
Journal of Optimization in Industrial Engineering

Vol.13, Issue 1, Winter & Spring 2020, 55-66

DOI:10.22094/joie.2017.445.0

55

Presenting a Joint Replenishment-location Model Under all-units

Discount and Solving by Genetic Algorithm and Harmony Search

Algorithm

Reza Abdollahi Sharbabaki
a
, Seyed Hamidreza Pasandideh

b,*

a
 Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

b
 Faculty of Engineering, Department of Industrial Engineering, Kharazmi University, Tehran, Iran

Received 19 February 2015; Revised 27 May 2015; Accepted 27 June 2015

Abstract

In this paper a model is propose for joint replenishment and locations distribution centers (DCs) of a distribution system that is responsible for

ordering and dispatching shipments of a single product to DCs. The warehouse spaces DCs are limited and these can determine amount of

requirement product by considering proposed discount. The propose model is develop to minimize total costs consists of locating, ordering,

holding and purchasing under condition all-units discount. In this model number and location of DCs, joint replenishment frequencies and

optimum order quantity of each DC are defined. To solve joint replenishment problem (JRP) determining optimal limits upper and lower

replenishment cycle time T is very important. For determining this limits we use quantity discount RAND algorithm (QD-RAND). To use this

method need to determine the location each of DCs. Therefore, first we consider the limits between a very small amount and 2 then the model

solved by genetic algorithm (GA). After obtaining the optimal upper and lower replenishment cycle time T, the model will be resolved by

harmony search algorithm (HSA) and GA. The parameters of all algorithms are first calibrated by means of the response surface methodology

(RSM). The comparison results based on different problem sizes are in favor of HS.

Keywords: Joint replenishment problem; Location; All-units discount; Genetic Algorithm; Harmony Search.

1. Introduction and Literature Review

Joint replenishment

(JR)

is

an applicable inventory problem

in which group items into the same order from a supplier

or

a same place

to achieve the purpose of sharing the main

preparation costs. Also JRP

is relevant when replenishing a

single item in multiple locations helping companies to

develop strategies that will help exploiting economies of

scale combining shipments to multiple locations. JR

of

multiple locations

is possible when all of these locations

are

centrally controlled or when these locations

are in coalition

for joint replenishment. This is the case of some franchise

stores which are

located in the same city or ATM machines

belonging to same financial institution (Silva and Gao,

2013). Generally in JRP,

it is assumed that unit cost is

constant, no matter what quantity is purchased. But in

reality, suppliers may induce their customers to place larger

orders by offering them quantity discounts. If the quantity

purchased is greater than a specified “price break” quantity,

the cost per unit is reduced. Two types of price break

schedule can be considered (all-units and incremental

discount schedule).

The all-units discount applies the

discounted price to all units beginning with the first unit, if

the quantity purchased exceeds the price break quantity. The

incremental discount schedule applies the discounted price

only to those units over the price break quantity.

Cha and

Moon (2005) modeled the joint replenishment problem for

multiple products considering all-units discount and

constant demand. They developed a heuristic algorithm and

an intelligent algorithm to solve JRP and explained these

algorithms by numerical examples.

Taleizadeh

et

al.

(2010)

considered an optimizing multiproduct multi constraint

inventory control systems with stochastic replenishment

intervals and discount. In this research they considered that

the period between two replenishments is independent and

also added the constraints of warehouse space and budget.

In this model the incremental discounts to purchase

products are considered, and a combination of backorder

and lost sales are taken into account for the shortages.

They

used genetic algorithm and simulated annealing to solve this

problem.

There are two common kinds of JRP: the single-buyer JRP

(SJRP) and multi-buyer JRP (MJRP).

In real conditions

many studies have been conducted about SJRP (Wang and

et al., 2012). Hoque (2006) modeled the JRP

with storage

capacity, transport capacity, and budget constraints. The
*Corresponding author Email addresses: pasandid@yahoo.com

Reza Abdollahi Sharbabaki et al./Presenting a Joint Replenishment-location…

56

main objective is calculate the appropriate lower bound of

the basic cycle time for minimizing the total cost. Porras

and Dekker (2006) modeled the JRP for M items under

certain demand with minimum order quantity constraint for

each item in the replenishment order. They obtained the

range of basic cycle time and proposed an efficient global

optimization method to solve the JRP with constraints. The

proposed algorithm was tested with data from a real case

and some additional numerical experiments. As for the

MJRP, there are a few literature reviews. The MJRP is a

common method for multi-branch companies that their

branches order a group of items from a supplier. Obviously,

JRP among the branches reduce the firm’s ordering and

inventory costs. (Chan and et al., 2006). Chan et al. (2003)

presented GA for solving MJRP problem. Li (2004)

designed RAND algorithm for solving MJRP problem. Lu

et al. (2010) solved the MJRP problem with RAND

algorithm considering modeling resource constraint.

There are two strategies to solve joint replenishment

problem: A Direct Grouping Strategy (DGS) and Indirect

grouping strategy (IGS). Under DGS, products are

partitioned into a predetermined number of sets and the

products within each set are jointly replenished with the

same cycle time. Under IGS a replenishment is made at

regular time-intervals and each product has a replenishment

quantity sufficient to last for exactly an integer multiple of

the regular time interval. Groups in IGS are indirectly

formed by products having the same integer multipliers. The

literature suggests that IGS outperforms DGS for high

major ordering cost because many products can be jointly

replenished when using an IGS (Khouja and Goyal, 2008).

Arkin et al. (1989) proved that JRP is a NP-hard problem.

Thus different methods are proposed to solve JPR.

