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Abstract  

In this paper a model is propose for joint replenishment and locations distribution centers (DCs) of a distribution system that is responsible for 

ordering and dispatching shipments of a single product to DCs. The warehouse spaces DCs are limited and these can determine amount of 

requirement product by considering proposed discount. The propose model is develop to minimize total costs consists of locating, ordering, 

holding and purchasing under condition all-units discount. In this model number and location of DCs, joint replenishment frequencies and 

optimum order quantity of each DC are defined. To solve joint replenishment problem (JRP) determining optimal limits upper and lower 

replenishment cycle time T is very important. For determining this limits we use quantity discount RAND algorithm (QD-RAND). To use this 

method need to determine the location each of DCs. Therefore, first we consider the limits between a very small amount and 2 then the model 

solved by genetic algorithm (GA). After obtaining the optimal upper and lower replenishment cycle time T, the model will be resolved by 

harmony search algorithm (HSA) and GA. The parameters of all algorithms are first calibrated by means of the response surface methodology 

(RSM). The comparison results based on different problem sizes are in favor of HS. 

Keywords: Joint replenishment problem; Location; All-units discount; Genetic Algorithm; Harmony Search. 

1. Introduction and Literature Review

 

Joint replenishment

 

(JR)

 

is

 

an applicable inventory problem 

in which group items into the same order from a supplier

 

or 

a same place

 

to achieve the purpose of sharing the main 

preparation costs. Also JRP

 

is relevant when replenishing a 

single item in multiple locations helping companies to 

develop strategies that will help exploiting economies of 

scale combining shipments to multiple locations. JR

 

of 

multiple locations

 

is possible when all of these locations

 

are 

centrally controlled or when these locations

 

are in coalition 

for joint replenishment. This is the case of some franchise 

stores which are

 

located in the same city or ATM machines 

belonging to same financial institution (Silva and Gao, 

2013). Generally in JRP,

 

it is assumed that unit cost is 

constant, no matter what quantity is purchased. But in 

reality, suppliers may induce their customers to place larger 

orders by offering them quantity discounts. If the quantity 

purchased is greater than a specified “price break” quantity, 

the cost per unit is reduced. Two types of price break 

schedule can be considered (all-units and incremental 

discount schedule).

 

The all-units discount applies the 

discounted price to all units beginning with the first unit, if 

the quantity purchased exceeds the price break quantity. The 

incremental discount schedule applies the discounted price 

only to those units over the price break quantity.

 

Cha and 

Moon (2005) modeled the joint replenishment problem for 

multiple products considering all-units discount and 

constant demand. They developed a heuristic algorithm and 

an intelligent algorithm to solve JRP and explained these 

algorithms by numerical examples.

 

Taleizadeh

 

et

 

al.

 

(2010) 

considered an optimizing multiproduct multi constraint 

inventory control systems with stochastic replenishment 

intervals and discount. In this research they considered that 

the period between two replenishments is independent and 

also added the constraints of warehouse space and budget. 

In this model the incremental discounts to purchase 

products are considered, and a combination of backorder 

and lost sales are taken into account for the shortages.

 

They 

used genetic algorithm and simulated annealing to solve this 

problem. 

 

There are two common kinds of JRP: the single-buyer JRP 

(SJRP) and multi-buyer JRP (MJRP).

 

In real conditions 

many studies have been conducted about SJRP (Wang and 

et al., 2012). Hoque (2006) modeled the JRP

 

with storage 

capacity, transport capacity, and budget constraints. The  
*Corresponding  author Email addresses: pasandid@yahoo.com 
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main objective is calculate the appropriate lower bound of 

the basic cycle time for minimizing the total cost. Porras 

and Dekker (2006) modeled the JRP for M items under 

certain demand with minimum order quantity constraint for 

each item in the replenishment order. They obtained the 

range of basic cycle time and proposed an efficient global 

optimization method to solve the JRP with constraints. The 

proposed algorithm was tested with data from a real case 

and some additional numerical experiments. As for the 

MJRP, there are a few literature reviews. The MJRP is a 

common method for multi-branch companies that their 

branches order a group of items from a supplier. Obviously, 

JRP among the branches reduce the firm’s ordering and 

inventory costs. (Chan and et al., 2006). Chan et al. (2003) 

presented GA for solving MJRP problem.  Li (2004) 

designed RAND algorithm for solving MJRP problem. Lu 

et al. (2010) solved the MJRP problem with RAND 

algorithm considering modeling resource constraint.  

There are two strategies to solve joint replenishment 

problem: A Direct Grouping Strategy (DGS) and Indirect 

grouping strategy (IGS). Under DGS, products are 

partitioned into a predetermined number of sets and the 

products within each set are jointly replenished with the 

same cycle time. Under IGS a replenishment is made at 

regular time-intervals and each product has a replenishment 

quantity sufficient to last for exactly an integer multiple of 

the regular time interval. Groups in IGS are indirectly 

formed by products having the same integer multipliers. The 

literature suggests that IGS outperforms DGS for high 

major ordering cost because many products can be jointly 

replenished when using an IGS (Khouja and Goyal, 2008). 

