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Abstract 

Although several papers have studied no-idle scheduling problems, they all focused on flow shops, assuming one processor at 
each working stage. But, companies commonly extend to hybrid flow shops by duplicating machines in parallel in stages. 
This paper considers the problem of scheduling no-idle hybrid flow shops. A mixed integer linear programming model is first 
developed to mathematically formulate the problem. Using commercial software, the model can solve small instances to 
optimality. Then, two metaheuristics, based on variable neighborhood search and genetic algorithms, are developed to solve 
larger instances. Using numerical experiments, the performance of the model and algorithms are evaluated. 
Keywords: Scheduling, No-idle hybrid flow shops, Mixed integer linear programming, Variable neighborhood search, 
Genetic algorithm. 

1. Introduction 

In flow shop scheduling problems, we have a set of jobs 
and a set of working stage. To complete each job, some 
operations have to be performed. Each operation is 
carried out at one working stage, where in each stage, 
there is only one processor, say machine. The processing 
routes of all jobs are the same, starting from stage 1 to 
stage m. The objective is to sequence jobs so as to 
complete all jobs as soon as possible.  

One criticism to scheduling problems is the gap 
between academic and practical problems. To bridge this 
gap, it is always interesting to extend scheduling 
problems by assumptions taken form realistic industries. 
One restrictive assumption in flow shop is to consider one 
machine at each working stage, while companies employ 
more than one machine at stages with more workload. In 
this case, they can reduce the impact of bottleneck stages, 
or even balance their production capacity more. The 
problem with more than one machine at each stage is 
called hybrid flow shops.  

This extension of flow shop is a very active field of 
research. Ebrahimi et al. (2014) studied hybrid flow shop 
scheduling with sequence-dependent family setup time 
and uncertain due dates. Fattahi et al. (2014) considered 
hybrid flow shop scheduling problem with setup time and 
assembly operations. Lahimer et al. (2013) investigated  

 
 
 

 
 
hybrid flow shop scheduling with multiprocessor tasks. 
Luo et al. (2013) studied hybrid flow shop scheduling 
with machine electricity consumption cost. Elmi and 
Topaloglu, (2013) considered blocking hybrid flow 
shop robotic cells with multiple robots. 

In some productions, it is completely uneconomical 
to maintain such machines idle, especially industries with 
highly expensive machines. Moreover, in industries with 
less expensive machines, it might not be desirable to stop 
machines between jobs. An example of such an industry 
is the furnace of the fiberglass industry. Heating the 
furnace up to the necessary temperature is both time-
consuming and expensive. Thus, it is always kept on 
when it starts working. These practical situations raise a 
scheduling environment, called no-idle scheduling. In a 
no-idle scheduling, idle time on a machine is not allowed. 
In other words, each machine must continuously process 
jobs from the start of processing the first job to the end of 
the last job. To fulfill this restriction, the start of 
processing the first job on a given machine might be 
delayed. Other applications of no-idle scheduling (i.e., as 
it might be technically infeasible or uneconomical to stop 
a machine in between jobs) are foundries, production of 
integrated circuits, and the steel-making industry (Pan and 
Ruiz, 2014). 

Although there are several papers considering no-idle 
scheduling, they all study flow shop problems.  
Kalczynski and Kamburowski (2005) considered no-idle 
flow shops and proposed a heuristic for this problem. 
Deng and Gu (2012) developed a hybrid discrete 
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differential evolution algorithm for the no-idle 
permutation flowshop scheduling problem to minimize 
make-span. Tasgetiren et al. (2013a) investigated the no-
idle permutation flowshop scheduling problem to 
minimize the total tardiness. They developed a discrete 
artificial bee colony algorithm for this problem. 
Tasgetiren et al. (2013b) investigated the same problem 
with Tasgetiren et al., (2013a) and proposed a variable 
iterated greedy algorithm with differential evolution. 
Moreover, the classical iterated greedy and a variable 
iterated greedy from the literature are reimplemented. Pan 
and Wang (2008) studied the no-idle permutation flow 
shop scheduling problems to minimize makespan. They 
developed two straightforward methods to calculate the 
makespan: a speed-up method and a discrete particle 
swarm optimization algorithm. This algorithm 
outperformed two heuristics of Tasgetiren et al. (2013a) 
and Kalczynski and Kamburowski (2005). 

Saadani et al. (2005) studied no-idle flowshop 
problems to minimize the makespan. Since this problem 
can be modeled as a travelling salesman problem, an 
adaptation of the well-known nearest insertion rule is 
proposed to solve the problem. Baraz and Mosheiov 
(2008) developed a greedy algorithm for no idle 
flowshops to minimize makespan. Goncharov and 
Sevastyanov (2009) proposed several polynomial time 
heuristics based on a geometrical approach for the general 
case and for special cases of 3 and 4 machines. They also 
proposed a complete survey of relevant works. Zhou et al. 
(2014) also proposed an invasive weed optimization 
algorithm. Lu (2016) studied no-idle flow shop with time-
dependent learning effect and deteriorating jobs. Pan and 
Ruiz (2014) investigated mixed no-idle flow shops, where 
not all machines require no-idle restriction. They first 
mathematically formulated the problem and proposed an 
iterated greedy algorithm enhanced by a speed-up feature. 
After reviewing the literature of no-idle scheduling, we 
can conclude that all the papers studied the flow shop 
problem. 