Generally, these methods can be divided in three groups: (1)

heuristic methods, (2) meta-heuristic methods, and (3)

special methods. RAND method can be noted as one of the

heuristic methods for solving JRP that was presented by

Kaspi and Rosenblatt (1991). Also Goyal and Deshmukh

(1993), van Eijs (1993), Hariga (1994), Viswanathan (1996)

and Fung and Ma (2001) presented other heuristic

algorithms to solve this problem. For further studies on this

topic you can refer article Khouja and Goyal (2008). The

main objective in each heuristic algorithm is to find upper

and lower limit for T (,). Meta-heuristic methods

for solving JRP: Hong and Kim (2009) proposed a GA to

solve JRP with exact inventory cost. Khouja et al. (2000)

presented a GA to solve JRP and compared its efficiency

with RAND algorithm. There are several special methods

for solving JRP such as the power-of-two (PoT) policy (Lee

& Yao 2003) and the evolutionary computing (Olsen 2005)

to solve JRP.

In recent years many studies have been done to consider

JRP with logistic activities (like delivery, location and

routing). Wang et al. (2012) considered Joint replenishment

and delivery (JRD) problem as an important applicable

managerial problem under stochastic demand. They

designed an effective and efficient hybrid differential

evolution algorithm (HDE) based on the differential

evolution algorithm (DE) and GA to solve this problem.

They compared HDE with GA and according to obtained

results they found out HDE is faster than GA and has a

higher convergence rate. Qu et al. (2013) modeled JRD

where a warehouse orders different products from suppliers

and delivers them to retailers. The objective is to determine

grouping and scheduling decisions and specify order

quantities and deliver them to retailers in order to minimize

the costs. They designed Adaptive hybrid differential

evolution (AHDE) algorithm to find the optimal solution.

About JRP-location there are very few studies. Silva and

Gao (2013) published the first article about JRP-location.

The model as a facility location model not only includes the

location fixed cost but also considers inventory

replenishment cost. They proposed a two-stage heuristic

algorithm to solve the model. In the first stage distribution

centers will be located and their total location cost is

computed according to this rule: demand points are always

dedicated to the nearest distribution center. In the second

stage JRP will be solved according to specified places in

first stage. In this stage Vishwanathan algorithm is used to

determine the best policy of Joint replenishment. They

propose a Greedy Randomized Adaptive Search Procedure

(GRASP) to solve the problem. Wang et al. (2013)

proposed Hybrid Self-Adapting Differential Evolution

Algorithm to solve JRP-location and compared its

efficiency with GA and HDE algorithms. Qu et al. (2014)

modeled location-inventory problem considering joint

replenishment and independent replenishment for several

products, stochastic and independent demand and deficit

cost. They designed a two-stage solution method. In the first

stage two sets of customers allocated to open DCs are

defined and total annual cost for each open DC is obtained

by dedicating sets of customers to sets of open DCs. In

second stage total open DCs cost in all potential locations

will be sorted descending and optimal locations are the first

ones in the sorted area.

The remainder of the paper is organized as follows. In

Section 2, the problem is stated. In Section 3, the proposed

mathematical model is stated. In Section 4, the solution

approaches are described. Section 5 demonstrates the

parameter tuning and statistical comparison of the proposed

algorithms on several problem instances of different sizes.

Finally, conclusions and future studies come in Section 6.

 2. Problem Definition

In this paper we examine the JRP and location of DCs in a

distributed system with a centralized decision maker that is

responsible for ordering and dispatching shipments of a

single item to the distribution centers. The warehouse

spaces DCs are limited and these can determine amount of

requirement product by considering proposed discount. The

Journal of Optimization in Industrial Engineering Vol.13, Issue 1, Winter & Spring 2020, 55-66

57

model seeks to minimize the total costs of joint

replenishment and costs of locating DCs, which joint

replenishment cost is includes ordering, purchase under all-

units discount and holding. The model presented in this

paper is an integrated approach between the decisions of the

location and inventory. In this model number and location

DCs, joint replenishment frequencies and optimum order

quantity of each DC are defined as the total location costs

and joint replenishment costs be minimized.

2.1. Applications

This condition is applied in locating DCs of concessionaire

companies that are located in same cities.

3. Modeling

This study develops model of Silva and Gao (2013) under

constraints of all-units discounts and constraints of storage

space for each DC. The objective is to minimize the total

joint replenishment costs and the cost of locating the DCs in

potential sites.

3.1. Assumptions

1. There is only one product.

2. DCs are replenished jointly in different locations.

3. Demand is constant and known.

4. The stock replenishment admits non-integer

quantities of the items (principle of the divisibility

of the variables).

5. Product price is related to the replenishment.

6. The stock replenishment is immediately.

7. Stock shortage is not allowed.

8. The waiting time of supply is zero.

9. Storage space of distributers is limited.

3.2. Model constraints

1. Constraints of storage space for DCs.

2. Constraints of all-units discount.

3.3. Parameters

 :Index of customer) =1,…, (.

 :Index of DCs or warehouses) =1,…, (.

 :Index of price break) =1,…, (.

 : Fixed cost for opening of DC .

 :Cost of allocation DC to customer

 :A cost of replenishment for set, from DCs (

independent from number of DCs in joint replenishment)

 :Variable cost for DC in joint order;

 :Holding cost (maintenance) of a unit of the item in

warehouse by unit of time at DC .

 :Demand for the item by unit of time at customer ,

constant and known.

 :Demand for the item by unit of time allocated to DC .

 :Purchase quantity by DC in price break .

 :The quantity of ordered by DC in price break .

 :The Upper bound quantity by DC in price break .

 :The Lower bound quantity by DC in price break .

