 36.3
4 -99.3 0.0 60.0 20.0
5 -97.9 66.6 100.0 38.8
6 -99.5 50.0 -14.2 12.5
7 -98.4 100.0 5.6 -20.0
8 -98.7 100.0 -16.6 -17.9
9 -99.1 100.0 52.9 64.2
10 -98.9 50.0 13.3 15.0
11 -98.8 200.0 29.6 32.9
12 -97.7 50.0 13.3 12.8
13 -99.4 75.0 30.7 25.0
14 -99.6 120.0 38.6 23.4
15 -98.3 200.0 25.0 26.3
16 -97.9 200.0 111.1 164.7
17 -96.5 133.3 16.6 124.2
18 -87.8 85.7 20.0 103.5

Number N ۻ Size Time(S) NNS DOS Diversity Time(S) NNS DOS Diversity

1 4 2 S 714 2 3 10 2 2 3 10
2 4 3 S 603 2 17 22 5 3 14 19
3 5 2 S 698 3 7 11 10 4 9 15
4 5 3 S 786 2 10 15 5 2 16 18
5 6 2 S 965 3 11 18 20 5 22 25
6 6 3 S 851 2 7 8 4 3 6 9
7 7 2 S 928 4 7.1 10 14 8 7.5 8
8 7 3 S 1949 5 10.8 12.8 25 10 9 10.5
9 8 2 M 2920 4 17 15.4 26 8 26 25.3
10 8 3 M 5015 4 15 20 52 6 17 23
11 10 2 M 3060 3 10.8 18.5 36 9 14 24.6
12 10 3 M 3600 4 6 7 80 6 6.8 7.9
13 15 3 M 3851 4 13 20 23 7 17 25
14 20 3 M 3625 5 14.5 26 12 11 20.1 32.1
15 30 3 M 3967 4 12 19 67 12 15 24
16 50 5 L 4236 6 9 17 86 18 19 45
17 70 5 L 5469 9 12 19 187 21 14 42.6
18 100 5 L 5224 7 12.5 22.5 500 13 15 45.8

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 65-78

75

Figs.11-14 are extracted from Table 4. It is seen that there
is a significant difference between the proposed BOGA
and ε െ constraint method; Fig.11 shows the CPU time
of the BOGA which is smaller than ε െ constraint
method in all of the instances; the proposed BOGA
produces more points than the ε െ constraint method
(Fig.12), except two cases (i.e., test numbers 1 and 4)
where both algorithms are equal. In addition, other
performance measures for the proposed BOGA work
better than ε െ constraint method (Fig.13-14). In other
words, the proposed BOGA produces more solutions in a
wide range of different values, providing a higher degree
of diversification of solutions. This does not mean that the
quality of BOGA is better than ε െ constraint method.
The difference between these algorithms for test number
13 is shown in Fig. 10. For this case, ε െ
constraint method generates non-dominated optimal
solutions in an unreasonable time, while BOGA obtains
many diverse solutions in a reasonable time. Table 3

clarifies that the proposed BOGA performs better than
ε െ constraint method in most cases according to 4
defined criteria. In few cases, ε െ constraint method
performs better than the proposed BOGA (i.e., test
numbers 2 and 8). Some performance measures of
ε െ constraint method are carred out better than the
proposed BOGA; differences are inconsiderable. For
example, in test number 8,ε െ constraint method has
produced a domain and diversification value of 10.8 and
12.8, respectively, where both of them are slightly better
than the corresponding value for the proposed BOGA;
however, the proposed BOGA is strongly better in the
NNS measure and CPU time than ε െ constraint method.
Finally, this paper considered ε െ constraint method as
superior algorithm to generate non-dominated optimal
solutions in an unreasonable time, while BOGA is
identified as superior algorithm to obtain many diverse
solutions in a reasonable time.

Fig.10. Comparison of (a) BOGA and (b) constraint method

Cmax

Tmax

Cmax

Tmax

(a) (b)

0

1000

2000

3000

4000

5000

6000

Fig.11. CPU time of proposed algorithms

Constraint method BOGA

Fig.10. Comparision of (a) BOG and (b) constraint method

Javad Rezaeian et al./An Efficient Bi-Objective Genetic Algorithm…

76

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig.12: NNS mesure of proposed algorithms

Constraint method BOGA

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig.13: DOS of proposed algorithms

Constrain method BOGA

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig.14: Diversity of proposed algorithms