Arkin et al. (1989) proved that JRP is a NP-hard problem. 

Thus different methods are proposed to solve JPR. 

Generally, these methods can be divided in three groups: (1) 

heuristic methods, (2) meta-heuristic methods, and (3) 

special methods. RAND method can be noted as one of the 

heuristic methods for solving JRP that was presented by 

Kaspi and Rosenblatt (1991). Also Goyal and Deshmukh 

(1993), van Eijs (1993), Hariga (1994), Viswanathan (1996) 

and Fung and Ma (2001) presented other heuristic 

algorithms to solve this problem. For further studies on this 

topic you can refer article Khouja and Goyal (2008). The 

main objective in each heuristic algorithm is to find upper 

and lower limit for T (    ,     ). Meta-heuristic methods 

for solving JRP: Hong and Kim (2009) proposed a GA to 

solve JRP with exact inventory cost. Khouja et al. (2000) 

presented a GA to solve JRP and compared its efficiency 

with RAND algorithm. There are several special methods 

for solving JRP such as the power-of-two (PoT) policy (Lee 

& Yao 2003) and the evolutionary computing (Olsen 2005) 

to solve JRP.  

In recent years many studies have been done to consider 

JRP with logistic activities (like delivery, location and 

routing). Wang et al. (2012) considered Joint replenishment 

and delivery (JRD) problem as an important applicable 

managerial problem under stochastic demand. They 

designed an effective and efficient hybrid differential 

evolution algorithm (HDE) based on the differential 

evolution algorithm (DE) and GA to solve this problem. 

They compared HDE with GA and according to obtained 

results they found out HDE is faster than GA and has a 

higher convergence rate. Qu et al. (2013) modeled JRD 

where a warehouse orders different products from suppliers 

and delivers them to retailers. The objective is to determine 

grouping and scheduling decisions and specify order 

quantities and deliver them to retailers in order to minimize 

the costs. They designed Adaptive hybrid differential 

evolution (AHDE) algorithm to find the optimal solution. 

About JRP-location there are very few studies. Silva and 

Gao (2013) published the first article about JRP-location. 

The model as a facility location model not only includes the 

location fixed cost but also considers inventory 

replenishment cost. They proposed a two-stage heuristic 

algorithm to solve the model. In the first stage distribution 

centers will be located and their total location cost is 

computed according to this rule: demand points are always 

dedicated to the nearest distribution center. In the second 

stage JRP will be solved according to specified places in 

first stage. In this stage Vishwanathan algorithm is used to 

determine the best policy of Joint replenishment. They 

propose a Greedy Randomized Adaptive Search Procedure 

(GRASP) to solve the problem.  Wang et al. (2013) 

proposed Hybrid Self-Adapting Differential Evolution 

Algorithm to solve JRP-location and compared its 

efficiency with GA and HDE algorithms. Qu et al. (2014) 

modeled location-inventory problem considering joint 

replenishment and independent replenishment for several 

products, stochastic and independent demand and deficit 

cost. They designed a two-stage solution method. In the first 

stage two sets of customers allocated to open DCs are 

defined and total annual cost for each open DC is obtained 

by dedicating sets of customers to sets of open DCs. In 

second stage total open DCs cost in all potential locations 

will be sorted descending and optimal locations are the first 

ones in the sorted area. 

The remainder of the paper is organized as follows. In 

Section 2, the problem is stated. In Section 3, the proposed 

mathematical model is stated. In Section 4, the solution 

approaches are described. Section 5 demonstrates the 

parameter tuning and statistical comparison of the proposed 

algorithms on several problem instances of different sizes. 

Finally, conclusions and future studies come in Section 6. 

 

 2. Problem Definition 

In this paper we examine the JRP and location of DCs in a 

distributed system with a centralized decision maker that is 

responsible for ordering and dispatching shipments of a 

single item to the distribution centers. The warehouse 

spaces DCs are limited and these can determine amount of 

requirement product by considering proposed discount. The 
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model seeks to minimize the total costs of joint 

replenishment and costs of locating DCs, which joint 

replenishment cost is includes ordering, purchase under all-

units discount and holding. The model presented in this 

paper is an integrated approach between the decisions of the 

location and inventory. In this model number and location 

DCs, joint replenishment frequencies and optimum order 

quantity of each DC are defined as the total location costs 

and joint replenishment costs be minimized. 

2.1. Applications 

This condition is applied in locating DCs of concessionaire 

companies that are located in same cities. 

3. Modeling 

This study develops model of Silva and Gao (2013) under 

constraints of all-units discounts and constraints of storage 

space for each DC. The objective is to minimize the total 

joint replenishment costs and the cost of locating the DCs in 

potential sites. 
 