 : Unit purchase cost by DC in price break under all-

units quantity discounts.

 : Maximum storage capacity for DC

 : Time between consecutive orders in DC , called the

reorder interval

 :An integer multiple of a basic cycle for DC .

3.4. Decision variable

 {

 {

 {

 :Basic cycle time of the replenishment.

Reza Abdollahi Sharbabaki et al./Presenting a Joint Replenishment-location…

58

3.5. Model formulation

1

1 1 1

1

1 1 1

.

min

2

ij

I
i

iI J I
i i

ij ij i i

i j i

J

i i jI I O
j

io io

i i o

s
S Y

k
c X f Y

T

h k T d X

p R



  



  



 

 


 


 

(1)

S.t:

1

1 ;
I

ij

i

X j


  (2)

0 ; ,ij iX Y i j   (3)

1

;
J

i j ij

j

D d X i


  (4)

1

;
O

i io

o

D R i


  (5)

; ,oio io io i io ioq b R k T u b i   (6)

1

;
O

i io

o

Y b i


  (7)

1

;
O

io i i

o

R k T w i


  (8)

 0,1 ; , jijX i  (9)

 0,1 ;iY i  (10)

 0,1 ; ,iob i o  (11)

0,int ;ik eger i  (12)

0T (13)

The purpose of (1) minimizes total location costs and total

joint replenishment costs. Constraint (2) ensures that a

demand center is allocated to one and only one DC.

Constraint (3) ensures a demand center will be dedicated to

an active DC. Constraint (4) indicates demand of the item

by unit of time allocated to DC . As shortage is not

allowed, Constraint (5) ensures that all the customers’

demand of the item from DC i is purchased at different

price-break points. Constraints (6) shows that the order

quantity of the item must be purchased between the discount

rages. Constraint (7) states that DCs can buy goods only if

located. Constraints (8) optimum order must be smaller

than warehouse space. Constraints (9)-(13) are the decision

variables of the problem.

Total location costs include cost of allocate customers to

active centers and the construction cost of the facilities. The

relevant costs associated with the problem of joint

replenishment of stocks in accordance with the model

assumptions are classified as ordering costs, holding costs

and purchasing costs under discount. The ordering costs are

divided a fixed part (main setup cost) () and a secondary

cost (variable setup cost) () ordering fixed cost occurs

when an order is independent of the number of DCs that

participated in the replenishment. The holding cost per unit

of time () results from storage of per unit of goods in a

warehouse of DC , when the goods are stored for

consumption or commerce. Cost of each DC procurement

occurs based on an all-units discount policy. However, as

DC i is to be jointly replenished, we weight the quantity by

its replenishment frequency as a function of T. Therefore,

we will be able to identify the quantity to order from the

expression (Cha and Moon, 2005).

4. Solution

Joint replenishment- Location model examined in this paper

is a non-linear and integer model. Arkin et al. (1989)

showed that JRP is NP-hard in large scales and cannot be

solved by exact methods. Therefore, taking into account the

costs of purchase under the terms of all-units discount and

add storage space limitation the problem would be difficult

to solve. To solve joint replenishment problem (JRP)

determining optimal limits upper and lower joint

replenishment time [] is very important. Many

innovative techniques have been developed for this purpose.

The only article that considered JRP with all-units discount

is a paper presented by Cha and Moon (2005). To solve this

they proposed Quantity Discount RAND algorithm. In this

algorithm upper and lower bound [] are computed

by Eq. (14) and Eq. (15):

  1

max

1

2
max

max ,

n

i

i io

n

i
i i

i

S s
u

T
D

D h





  
  

  
 
 
  





(14)

min

2
min i

i i

s
T

D h

 
   

 

(15)

On the other hand, demand of each DC is shown by and

according to Eq. (4) is dependent to decision variable .

To use the Eq. (14) and Eq. (15), must be determined.

To this end, we have proposed a two-stage method. First, by

limiting the joint replenishment time between a very small

amount and 2 the model is solved by GA and location of

each DC () is obtained. Then the optimal upper and

lower bound [] are determined by Eq. (14) and Eq.

(15). In the second stage, the model with the optimal upper

and lower bound [] is resolved by GA and HSA.

Journal of Optimization in Industrial Engineering Vol.13, Issue 1, Winter & Spring 2020, 55-66

59

4.1. Harmony search algorithm

Harmony search algorithm (HSA) was presented by Geem

et al. (2001). The applicability of the algorithm for discrete

and continuous optimization problems, a little arithmetic,

simple concept, easy to implement and few parameters has

made this algorithm as one of the most used optimization

algorithms in recent years on various issues. This meta-

heuristic algorithm compared with other methods has less

mathematical requirements and can be implemented in

various engineering problems by changing the parameters

and operators. HSA is a meta-heuristic algorithm, which is

inspired by the music and it is like improvisation of

musicians. In this algorithm, the objective function is

interpreted as an estimate of harmony and beauty of the

performers in finding an appropriate form of coordination.

The algorithm is inspired by the process of playing music

and trying to find a wonderful harmony within it. Music and

musicians began to involve in the process of looking for a

better harmony. Musician, due to his former works, tries to

play his best harmony or improve his existing harmony.

Also, he can create new music which he had no experience

about that. In the process of playing music without any

previous experience, you can be playing any note within its

authorized sounded distance the note with other notes

produce a harmonic vector. If desired harmony is produced,

it will be stored in the player's mind and increases the

possibility of producing better harmonies in subsequent

plays and exercises. Similarly, in engineering problems and

process optimization, first we consider a possible value for

each variable, and set of values for the variables forms a

response vector. If the vector is a good answer to the

question, the amount intended for the variables is saved in

memory, and the possibility of finding a better response in

the next solutions increases (Hajipour and et al., 2014).