Constraint method BOGA

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 65-78

77

5. Conclusions and Future Research

In this paper, a new bi objective mixed integer linear
programming (MILP)model was proposed for a single
batch processing machine scheduling problem. The
considered assumptions are as follows: non-identical job
sizes, incompatible job family, family setup time, split job
size, and dynamic job arrivals. At first, ε െ constraint
method was applied to solve the problems, since the
problem is NP-hard, then a BOGA algorithm was also
presented to solve the problems in real size. According to
the considered performance measures, two algorithms
were compared. The comparison results demonstrated the
effectiveness of the proposed BOGA. Some directions
that lead to the ability to discover better solutions can be
summarized as follows: using a mechanism for generating
the better initial population, localizing the search in
crossover and mutation stages using heuristics and using
an effective local search heuristic, which has the ability of
steering the search quickly towards the Pareto- optimal
solutions. Moreover, extension of the proposed model to
the case of scheduling other shop systems, e.g., flow shop
and parallel batch processing machines are encouraged.
Developing heuristic algorithms to minimize maximum
tardiness on a batching machine and providing efficient
lower bounds for the evaluation of algorithms would be
interesting directions.

References

Arabani, A., Zandieh, M., and Fatemi Ghomi, S. M. T.
(2011). Multi-objective genetic-based algorithms for
a cross-docking scheduling problem. Applied Soft
Computing, 11(8), 4954-4970.

Baker, R. (1943). Principles of sequencing and
scheduling. Wiley, New Jersey.

Cheng, B. , Wang, Q., Yang, Sh., and Hu, X. (2013).An
improved ant colony optimization for scheduling
identical parallel batching machines with arbitrary
job sizes. Applied Soft Computing, 13(2), 765-772.

Crauwels, H. A. J., and Potts, C. N. (1996). Local search
heuristics for single-machine scheduling with
batching to minimize the number of late jobs.
European Journal of Operational Research, 90(2),
200-213.

Damodaran, P., Manjeshwar, P. K., and Srihari, K.
(2006). Minimizing makespan on a batch-processing
machine with non-identical job sizes using genetic
algorithms. International Journal of Production
Economics, 103(2), 882–891.

Dauzère-Pérès, S., and Mönch, L. (2013). Scheduling jobs
on a single batch processing machine with
incompatible job families and weighted number of
tardy jobs objective. Computers& Operations
Research, 40(5), 1224-1233.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2002). A
Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization: NSGA-
II. Lecture notes in computer science 1917 (2000):
849-858.

Dupont, L., and Dhaenens, C. (2002). Minimizing the
makespan on a batch machine with non-identical job
sizes: an exact procedure. Computers & Operations
Research, 29(7), 807-819.

Favuzza, S., Ippolito, M. G., Riva Sanseverino, E. (2006).
Crowded comparison operators for constraints
handling in NSGA-II for optimal design of the
compensation system in electrical distribution
networks. Advanced Engineering Informatics, 20(2),
201–211.

Gendreau, M. (2009). An exact -constraint method for bi
objective combinatorial optimization problems.
European Journal of Operational Research, 194(1),
39-50.

Guo, Z. X., Wong, W. K., and Leung, S. Y. S. (2013). A
hybrid intelligentmodel for order allocation planning
in make-to-order manufacturing.Applied Soft
Computing, 13(3), 1376-1390.

Hui, Lu., Ruiyao,Niu., Jing, Liu., Zheng, Zhu. (2013). A
chaotic non-dominated sorting genetic algorithm for
the multi-objective automatic test task scheduling
problem. Applied Soft Computing, 13(5), 2790-2802.

HusseinzadehKashan, A., Karimi, B., and Jolai, F. (2010).
An effective hybrid multi-objective genetic algorithm
for bi-criteria scheduling on a single batch processing
machine with non-identical job sizes. Engineering
Applications of Artificial Intelligence, 23(6), 911–
922.

Husseinzadeh Kashan, A. , Karimi, B., and Jenabi, M.
(2008). A hybrid genetic heuristic for scheduling
parallel batch processing machines with arbitrary job
sizes. Computers & Operations Research, 35(4),
1084–1098.

Knowles, J., L. Thiele, E. Zitzler. (2006). A tutorial on the
performance assessment of stochastic multiobjective
optimizers. Technical Report 214, Computer
Engineering and Networks Laboratory (TIK), ETH
Zurich. [Revised version.]

Koh, Sh., Koo, P. H., Kim, D. Ch., and Hur, W. Su.
(2005). Scheduling a single batch processing machine
with arbitrary job sizes and incompatible job families.
International Journal of Production Economics,
98(1), 81–96.

Liu, L. L., Ng, C. T., and Chen, T. C. E. (2009). Bi-
criterion scheduling with equal processing times on a
batch processing machine. Computers & Operations
Research, 36(2), 110–118.