3.1. Assumptions 

1. There is only one product. 

2. DCs are replenished jointly in different locations. 

3. Demand is constant and known. 

4. The stock replenishment admits non-integer 

quantities of the items (principle of the divisibility 

of the variables). 

5.  Product price is related to the replenishment. 

6. The stock replenishment is immediately.  

7. Stock shortage is not allowed. 

8. The waiting time of supply is zero. 

9. Storage space of distributers is limited. 

3.2. Model constraints 

1. Constraints of storage space for DCs. 

2. Constraints of all-units discount. 

3.3. Parameters 

  :Index of customer   )  =1,…,  (. 

  :Index of DCs or warehouses   )  =1,…, (. 

  :Index of price break )  =1,…,  (. 

  : Fixed cost for opening of DC  . 

    :Cost of allocation DC   to customer   

  :A  cost of replenishment for set, from DCs ( 

independent from number of DCs in joint replenishment) 

   :Variable cost for DC   in joint order; 

   :Holding cost (maintenance) of a unit of the item in 

warehouse by unit of time at DC  . 

   :Demand for the item by unit of time at customer  , 

constant and known. 

   :Demand for the item by unit of time allocated to DC  . 

    :Purchase quantity by DC   in price break  . 

    :The quantity of ordered by DC   in price break  . 

    :The Upper bound quantity by DC   in price break  . 

    :The Lower bound quantity by DC   in price break   .  

   : Unit purchase cost by DC   in price break   under all-

units quantity discounts. 

  : Maximum storage capacity for DC   

  : Time between consecutive orders in DC  , called the 

reorder interval 

   :An integer multiple of a basic cycle   for DC  . 

 

3.4. Decision variable 

 

 

 

    {
                                               
                                                                         

 

 

   {
                                   
                                            

 

 

    {
                                                           
                                                                                                 

 

 

  :Basic cycle time of the replenishment. 
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3.5. Model formulation 
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The purpose of (1) minimizes total location costs and total 

joint replenishment costs. Constraint (2) ensures that a 

demand center is allocated to one and only one DC. 

Constraint (3) ensures a demand center will be dedicated to 

an active DC. Constraint (4) indicates demand of the item 

by unit of time allocated to DC  . As shortage is not 

allowed, Constraint (5) ensures that all the customers’ 

demand of the item from DC i is purchased at different 

price-break points. Constraints (6) shows that the order 

quantity of the item must be purchased between the discount 

rages. Constraint (7) states that DCs can buy goods only if 

located.  Constraints (8) optimum order must be smaller 

than warehouse space. Constraints (9)-(13) are the decision 

variables of the problem.  

Total location costs include cost of allocate customers to 

active centers and the construction cost of the facilities. The 

relevant costs associated with the problem of joint 

replenishment of stocks in accordance with the model 

assumptions are classified as ordering costs, holding costs 

and purchasing costs under discount. The ordering costs are 

divided a fixed part (main setup cost) ( ) and a secondary 

cost (variable setup cost) (  ) ordering fixed cost occurs 

when an order is independent of the number of DCs that 

participated in the replenishment. The holding cost per unit 

of time (  ) results from storage of per unit of goods in a 

warehouse of DC  , when the goods are stored for 

consumption or commerce. Cost of each DC procurement 

occurs based on an all-units discount policy. However, as 

DC i is to be jointly replenished, we weight the quantity by 

its replenishment frequency as a function of T. Therefore, 

we will be able to identify the quantity to order from the 

expression            (Cha and Moon, 2005). 

 

4. Solution  

Joint replenishment- Location model examined in this paper 

is a non-linear and integer model. Arkin et al. (1989) 

showed that JRP is NP-hard in large scales and cannot be 

solved by exact methods. Therefore, taking into account the 

costs of purchase under the terms of all-units discount and 

add storage space limitation the problem would be difficult 

to solve. To solve joint replenishment problem (JRP) 

determining optimal limits upper and lower joint 

replenishment time [         ] is very important. Many 

innovative techniques have been developed for this purpose. 

The only article that considered JRP with all-units discount 

is a paper presented by Cha and Moon (2005). To solve this 

they proposed Quantity Discount RAND algorithm. In this 

algorithm upper and lower bound [         ] are computed 

by Eq. (14) and Eq. (15):  
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(15) 

 

On the other hand, demand of each DC is shown by    and 

according to Eq. (4) is dependent to decision variable    . 

To use the Eq. (14) and Eq. (15),      must be determined. 

To this end, we have proposed a two-stage method. First, by 

limiting the joint replenishment time between a very small 

amount and 2 the model is solved by GA and location of 

each DC (   ) is obtained. Then the optimal upper and 

lower bound [         ] are determined by Eq. (14) and Eq. 

(15).  In the second stage, the model with the optimal upper 

and lower bound [         ] is resolved by GA and HSA. 