4.1.1. Representation

The chromosome designed for the algorithm in this paper

has five parts whose structure is shown in Fig. 1. The first

part of the chromosome is a vector of DCs length. Each

gene in this part gets values between zero or one; one for an

active DC and zero otherwise. The second part of the

chromosome is the same as the first, except that the genes

take positive-integer values for the replenishment

frequencies of the DCs (ki). It should be noted that genes of

this section that are corresponding to zero-value nodes of

the first part of the chromosome, are zero. This ensures DCs

that are not constructed will not be replenished. The third

part is as same as the second part of the chromosome, with

the difference that in this part of the chromosome nodes will

accept values between one and price break points. The

remarkable thing is that each of the genes of this part of the

construction get values just after the center is constructed.

The fourth part of the chromosome is a vector of number of

demand centers length, and each genes take amounts

between one and number of DCs. It should be noted with

this action each of the demand centers will be allocated to a

DC. In design of this part of chromosome, DCs which are

not constructed, will not be selected for responding to the

demands of demand centers. The fifth chromosome is the

continuous variable of time between two replenishments

which value is between high (M) and low (ε). M and ε first

get values manually and then by using Eq. (14) and Eq.

(15), the optimal values are determined.

i1 i2 i3 IVector1:

i1 i2 i3 I

i1 i2 i3 I

Vector2:

Vector5:

 j1 j2 j3 JVector4:

Vector3:

 Fig. 1. A chromosome structure

In Fig. 2, an example of this chromosome for a problem

with 5 potential DCs, 7 demand points and 3 price break

points is shown.

1 0 0 1 0

3 0 0 2

2

0

0 0 3 0

1 1 4 1 1 4 4

0.86

first part of chromosome

second part of chromosome

third part of chromosome

fourth part of chromosome

fifth part of chromosome

Fig. 2. An example of the chromosome structure

 In this example, according to the first part of chromosome,

DC 1 and 4 are constructed and according to the second part

of the chromosome, the replenishment frequencies of the

first DC is 3 and replenishment frequencies of the fourth

DC is 2. With regard to the second part, DC 1 uses the

offered price of the second price break point, and DC 4

purchases the item at the price offered in the third price

Reza Abdollahi Sharbabaki et al./Presenting a Joint Replenishment-location…

60

break point. The last chromosome section shows that

customer demands 4,2,1 and 5 are supplied by first DC and

customer demands 3,6 and 7 are supplied by fourth DC.

And in the fifth part the time between two replenishments is

determined 0.86.

4.1.2. Evaluation

The generated chromosomes satisfy most of the constraints,

occasionally Constraints (5), (6) and (8) can be violated. To

deal with this type of violations, the penalty method is

utilized, in which infeasible chromosomes are fined based

on their degree of violation. Penalty functions reduce

unjustified answers according to violation of the

restrictions. The penalty function makes problems with

constraints become problems with no constraints. The idea

the penalty function is shown in Eq.16:

() ; Re
()

() (x) ; Re

f x x Feasible gion
F x

f x p x Feasible gion


 

 

(16)

where ()is the amount of fine. If a constraint is not

violated () is zero, otherwise, it takes a big positive value.

Moreover, due to severity involved in violating different

constraints, it is necessary to normalize all the limitations

before applying Eq. (16). For example, a limitation

like () can be normalized using the Eq. 17.

()
() 1 ,0

g x
p x Max

b


  
    

  

(17)

where ω is a large number and ()

 is the amount of

difference or unjustified of a constraint. This will scale-up

all constraints and we can easily put them together and just

one fine as penalty parameter of all constraints will be

added to the objective function.

4.1.3. Improving process

Three improvement operations are involved in a harmony

search algorithm described as follows.

HM considering operator: Using memory in HSA is similar

to elitism in GA. This ensures that the best harmony won’t

be lost during the optimization process. This operator is

controlled with a rate called harmony memory considering

rate (HMCR). On the one hand, the low rate makes the

algorithm converges very quickly because of the small

number of elite harmonic improvisation is selected. On the

other hand, too much of this rate leads the algorithm just

using the existing harmony and the algorithm will converge

to a weak point of the local optimization. Therefore, we

calibrate it in the range [0.75-0.95].

Pitch adjustment rate (PAM): In the musical mode, rate

adjustment step means little change in frequency. Similarly,

in optimization process, the rate of adjustment step means to

produce a few different solutions (neighbor). In fact, the

solution space that is not searched by previous operators is

likely to be searched by the algorithm. The operator uses a

rate named PAR for adjustment control. This function is

similar to the mutation operator of genetic algorithms. Thus

large amount of PAR makes a variety of solutions to

increase. As a result PAR is set in the range of [0.1 - 0.5]

(Hajipour and et al., 2014).

To perform this operation, one (or more) chromosome

vectors are randomly selected. Then, the switch (swap)

operator will be used to implement adjustment (pitch)

operator. In this strategy, we have two points of this vector

randomly displaced. The operation is illustrated in Fig. 3.

Parent:

Offspring:

0 1 10 1

1 1 0 0 1

 Fig. 3. An example of the pitch-adjusting operator

Randomization operator: same as adjustment step, the

operator is also used to increase the variety of answers.

However, the operator considers a wider variety answers of

locally optimal solution is going to be a global optimum.

Probability function of the random operator is:

1randP HMCR  (18)

4.2. Genetic algorithm

How the display the solution and the process of evaluating

the GA is similar to the HSA. To offspring production in

GA we use Crossover and Mutation operator.