Malvea, S., and Uzsoy, R. (2007). A genetic algorithm for
minimizing maximum lateness on parallel identical
batch processing machines with dynamic job arrivals
and incompatible job families. Computers &
Operations Research, 34(10), 3016 – 3028.

Mavrotas, G. (2009). Effective implementation of the -
constraint method in multi objective mathematical
programming problems. Applied Mathematics and
Computation, 213(2), 455-465.

Melouk, Sh., Damodaran, P., and Chang, P. Y. (2004).
Minimizing makespan for single machine batch
processing with non-identical job sizes using

M

Pa

Pe

Pi

Ra

Re

simulated
Production

Minella et al. (2
objective A
Problem, Jo

aquete, L. F. (
for multi
Method an
Departmen
Darmstadt,

erez, I., Fow
Minimizing
process m
Computers

nedo, M. L. (2
systems. 3e

afiee, N., Ka
(2010). A
makespan o
non-identic
Operations

ezaeian, J., J
and Jolai
approach b
network
manufactur
Engineering

J

annealing.
n Economics, 8
2008). A Rev
Algorithms fo
Journal on Com
(2005). Stoch
-objective c
d analysis. Ph

nt, Darmstad
 Germany.
wler, W., a
g total weight

machine with
& Operations

2008). Schedu
ed, Springer, N
arimi, B., an
branch and p

on a single ba
cal job
s Research, 37
Javadian, N.,

F. (2013).
based on the g
to design

ring system.
g, 66(4), 1004

Javad Rezaeia

Internationa
87(2), 141–14
iew and Evalu

or the Flow-s
mputing, 20(3
hastic local se
combinatorial
h.D.thesis, Co

dt Universityo

and Matthew
ed tardiness o

incompatible
s Research, 32
uling Theory,
New York.
nd Husseinza
price algorith
atch processin

sizes. C
7(10), 1720–1

Tavakkoli-M
A hybrid

genetic algori
an increm
Computers

4-1014.

an et al./An Ef

al Journal
47.
uation of Mul
hop Scheduli

3),451-471.
earch algorithm

optimizatio
omputer Scien
of Technolog

w, W. (200
on a single bat
e job famili
2(2), 327–341
algorithms, a

adehKashan,
hm to minimi
ng machine w

Computers
730.

Moghaddam, R
multi-objecti

ithm and neu
mental cellu

& Industr

Efficient Bi-Obj

78

of

lti-
ing

ms
on:
nce
gy,

5).
tch
ies.
1.
and

A.
ize

with
&

R.,
ive

ural
ular
rial

R

Su

W

X

Y

Zi

bjective Geneti

ui, X., Hua
Makespan
machine v
Operations

ung, C. S., Ch
(2002). M
oven with
Computers

Wang, Ch. S
algorithm t
processing
Operations

Xu, R., Chen,
scheduling
based ant
Production

Yao, Sh., and
algorithm
single batc
and dy
Operations

itzler, E., L. T
da Fonsec
multi-objec

IEEE Tra

ic Algorithm…

aping, Ch.,
minimization

via ant colony
s Research, 39
houng, Y. I.,

Minimizing ma
job families

s & Operation
h., and Uzs
to minimize m

machin
s Research, 29
, H., and Li

g problem on
colony syste

n Economics,
Jiang, Z. (2

for minimizin
ch machine w
ynamic ar
s Research, 39
Thiele, M. Lau
ca. (2003).
ctive optimiz

ns. Evolution

…

and Xuepin
n on single b
y optimization
9(3), 582–593
Hong, J. M.,
akespan on a
s and dynam

ns Research, 2
soy, R. (200
maximum late
ne. Com
9(12), 1621-1
i, X. (2013).
batch machin

em. Internatio
145(1), 371-3
2012). A bra
ng total comp

with incompati
rrivals. C
9(5), 939–951
umanns, C. M
Performance

zers:An analy

nary Comput

ng, Li. (201
batch-process
n. Computers
3.

and Kim, Y.
a single burn

mic job arriva
29(8), 995-100
02). A gene
eness on a ba
mputers
640.

A bi-object
nes via a Pare
onal Journal

386.
anch and bou
pletion time on
ible job famil

Computers
.

M. Fonseca, V.
assessment

ysis and revie

t. (7) 117–13

12).
ing

s &

H.
n-in
als.
07.
etic
atch

&

tive
eto-

of

und
n a
lies

&

 G.
of

ew.

32.

DOI: 10.22094/joie.2018.792.1505

This article can be cited: Rezaeian, J.&, Zarook, Y.(2018).An Efficient Bi-Objective
Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem
with Sequence-Dependent Family Setup Time and Non-Identical Job Sizes.journal of
Optimization in Industrial Engineering. 11(2),2018, 65-78.

URL:http://qjie.ir/article_538503.html