Journal of Optimization in Industrial Engineering Vol.13, Issue 1, Winter & Spring 2020, 55-66 

 

59 

 

4.1. Harmony search algorithm 

Harmony search algorithm (HSA) was presented by Geem 

et al. (2001). The applicability of the algorithm for discrete 

and continuous optimization problems, a little arithmetic, 

simple concept, easy to implement and few parameters has 

made this algorithm as one of the most used optimization 

algorithms in recent years on various issues. This meta-

heuristic algorithm compared with other methods has less 

mathematical requirements and can be implemented in 

various engineering problems by changing the parameters 

and operators. HSA is a meta-heuristic algorithm, which is 

inspired by the music and it is like improvisation of 

musicians. In this algorithm, the objective function is 

interpreted as an estimate of harmony and beauty of the 

performers in finding an appropriate form of coordination. 

The algorithm is inspired by the process of playing music 

and trying to find a wonderful harmony within it. Music and 

musicians began to involve in the process of looking for a 

better harmony. Musician, due to his former works, tries to 

play his best harmony or improve his existing harmony. 

Also, he can create new music which he had no experience 

about that. In the process of playing music without any 

previous experience, you can be playing any note within its 

authorized sounded distance the note with other notes 

produce a harmonic vector. If desired harmony is produced, 

it will be stored in the player's mind and increases the 

possibility of producing better harmonies in subsequent 

plays and exercises. Similarly, in engineering problems and 

process optimization, first we consider a possible value for 

each variable, and set of values for the variables forms a 

response vector. If the vector is a good answer to the 

question, the amount intended for the variables is saved in 

memory, and the possibility of finding a better response in 

the next solutions increases (Hajipour and et al., 2014).  

4.1.1. Representation 

The chromosome designed for the algorithm in this paper 

has five parts whose structure is shown in Fig. 1. The first 

part of the chromosome is a vector of DCs length. Each 

gene in this part gets values between zero or one; one for an 

active DC and zero otherwise. The second part of the 

chromosome is the same as the first, except that the genes 

take positive-integer values for the replenishment 

frequencies of the DCs (ki). It should be noted that genes of 

this section that are corresponding to zero-value nodes of 

the first part of the chromosome, are zero. This ensures DCs 

that are not constructed will not be replenished. The third 

part is as same as the second part of the chromosome, with 

the difference that in this part of the chromosome nodes will 

accept values between one and price break points. The 

remarkable thing is that each of the genes of this part of the 

construction get values just after the center is constructed. 

The fourth part of the chromosome is a vector of number of 

demand centers length, and each genes take amounts 

between one and number of DCs. It should be noted with 

this action each of the demand centers will be allocated to a 

DC. In design of this part of chromosome, DCs which are 

not constructed, will not be selected for responding to the 

demands of demand centers. The fifth chromosome is the 

continuous variable of time between two replenishments 

which value is between high (M) and low (ε). M and ε first 

get values manually and then by using Eq. (14) and Eq. 

(15), the optimal values are determined.  

i1 i2 i3  IVector1:

i1 i2 i3  I

i1 i2 i3  I

Vector2:

Vector5:

 j1 j2 j3 JVector4:

Vector3:

 

   Fig. 1. A chromosome structure 
 

In Fig. 2, an example of this chromosome for a problem 

with 5 potential DCs, 7 demand points and 3 price break 

points is shown. 

1 0 0 1 0

3 0 0 2

2

0

0 0 3 0

1 1 4 1 1 4 4

0.86

first  part of chromosome

second   part of chromosome

third   part of chromosome

fourth  part of chromosome

fifth  part of chromosome
 

Fig. 2. An example of the chromosome structure 

 In this example, according to the first part of chromosome, 

DC 1 and 4 are constructed and according to the second part 

of the chromosome, the replenishment frequencies of the 

first DC is 3 and replenishment frequencies of the fourth 

DC is 2. With regard to the second part, DC 1 uses the 

offered price of the second price break point, and DC 4 

purchases the item at the price offered in the third price 
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break point. The last chromosome section shows that 

customer demands 4,2,1 and 5 are supplied by first DC and 

customer demands 3,6 and 7 are supplied by  fourth DC. 

And in the fifth part the time between two replenishments is 

determined 0.86.  

4.1.2. Evaluation 

The generated chromosomes satisfy most of the constraints, 

occasionally Constraints (5), (6) and (8) can be violated. To 

deal with this type of violations, the penalty method is 

utilized, in which infeasible chromosomes are fined based 

on their degree of violation. Penalty functions reduce 

unjustified answers according to violation of the 

restrictions. The penalty function makes problems with 

constraints become problems with no constraints. The idea 

the penalty function is shown in Eq.16: 

( ) ; Re
( )

( ) (x) ; Re

f x x Feasible gion
F x

f x p x Feasible gion


 

 

 
(16) 

where  ( )is the amount of fine. If a constraint is not 

violated  ( ) is zero, otherwise, it takes a big positive value. 