Crossover operator: in this paper to produce new offspring

at each iteration of the algorithm, uniform crossover

operator is used for the parts first to fourth and arithmetic

crossover for the fifth. By utilization this type of operator it

always produces offspring that are regulated and the

creation of children without association with any member of

the population is prevented. To implement a uniform

crossover operator, you must have a random matrix (β) with

values of zero and one. The dimensions of this matrix is

Journal of Optimization in Industrial Engineering Vol.13, Issue 1, Winter & Spring 2020, 55-66

61

equal to the size of the parent chromosome. Children will be

created using the Eq. (19) and Eq. (20).

1 1 (1) 2offspring parent parent      (19)

2 2 (1) 1offspring parent parent      (20)

The arithmetic crossover operator is similar to the uniform

crossover operator. Except that the β value is not a value

between zero and one but a value between maximum and

minimum of the continuous variable.

Parent1

1 0 0 1 0

3 0 0 2

2

0

0 0 3 0

1 1 4 1 1 4 4

0.86

Parent2

0 1 0 1 1

0 3 0 2

0

2

2 0 3 1

2 2 4 5 5 4 4

0.33

1 0 0 1 0 For the first,second and third part of
chromosome

1 0 0 1 1 0 0 For the fourth part of chromosome

Offspring2

0 0 0 1 0

0 0 0 2

0

0

0 0 3 0

2 1 4 5 5 4 4

0.701

Offspring1

1 1 0 1 1

3 3 0 2

2

2

2 0 3 1

1 2 4 1 1 4 4

0.489

For the fifth part of chromosome0.3

B

B

B

Fig .4. An illustration of the crossover operator

By applying this operator the demand point may be

allocated to the DC that is not constructed. So an action

should be taken to eliminate this unjustified condition. For

this, places that are created in first part of child chromosome

will be assumed as amount of new genes randomly placed.

In this case the child chromosome is justified.

Mutation operator: mutation rate is an important concept in

relation to the operator. Mutation rate is the percentage of

the genes on each chromosome that are subject to change. If

the mutation rate is very small, a large number of genes that

could be helpful won’t be testes and if the mutation rate is

too large random there will be random differences and the

child will lost similarities to parents. This will lose the

historical memory of the algorithm. Thus the optimum value

should be selected for mutation rate. Uniform mutation

operator is used in this article. In this operation, first, a

number of genes will be randomly selected from each

chromosome, then the amount is changed randomly in the

allowable limit. The number of selected genes from each

chromosome for uniform mutation operation is obtained by

multiplication of mutation rate and number of genes in the

chromosome. Normal mutation is used for the fifth part of

the chromosome.

0 1 0 0 1

0 2 0 0

0

2

2 0 0 2

2 5 2 2 5 5 2

0.86

Offspring

1 1 0 0 1

3 2 0 0

2

2

2 0 0 0

2 3 2 4 1 5 2

0.701

Parent

Fig. 5. An illustration of the mutate operator

5. Performance Evaluation

In this section, first the problem inputs are determined then

30 examples are solved in various aspects using GA. The

parameters of algorithm will be set and after the parameter

tune, examples are resolved. According to the obtained

results, upper and lower bound [] are determined

for each example. Then due to optimal [], the

presented examples will be solved by using HSA and GA.

Results before and after determining the optimum limits are

evaluated according to the objective function value and the

required computational time (Time).

In this paper the algorithms are coded in MATLAB 2012b

and are implemented on a 1.8-GHz laptop with four GB

RAM.

The inputs are generated based on what follows:

Typical values for the parameters of the model are

determined with respect to the matters contained in the

literature and based on uniform distribution. These values

are shown in Table 1.

Table1

Parameters for the joint replenishment-location model

Parametr range

 U [80 800] U [1 10]

 U [400 800] U [100 1000]

 45 U [10 45]

 U [0 1]

5.1. Parameter tuning

As the acquired results of the meta-heuristic algorithms are

sensitive to parameter, a small change can affect the quality

of the solution obtained. Therefore, one needs a fine tuning

procedure for the parameters in order to find better

solutions. These parameters are given in

Table 2 and are tuned using the response surface

methodology (RSM). In this regard, the 30 problems of

different size of small, medium, and large are randomly

generated to calibrate the parameters of both algorithms.

The range of each parameter is shown in Table 3.

Reza Abdollahi Sharbabaki et al./Presenting a Joint Replenishment-location…

62

Table2

Parameters for GA and HSA

GA Parameters

Population

Size

Crossover

ratio

Mutation

ratio
Number of the iterations

HS Parameters

Population

Size

Pitch

adjusting

rate

Outer loop

size
Inner loop size

Harmony

memory rate

Table3

 Parameters’ ranges along with their Levels

Optimization

Algorithms

Algorithm

Parameters
Parameter Range

GA

 50-150

0.5-0.99

0.01-0.4

 800-1600

HS

 800-1600

0.1-0.5

 10-50

 50-200

 0.75-0.95

Each sample is performed 3 times and the average of 3 runs

is intended as output, each time their parameters (factors)

are randomly changing based on described in permitted

range in Table 2. The responses in each run are the

objective function value and CPU time. The values of the

related responses are first normalized by the linear norm.

Then, a quadratic regression function for each measure is

estimated using the MATLAB software to find significant

relationships between the parameters and their response. At

the end, the average estimation of the responses using the

four estimated regression functions is taken to be

maximized by the GAMS software, in order to find the

optimal combinations of the parameters. The quadratic

regression function consists of linear, interaction, and

quadratic coefficients shown in Eq. (21).