Moreover, due to severity involved in violating different 

constraints, it is necessary to normalize all the limitations 

before applying Eq. (16). For example, a limitation 

like   ( )     can be normalized using the Eq. 17. 

( )
( ) 1 ,0

g x
p x Max

b


  
    

  

 
(17) 

where ω is a large number and  ( )
 
    is the amount of 

difference or unjustified of a constraint. This will scale-up 

all constraints and we can easily put them together and just 

one fine as penalty parameter of all constraints will be 

added to the objective function. 

4.1.3. Improving process 

Three improvement operations are involved in a harmony 

search algorithm described as follows. 

HM considering operator: Using memory in HSA is similar 

to elitism in GA. This ensures that the best harmony won’t 

be lost during the optimization process. This operator is 

controlled with a rate called harmony memory considering 

rate (HMCR). On the one hand, the low rate makes the 

algorithm converges very quickly because of the small 

number of elite harmonic improvisation is selected. On the 

other hand, too much of this rate leads the algorithm just 

using the existing harmony and the algorithm will converge 

to a weak point of the local optimization. Therefore, we 

calibrate it in the range [0.75-0.95]. 

Pitch adjustment rate (PAM): In the musical mode, rate 

adjustment step means little change in frequency. Similarly, 

in optimization process, the rate of adjustment step means to 

produce a few different solutions (neighbor). In fact, the 

solution space that is not searched by previous operators is 

likely to be searched by the algorithm. The operator uses a 

rate named PAR for adjustment control.  This function is 

similar to the mutation operator of genetic algorithms. Thus 

large amount of PAR makes a variety of solutions to 

increase. As a result PAR is set in the range of [0.1 - 0.5] 

(Hajipour and et al., 2014). 

To perform this operation, one (or more) chromosome 

vectors are randomly selected. Then, the switch (swap) 

operator will be used to implement adjustment (pitch) 

operator. In this strategy, we have two points of this vector 

randomly displaced. The operation is illustrated in Fig. 3.  

Parent:

Offspring:

0 1 10 1

1 1 0 0 1

 

 

  Fig. 3. An example of the pitch-adjusting operator  

 

Randomization operator: same as adjustment step, the 

operator is also used to increase the variety of answers. 

However, the operator considers a wider variety answers of 

locally optimal solution is going to be a global optimum. 

Probability function of the random operator       is: 

1randP HMCR   (18) 
 

4.2. Genetic algorithm 

How the display the solution and the process of evaluating 

the GA is similar to the HSA. To offspring production in 

GA we use Crossover and Mutation operator. 

Crossover operator: in this paper to produce new offspring 

at each iteration of the algorithm, uniform crossover 

operator is used for the parts first to fourth and arithmetic 

crossover for the fifth. By utilization this type of operator it 

always produces offspring that are regulated and the 

creation of children without association with any member of 

the population is prevented. To implement a uniform 

crossover operator, you must have a random matrix (β) with 

values of zero and one. The dimensions of this matrix is 
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equal to the size of the parent chromosome. Children will be 

created using the Eq. (19) and Eq. (20).  

1 1 (1 ) 2offspring parent parent       (19) 

2 2 (1 ) 1offspring parent parent       (20) 
 

The arithmetic crossover operator is similar to the uniform 

crossover operator. Except that the β value is not a value 

between zero and one but a value between maximum and 

minimum of the continuous variable.  

Parent1

1 0 0 1 0

3 0 0 2

2

0

0 0 3 0

1 1 4 1 1 4 4

0.86

Parent2

0 1 0 1 1

0 3 0 2

0

2

2 0 3 1

2 2 4 5 5 4 4

0.33

1 0 0 1 0 For the first,second and third part of 
chromosome  

1 0 0 1 1 0 0 For the fourth  part of chromosome

Offspring2

0 0 0 1 0

0 0 0 2

0

0

0 0 3 0

2 1 4 5 5 4 4

0.701

Offspring1

1 1 0 1 1

3 3 0 2

2

2

2 0 3 1

1 2 4 1 1 4 4

0.489

For the fifth  part of chromosome0.3

B

B

B

 

Fig .4. An illustration of the crossover operator 

By applying this operator the demand point may be 

allocated to the DC that is not constructed. So an action 

should be taken to eliminate this unjustified condition. For 

this, places that are created in first part of child chromosome 

will be assumed as amount of new genes randomly placed. 

In this case the child chromosome is justified.  