0 1 1 2 2 3 3 4 4

2 2 2 2

11 1 22 2 33 3 44 4

12 1 2 13 1 3 14 1 4

23 2 3 24 2 4 34 3 4

()E y X X X X

X X X X

X X X X X X

X X X X X X

    

   

  

  

    

   

  

  

 (21)

Where () is the expected value of the response, is a

constant that represents the intercept, are

linear coefficients, are the quadratic

coefficients, , are coefficients of the interaction and

 is the parameter of GA and HSA.

As an example, Table 4 contains the experimental results of

employing GA. Based on the results provided in Table 4,

the regression function estimated for the GA is:

2

2 2 2

() 0.036 0.00827 0.017

0.019 0.004889 0.016

0.001167 0.01 0.013

0.007133 0.0023

0.006396 0.0038

0.036 0.0022

c

m

c m

c m

c m

c m

E y nPop P

P nItr nPop

P P nItr

nPop P nPop P

nPop nItr P P

P nItr P nItr

  

  

  

   

   

   

(22)

HSA parameters can be calculated similar to GA. The

results to calibrate the parameters of both algorithms are

presented in Table 4.

𝑃𝑐

𝑃𝐴𝑅

𝑃𝑚

𝑃𝑐

𝑃𝑚

𝑃𝐴𝑅

Journal of Optimization in Industrial Engineering Vol.13, Issue 1, Winter & Spring 2020, 55-66

63

Table 4

 Computational results of applying GA

No.

Algorithm Parameters Obtained Response

Best

Solution
time

1 55 0.55 0.2 900 239935.556 25.599502

2 70 0.65 0.3 850 240586.8632 36.444389

3 75 0.53 0.28 1150 478827.3111 48.684753

4 130 0.9 0.35 900 239973.1923 90.473375

5 80 0.7 0.3 920 240454.397 72.806932

6 100 0.8 0.15 1100 239973.1599 60.385801

7 120 0.85 0.2 1000 240008.9694 72.806932

8 60 0.6 0.05 800 239973.6827 18.899531

9 65 0.55 0.25 860 239934.689 30.268056

10 150 0.99 0.06 820 239934.689 67.947217

11 120 0.72 0.2 1000 240016.6224 66.725678

12 85 0.63 0.33 1300 239934.689 68.054539

13 100 0.8 0.15 1100 239936.0829 60.439298

14 80 0.7 0.3 950 239934.8129 51.18934

15 95 0.64 0.36 1400 239935.5512 96.324997

16 140 0.95 0.05 800 203532.7815 58.691355

17 60 0.79 0.22 1550 239935.6454 57.807847

18 75 0.72 0.24 1600 255457.3235 71.476132

19 55 0.76 0.35 1500 239939.256 58.226897

20 110 0.77 0.22 1200 250355.8724 76.463927

21 100 0.9 0.1 1000 478991.4218 55.678054

22 105 0.5 0.158 1050 239934.7051 46.298375

23 150 0.8 0.06 1200 479497.7003 84.140858

24 90 0.6 0.3 1000 240177.0666 49.687906

25 105 0.77 0.23 1100 239934.689 68.134844

26 88 0.66 0.05 850 239935.5512 28.913946

27 88 0.88 0.09 1100 239973.8608 52.777878

28 110 0.59 0.11 1111 449435.7999 49.302571

29 150 0.77 0.29 950 255313.6317 92.139846

30 120 0.8 0.4 900 250966.4225 80.412876

Table 5

 Parameter ranking of the algorithms

GA
Parameters

Rank 105 0.77 0.25 950

HS
Parameters

Rank 40 0.1 200 1000 0.5

5.2. Computed results

To evaluate and compare the performance of GA before and

after calculating [], and also to evaluate the

performance of the GA and HSA, 30 examples of various

aspects before and after calculating the optimal []

have been solved. These examples are presented in Table 6.

𝑃𝑐

𝑛𝑃𝑜𝑝 𝑃𝑐 𝑃𝑚

Reza Abdollahi Sharbabaki et al./Presenting a Joint Replenishment-location…

64

Table 6

 Computational results of the solving methodologies

Problem

No.
I J O

GA before calculating the

upper and lower

GA after calculating the upper

and lower

HS after calculating the

upper and lower

Best Solution time Best Solution time Best Solution time

1 2 5 3 8531.1241 98.15001 8436.9449 90.122436 8436.9877 38.837961

2 3 5 3 16912.1679 91.406163 16857.5678 91.13136 16750.8302 40.57735

3 2 5 2 72220.6771 88.561894 72120.6771 86.461894 72086.1941 38.275775

4 4 7 3 118835.6972 100.97112 118735.5973 90.42436 118737.7601 41.546342

5 3 8 3 19612.3216 99.302427 19502.6423 91.674115 15091.424 39.196794

6 3 8 3 13098.8306 90.57132 12498.8306 91.627572 12498.9683 41.133786

7 5 8 3 17085.6317 101.16799 17085.6317 92.122436 10792.3824 44.946944

8 2 8 3 60877.0239 96.015914 55310.2421 89.179007 55317.8619 38.135755

9 4 8 4 315308.2914 101.14301 247540.566 100.408542 247540.5763 46.226219

10 2 9 2 290433.7142 98.633152 290433.7142 97.733152 290434.0432 47.43381

11 4 10 4 71164.9091 111.19638 41073.9234 98.855436 37357.398 50.372374

12 5 10 4 286153.9187 114.6338 239998.4411 107.582128 240018.2148 48.40526

13 7 11 3 53243.5866 102.66991 52203.6658 102.669908 51035.0127 47.842904

14 3 12 3 15209.2627 98.412706 15209.2627 94.311706 15207.6358 41.998581

15 3 15 2 800871.8956 131.67696 700871.8956 102.669908 700873.3465 41.57001

16 4 16 4 253532.7915 102.47501 203532.7915 102.475006 203754.3503 45.242714

17 3 13 4 1930861.137 127.7645 40045.8095 94.038247 35543.1778 40.230372

18 6 19 3 676074.2947 130.65098 676074.2947 100.650982 676077.7176 49.418174

19 5 18 3 395537.9288 101.04671 395537.9288 101.046706 396319.1285 45.953621

20 8 20 4 265830.8798 158.93516 537736.6324 130.106343 317287.781 54.011636

21 8 21 4 663345.0509 114.32754 424899.96 125.514528 483974.4786 54.952946

22 5 21 5 30842.432 91.153474 30842.432 90.232436 30842.4549 50.071673

23 8 24 4 474666.8966 101.4644 513043.3959 134.656065 332812.9576 54.101276

24 7 22 3 86825.1125 119.77855 76825.1125 114.878552 52968.9104 48.620477

25 7 26 3 1201001.151 118.11223 1112315.123 114.125351 772128.1283 52.131121

26 5 25 5 1162946.345 115.66321 1068956.655 113.468343 760007.4181 42.749169

27 9 30 3 1112123.421 133.10041 1090211.581 132.926407 1099803.71 56.265722

28 10 35 4 993273.33 151.32405 988873.33 145.62405 873523.5003 62.028575

29 8 50 5 1562646.031 160.84142 1472421.322 132.910867 1462646.031 62.910867

30 9 40 7 1093253.122 151.32405 1082873.131 148.12316 893611.6121 59.128575

In order to compare algorithms used in solving the problem,

we used an of variance (ANOVA) approach

at 95% confidence level. A typical test of hypothesis on the

equality of the means is stated in Eq. (22) and Eq. (23). In

this equation () is the mean value of GA objective

function before obtaining the optimal [] and ()

is the mean value of GA objective function after obtaining

the optimal [].

0 (1) (2) ()

1 (1) (2) ()

z GA z GA z HS

z GA z GA z HS

H

H

  

  

  


  

(23)

0 (1) (2) ()

1 (1) (2) ()

t GA t GA t HS

t GA t GA t HS

H

H

  

  

  


  

(24)

The ANOVA results to compare the objective function

value and the CPU time of the two algorithms are shown in

Figs. 6 and 7 using the Minitab 16 software. The results

show no significant difference between the two algorithms

in the objective function value but on basis of CPU time,

HSA is hugely better than GA in both cases.

Journal of Optimization in Industrial Engineering Vol.13, Issue 1, Winter & Spring 2020, 55-66

65

Fig. 6. ANOVA and the related interval plots for CS metric

Fig. 7. ANOVA and the related interval plots for Time metric

In the second comparison, the technique for order

preference by similarity to ideal solution (TOPSIS) is used

to compare the two algorithms in terms of the objective

function value and CPU time, simultaneously.

Fig. 8. The mean value of the objective function and the results of the 30

examples

The result obtained from implementing the TOPSIS method

shows that the coefficient close of the HSA is equal to

0.678697, algorithms GA2 is equal to 0.321303 and GA1 is

equal to zero. Using this analysis, the HSA to GA is better

than genetic algorithm in both conditions.

6. Conclusion

In this paper, a new model of JRP-location under all-units

discount was offered. In this model number and location

DCs, joint replenishment frequencies and optimum order

quantity of each DC are defined as the total location costs

and joint replenishment costs be minimized. Since in joint

replenishment problem (JRP) determining optimal limits

upper and lower joint replenishment time [] is

very important, To solve this model, we have proposed a

two-stage method. First, by limiting the joint replenishment

time between a very small amount and 2 the model is solved

by GA and location of each DC () is obtained. Then the

optimal upper and lower bound [] are determined

by Quantity Discount RAND Algorithm. In the second

stage, the model with the optimal upper and lower bound

[] is resolved by GA and HSA. To demonstrate

the applicability of the proposed model and to measure the

efficiency of the two solution algorithms, various test

problems of different sizes were randomly generated. An of

variance (ANOVA) approach at 95% confidence level and

the technique for order preference by similarity to ideal

solution (TOPSIS) is used to compare the two algorithms in

terms of the objective function value and CPU time. While

the statistical comparison approach showed no significant

difference between the two algorithms at 95% confidence

level, the results obtained using the TOPSIS method showed

HSA the better algorithm.

For future research, the model can be extended for a multi-

product problem, other meta-heuristic algorithms can be

utilized to solve the proposed problem, the backordering

costs can be considered for the joint replenishment part of

the model. Also this model can be used for modeling of

incremental discounts. Future research can also consider

other terms such as incremental discounts and budget.

References

Arkin, E., Joneja, D., Roundy, R. (1989). Computational

complexity of uncapacitated multi-echelon production

planning problems. Operations Research Letters. 8: 61-

66.

Source DF SS MS F P

Factor 2 2.44707E+11 1.22354E+11 0.59 0.557

Error 87 1.80449E+13 2.07413E+11

Total 89 1.82896E+13

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----

GA1 30 468737 530252 (-------------*-------------)

GA2 30 387402 435634 (------------*-------------)

HS 30 342783 388966 (-------------*------------)

 -----+---------+---------+---------+----

 240000 360000 480000 600000

Source DF SS MS F P

Factor 2 78760 39380 142.00 0.000

Error 87 24128 277

Total 89 102888

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev ---------+---------+---------+---------+

GA1 30 113.08 21.32 (--*--)

GA2 30 106.93 18.10 (--*--)

HS 30 47.48 7.05 (--*--)

 ---------+---------+---------+---------+

 60 80 100 120

Reza Abdollahi Sharbabaki et al./Presenting a Joint Replenishment-location…

66

Cha, BC., Moon, IK. (2005). The joint replenishment problem

with quantity discounts under constant demand.