Mutation operator: mutation rate is an important concept in 

relation to the operator. Mutation rate is the percentage of 

the genes on each chromosome that are subject to change. If 

the mutation rate is very small, a large number of genes that 

could be helpful won’t be testes and if the mutation rate is 

too large random there will be random differences and the 

child will lost similarities to parents. This will lose the 

historical memory of the algorithm. Thus the optimum value 

should be selected for mutation rate. Uniform mutation 

operator is used in this article. In this operation, first, a 

number of genes will be randomly selected from each 

chromosome, then the amount is changed randomly in the 

allowable limit. The number of selected genes from each 

chromosome for uniform mutation operation is obtained by 

multiplication of mutation rate and number of genes in the 

chromosome. Normal mutation is used for the fifth part of 

the chromosome.  

0 1 0 0 1

0 2 0 0

0

2

2 0 0 2

2 5 2 2 5 5 2

0.86

Offspring

1 1 0 0 1

3 2 0 0

2

2

2 0 0 0

2 3 2 4 1 5 2

0.701

Parent
 

Fig. 5. An illustration of the mutate operator  

5. Performance Evaluation  

In this section, first the problem inputs are determined then 

30 examples are solved in various aspects using GA. The 

parameters of algorithm will be set and after the parameter 

tune, examples are resolved. According to the obtained 

results, upper and lower bound [         ] are determined 

for each example. Then due to optimal [         ], the 

presented examples will be solved by using HSA and GA. 

Results before and after determining the optimum limits are 

evaluated according to the objective function value and the 

required computational time (Time ). 

In this paper the algorithms are coded in MATLAB 2012b 

and are implemented on a 1.8-GHz laptop with four GB 

RAM. 

The inputs are generated based on what follows: 

Typical values for the parameters of the model are 

determined with respect to the matters contained in the 

literature and based on uniform distribution. These values 

are shown in Table 1. 

Table1 

Parameters for the joint replenishment-location model 

Parametr range 

    U [80 800]    U [1 10] 

   U [400 800]    U [100 1000] 

   45     U [10 45] 

   U [0 1]   

 

5.1. Parameter tuning 

As the acquired results of the meta-heuristic algorithms are 

sensitive to parameter, a small change can affect the quality 

of the solution obtained. Therefore, one needs a fine tuning 

procedure for the parameters in order to find better 

solutions. These parameters are given in 

Table 2 and are tuned using the response surface 

methodology (RSM). In this regard, the 30 problems of 

different size of small, medium, and large are randomly 

generated to calibrate the parameters of both algorithms. 

The range of each parameter is shown in Table 3.  
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Table2 

Parameters for GA and HSA 

GA Parameters 

Population 

Size 

Crossover 

ratio 

Mutation 

ratio 
Number of the iterations 

     
 

 

     

HS Parameters 

Population 

Size 

Pitch 

adjusting 

rate 

Outer loop 

size 
Inner loop size 

Harmony 

memory rate 

     
 

                      

 

Table3 

 Parameters’ ranges along with their Levels 

Optimization 

Algorithms 

Algorithm 

Parameters 
Parameter Range 

GA 

     50-150 
 

0.5-0.99 

 

  
0.01-0.4 

     800-1600 

HS 

         800-1600 

 
 

 

0.1-0.5 

        10-50 

     50-200 

     0.75-0.95 

 

Each sample is performed 3 times and the average of 3 runs 

is intended as output, each time their parameters (factors) 

are randomly changing based on described in permitted 

range in Table 2. The responses in each run are the 

objective function value and CPU time. The values of the 

related responses are first normalized by the linear norm. 

Then, a quadratic regression function for each measure is 

estimated using the MATLAB software to find significant  

relationships between the parameters and their response. At 

the end, the average estimation of the responses using the 

four estimated regression functions is taken to be 

maximized by the GAMS software, in order to find the 

optimal combinations of the parameters. The quadratic 

regression function consists of linear, interaction, and 

quadratic coefficients shown in Eq. (21).  

0 1 1 2 2 3 3 4 4

2 2 2 2

11 1 22 2 33 3 44 4

12 1 2 13 1 3 14 1 4

23 2 3 24 2 4 34 3 4

( )E y X X X X

X X X X

X X X X X X

X X X X X X

    

   

  

  

    

   

  

  

 (21) 

 

Where  ( ) is the expected value of the response,    is a 

constant that represents the intercept,               are 

linear coefficients,                 are the quadratic 

coefficients,    ,     are coefficients of the interaction and 

   is the parameter of GA and HSA.  

As an example, Table 4 contains the experimental results of 

employing GA. Based on the results provided in Table 4, 

the regression function estimated for the GA is: 
 

 
2

2 2 2

( ) 0.036 0.00827 0.017

0.019 0.004889 0.016

0.001167 0.01 0.013

0.007133 0.0023

0.006396 0.0038

0.036 0.0022

c

m

c m

c m

c m

c m

E y nPop P

P nItr nPop

P P nItr

nPop P nPop P

nPop nItr P P

P nItr P nItr

  

  

  

   

   

   

 

(22) 

 

HSA parameters can be calculated similar to GA. The 

results to calibrate the parameters of both algorithms are 

presented in Table 4. 

 

 

 

 

 

 

𝑃𝑐 

𝑃𝐴𝑅 

𝑃𝑚 

𝑃𝑐 

𝑃𝑚 

𝑃𝐴𝑅 
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Table 4 

 Computational results of applying GA 

No. 

Algorithm Parameters Obtained Response 

     
 

        
Best 

Solution 
time 

1 55 0.55 0.2 900 239935.556 25.599502 

2 70 0.65 0.3 850 240586.8632 36.444389 

3 75 0.53 0.28 1150 478827.3111 48.684753 

4 130 0.9 0.35 900 239973.1923 90.473375 

5 80 0.7 0.3 920 240454.397 72.806932 

6 100 0.8 0.15 1100 239973.1599 60.385801 

7 120 0.85 0.2 1000 240008.9694 72.806932 

8 60 0.6 0.05 800 239973.6827 18.899531 

9 65 0.55 0.25 860 239934.689 30.268056 

10 150 0.99 0.06 820 239934.689 67.947217 

11 120 0.72 0.2 1000 240016.6224 66.725678 

12 85 0.63 0.33 1300 239934.689 68.054539 

13 100 0.8 0.15 1100 239936.0829 60.439298 

14 80 0.7 0.3 950 239934.8129 51.18934 

15 95 0.64 0.36 1400 239935.5512 96.324997 

16 140 0.95 0.05 800 203532.7815 58.691355 

17 60 0.79 0.22 1550 239935.6454 57.807847 

18 75 0.72 0.24 1600 255457.3235 71.476132 

19 55 0.76 0.35 1500 239939.256 58.226897 

20 110 0.77 0.22 1200 250355.8724 76.463927 

21 100 0.9 0.1 1000 478991.4218 55.678054 

22 105 0.5 0.158 1050 239934.7051 46.298375 

23 150 0.8 0.06 1200 479497.7003 84.140858 

24 90 0.6 0.3 1000 240177.0666 49.687906 

25 105 0.77 0.23 1100 239934.689 68.134844 

26 88 0.66 0.05 850 239935.5512 28.913946 

27 88 0.88 0.09 1100 239973.8608 52.777878 

28 110 0.59 0.11 1111 449435.7999 49.302571 

29 150 0.77 0.29 950 255313.6317 92.139846 

30 120 0.8 0.4 900 250966.4225 80.412876 

 

 

Table 5 

 Parameter ranking of the algorithms  

GA 
Parameters 

 
 

 

     

Rank 105 0.77 0.25 950 

HS 
Parameters                        

Rank 40 0.1 200 1000 0.5 

 

 

5.2. Computed results  

To evaluate and compare the performance of GA before and 

after calculating [         ], and also to evaluate the 

performance of the GA and HSA, 30 examples of various 

aspects before and after calculating the optimal [         ] 

have been solved. These examples are presented in Table 6.  

 

 

 

 

 