Operational Research Spectrum. 27: 569-581.

Chan, C.K., Li, L.K., Ng, C.T., Cheung, B.K. (2006).

Scheduling of multi-buyer joint replenishments.

International Journal of Production Economics. 102: 132-

142.

Chan, C.K., Cheung, B.K., Langevin, A. (2003). Solving the

multi-buyer joint replenishment problem with a modified

genetic algorithm. Transportation Research Part B:

Methodological. 37 (3): 291-299.

Fung, R., Ma, X., (2001). A new method for joint

replenishment problems. Journal of the Operational

Research Society. 52: 358–362.

Geem, Z.W., Kim, J.H., Loganathan, G.V. (2001). A new

heuristic optimization algorithm: harmony search.

Simulations. 76: 60–68.

Goyal, S.K., Deshmukh, S.G. (1993). The economic ordering

quantity for jointly replenishment items. International

Journal of Production Research. 31: 109 -116.

Hariga, M. (1994). Two new heuristic procedures for the joint

replenishment problem. Journal of the Operational

Research Society. 45: 463-471.

Hoque, M.A. (2006). An optimal solution technique for the

joint replenishment problem with storage and transport

capacities and budget constraint. European Journal of

Operational Research. 175:1033-1042.

Hong, S.P., Kim, Y.H. (2009). A genetic algorithm for joint

replenishment based on the exact inventory cost.

Computers & Operations Research. 6 (1): 167-175.

Hajipour, V., Rahmati, S.H. A., Pasandideh, S. H. R., Niaki,

S.T.A. (2014). A Multi-Objective Harmony Search

Algorithm to Optimize Multi-Server Location-Allocation

Problem in Congested Systems. Computers & Industrial

Engineering. 72:187-197.

Kaspi, M., Rosenblatt, M.J. (1991(. On the economic ordering

quantity for jointly replenishment items. International

Journal of Production Research. 29: 107–114.

Khouja, M., Goyal, S. (2008). A review of the joint

replenishment problem literature: 1989–2005. European

Journal of Operational Research. 186: 1–16.

Khouja, M., Michalewicz, Z., Satoskar, S. (2000). A

comparison between genetic algorithms and the RAND

method for solving the joint replenishment problem.

Production Planning & Control: The Management of

Operations. 11(6): 556-564.

Li Q. (2004). Solving the multi-buyer joint replenishment

problem with the RAND method. Computers & Industrial

Engineering. 46: 755-762.

Lu, T., Jia, S., Li, Y. (2010). A Modified RAND Algorithm for

Multi-Buyer Joint Replenishment Problem with Resource

Constraints. Information Science and Engineering,

Hangzhou. China.

Lee, F.C., Yao, M.J. (2003). A global optimum search

algorithm for the joint replenishment problem under

power-of-two policy. Computers and Operations

Research. 30: 1319-1333.

Olsen, A.L. (2005). An evolutionary algorithm to solve the

joint replenishment problem using direct grouping.

Computers & Industrial Engineering. 48: 223–235.

Porras, E., Dekker, R. (2006). An efficient optimal solution

method for the joint replenishment problem with

minimum order quantities. European Journal of

Operational Research. 174: 1595-1615.

Qu, H., Wang, L., Zeng, Y.R. (2013). Modeling and

optimization for the joint replenishment and delivery

problem with heterogeneous items. Knowledge-Based

Systems. 1-9.

Qu, H., Wang, L., Liu, R. (2014). A Contrastive Study of the

Stochastic Location-Inventory Problem with Joint

Replenishment and Independent Replenishment. Expert

Systems with Applications.
Silva, F., Gao, L. (2013). A Joint Replenishment Inventory-

Location Model. Networks and Spatial Economics. 13:

107-122.

Taleizadeh, A.A., Niaki, S.T.A., Aryanezhad, M.B., Tafti, A.F.

(2010). A genetic algorithm to optimize multiproduct

multiconstraint inventory control systems with stochastic

replenishment intervals and discount. Journal of advanced

manufacturing Technology. 51: 311-323.

van Eijs, M.J.G. (1993). A note on the joint replenishment

problem under constant demand. Journal of Operational

Research Society. 44: 185-191.

Viswanathan, S. (1996). A new optimal algorithm for the joint

replenishment problem. Journal of the Operational

Research Society. 47: 936-944.

Wang, L., Dun, C.X., Bi, W.J., Zeng, Y.R. (2012). An effective

and efficient differential evolution algorithm for the

integrated stochastic joint replenishment and delivery

model. Knowledge-Based Systems. 36: 104-114.

Wang, L., Qu, H., Liu, S., Chen, C. (2014). Optimizing the

joint replenishment and channel coordination problem

under supply chain environment using a simple and

effective differential evolution algorithm. Discrete

Dynamics in Nature and Society. Article ID 709856, 1–

12, doi: /10.1155/2014/709856.

This article can be cited: Abdollahi Sharbabaki, R., Pasandideh, S. H. (2020).

Presenting a Joint Replenishment-location Model Under all-units Discount and Solving by

Genetic Algorithm and Harmony Search Algorithm.

Journal of Optimization in Industrial Engineering. 13 (1), 55-66.

http://www.qjie.ir/article_538179.html

DOI:10.22094/joie.2017.445.0

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5680733
http://www.springer.com/engineering/production+engineering/journal/170
http://www.springer.com/engineering/production+engineering/journal/170
http://www.qjie.ir/article_538179.html