𝑃𝑐 

𝑛𝑃𝑜𝑝 𝑃𝑐 𝑃𝑚 
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Table 6 

 Computational results of the solving methodologies 

Problem 

No. 
I J O 

GA before calculating the 

upper and lower 

GA after calculating the upper 

and lower 

HS after calculating the 

upper and lower 

Best Solution time Best Solution time Best Solution time 

1 2 5 3 8531.1241 98.15001 8436.9449 90.122436 8436.9877 38.837961 

2 3 5 3 16912.1679 91.406163 16857.5678 91.13136 16750.8302 40.57735 

3 2 5 2 72220.6771 88.561894 72120.6771 86.461894 72086.1941 38.275775 

4 4 7 3 118835.6972 100.97112 118735.5973 90.42436 118737.7601 41.546342 

5 3 8 3 19612.3216 99.302427 19502.6423 91.674115 15091.424 39.196794 

6 3 8 3 13098.8306 90.57132 12498.8306 91.627572 12498.9683 41.133786 

7 5 8 3 17085.6317 101.16799 17085.6317 92.122436 10792.3824 44.946944 

8 2 8 3 60877.0239 96.015914 55310.2421 89.179007 55317.8619 38.135755 

9 4 8 4 315308.2914 101.14301 247540.566 100.408542 247540.5763 46.226219 

10 2 9 2 290433.7142 98.633152 290433.7142 97.733152 290434.0432 47.43381 

11 4 10 4 71164.9091 111.19638 41073.9234 98.855436 37357.398 50.372374 

12 5 10 4 286153.9187 114.6338 239998.4411 107.582128 240018.2148 48.40526 

13 7 11 3 53243.5866 102.66991 52203.6658 102.669908 51035.0127 47.842904 

14 3 12 3 15209.2627 98.412706 15209.2627 94.311706 15207.6358 41.998581 

15 3 15 2 800871.8956 131.67696 700871.8956 102.669908 700873.3465 41.57001 

16 4 16 4 253532.7915 102.47501 203532.7915 102.475006 203754.3503 45.242714 

17 3 13 4 1930861.137 127.7645 40045.8095 94.038247 35543.1778 40.230372 

18 6 19 3 676074.2947 130.65098 676074.2947 100.650982 676077.7176 49.418174 

19 5 18 3 395537.9288 101.04671 395537.9288 101.046706 396319.1285 45.953621 

20 8 20 4 265830.8798 158.93516 537736.6324 130.106343 317287.781 54.011636 

21 8 21 4 663345.0509 114.32754 424899.96 125.514528 483974.4786 54.952946 

22 5 21 5 30842.432 91.153474 30842.432 90.232436 30842.4549 50.071673 

23 8 24 4 474666.8966 101.4644 513043.3959 134.656065 332812.9576 54.101276 

24 7 22 3 86825.1125 119.77855 76825.1125 114.878552 52968.9104 48.620477 

25 7 26 3 1201001.151 118.11223 1112315.123 114.125351 772128.1283 52.131121 

26 5 25 5 1162946.345 115.66321 1068956.655 113.468343 760007.4181 42.749169 

27 9 30 3 1112123.421 133.10041 1090211.581 132.926407 1099803.71 56.265722 

28 10 35 4 993273.33 151.32405 988873.33 145.62405 873523.5003 62.028575 

29 8 50 5 1562646.031 160.84142 1472421.322 132.910867 1462646.031 62.910867 

30 9 40 7 1093253.122 151.32405 1082873.131 148.12316 893611.6121 59.128575 

In order to compare algorithms used in solving the problem, 

we used an of variance (ANOVA) approach 

at 95% confidence level. A typical test of hypothesis on the 

equality of the means is stated in Eq. (22) and Eq. (23).  In 

this equation   (   ) is the mean value of GA objective 

function before obtaining the optimal [         ] and   (   ) 

is the mean value of GA objective function after obtaining 

the optimal [         ].  

0 ( 1) ( 2) ( )

1 ( 1) ( 2) ( )

z GA z GA z HS

z GA z GA z HS

H

H

  

  

  


  

 

(23) 

0 ( 1) ( 2) ( )

1 ( 1) ( 2) ( )

t GA t GA t HS

t GA t GA t HS

H

H

  

  

  


  

 

(24) 

 

The ANOVA results to compare the objective function 

value and the CPU time of the two algorithms are shown in 

Figs. 6 and 7 using the Minitab 16 software. The results 

show no significant difference between the two algorithms 

in the objective function value but on basis of CPU time, 

HSA is hugely better than GA in both cases.  
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Fig. 6. ANOVA and the related interval plots for CS metric  

 

Fig. 7. ANOVA and the related interval plots for Time metric 

In the second comparison, the technique for order 

preference by similarity to ideal solution (TOPSIS) is used 

to compare the two algorithms in terms of the objective 

function value and CPU time, simultaneously.  

 
Fig. 8. The mean value of the objective function and the results of the 30 

examples 

The result obtained from implementing the TOPSIS method 

shows that the coefficient close of the HSA is equal to 

0.678697, algorithms GA2 is equal to 0.321303 and GA1 is 

equal to zero. Using this analysis, the HSA to GA is better 

than genetic algorithm in both conditions. 

6. Conclusion 

In this paper, a new model of JRP-location under all-units 

discount was offered. In this model number and location 

DCs, joint replenishment frequencies and optimum order 

quantity of each DC are defined as the total location costs 

and joint replenishment costs be minimized. Since in joint 

replenishment problem (JRP) determining optimal limits 

upper and lower joint replenishment time [         ] is 

very important, To solve this model, we have proposed a 

two-stage method. First, by limiting the joint replenishment 

time between a very small amount and 2 the model is solved 

by GA and location of each DC (   ) is obtained. Then the 

optimal upper and lower bound [         ] are determined 

by Quantity Discount RAND Algorithm. In the second 

stage, the model with the optimal upper and lower bound 

[         ] is resolved by GA and HSA. To demonstrate 

the applicability of the proposed model and to measure the 

efficiency of the two solution algorithms, various test 

problems of different sizes were randomly generated. An of 

variance (ANOVA) approach at 95% confidence level and 

the technique for order preference by similarity to ideal 

solution (TOPSIS) is used to compare the two algorithms in 

terms of the objective function value and CPU time. While 

the statistical comparison approach showed no significant 

difference between the two algorithms at 95% confidence 

level, the results obtained using the TOPSIS method showed 

HSA the better algorithm.  

For future research, the model can be extended for a multi-

product problem, other meta-heuristic algorithms can be 

utilized to solve the proposed problem, the backordering 

costs can be considered for the joint replenishment part of 

the model. Also this model can be used for modeling of 

incremental discounts. Future research can also consider 

other terms such as incremental discounts and budget. 
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