In this paper, we generalize no-idle flow shop 
problems to no-idle hybrid flow shops. Using Grahams’ 
notation, the problem is ݋݊/ܿܨܨ − ௠௔௫ܥ/݈݁݀݅ . We first 
formulate the problem by a mixed integer linear 
programming model. Using the model, the small instances 
of the problem are solved to optimality. Since the problem 
under consideration is NP-hard, the best solution method 
is metaheuristic. There are two different metaheuristic 
types: single-individual and multi-individual (population-
based) ones. To find out what type of metaheuristic 
performs well for this problem, we have decided to 
develop one single-individual and one multi-individual 
metaheuristics. Among different single-individual 
alternatives, variable neighborhood search has shown 
high performance in different scheduling problems (Xiao 
et al., 2014; Kocatürk and Özpeynirci, 2014). Also, 

among different multi-individual alternatives, genetic 
algorithm seems the best one regarding the literature (Dai 
et al., 2013). Thus, two metaheuristics, based on variable 
neighborhood search and genetic algorithm, are also 
developed to solve large instances. Two numerical 
experiments are conducted to evaluate and compare the 
models and algorithms. 

The rest of the paper is organized as follows. Section 
2 formulates the problem by three different mathematical 
models. Section 3 develops two metaheuristics. Section 4 
evaluates both the models and metaheuristics. Section 5 
concludes the paper. 

2. Problem Definition and Formulation 

This section first describes the problem, then 
mathematically formulates the problem. The problem of 
scheduling no-idle hybrid flow shops can be defined as 
follows. There are ݊  jobs and ݉  working stages. Each 
stage has a number of ݉௜  identical machines. All jobs 
visit all stages from the first to the last stage.  They are 
processed by one machine at each stage. Each job can be 
processed by at most one stage at a time and each 
machine can process at most one job at a time. The 
machines are continuously available. All jobs are 
independent and available at time zero. The objective is to 
assign jobs to machines at each stage and sequence jobs at 
each stage. 

To illustrate the problem, we first present a numerical 
example. Consider a problem with 4 jobs and 2 stages. 
There are two machines at each of the two stages. Table 1 
shows the processing times of jobs at different stages. 
One solution for this problem is to assign jobs 1 and 3 to 
machine 1 (job 3 followed by job 1), and jobs 2 and 4 to 
machine 2 at stage 1 (job 2 followed job 4). At stage 2, 
jobs 2 and 3 are assigned to machine 1, and jobs 1 and 4 
to machine 2. Makespan of this solution becomes 25. 

 
Table 1 
 Processing times of the example 

Jobs Stages 
1 2 

1 6 5 
2 15 10 
3 5 9 
4 4 5 

 
Scheduling problems are commonly formulated as 

mixed integer linear programming models. The problem 
under consideration is modeled by a mathematical model. 
Before presenting the models, we establish the following 
parameters and sets. 
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Fig. 1. Gantt chart of a feasible solution for the example 

 
Parameters: 
݊ The number of jobs 
݆, ݇ Indices for jobs where {1, 2,…	 , ݊} 
݉ Number of stages 
݅ Indices for stages where {1, 2,…	 ,݉} 
݉௜ Number of machines in stage ݅ 
݈ Indices for machines at stage ݅ where 

{1, 2,…	 ,݉௜} 
  ݅ ௝,௜ Processing time of job j at stage݌
M A large positive number  
 
Decision variables: 
௝ܺ,௜,௞  Binary variable taking value 1 if job j is 

processed after job k at stage i, and 0 
otherwise k > j. 

௝ܻ,௜,௟ Binary variable taking value 1 if job j is 
processed at stage i on machine l, and 0 
otherwise. 

 ௝,௜ Continuous variable for the completionܥ
time of job j at stage i 

௜ܵ,௟ Continuous variable for the starting time 
of machine l at stage i 

 ௜,௟ Continuous variable for the finishingܨ
time of machine l at stage i 

 
The model is as follows. 
 
Min ܥ௠௔௫ 
Subject to: 

෍ ௝ܻ ,௜,௟

௠೔

௟ୀଵ

= 1 ∀௝,௜ (1)

௝,௜ܥ ≥ ௝,௜ିଵܥ + ௝,௜  ∀௝,௜வଵ (2)݌

௝,௜ܥ ≥ ௞,௜ܥ + ௝,௜݌ ܯ− ∙ ൫3 − ௝ܺ,௜,௞ −
௝ܻ,௜,௟ − ௞ܻ,௜,௟൯  

∀௝ழ௡,௞வ௝,௜,௟ (3)

௞,௜ܥ ≥ ௝,௜ܥ + ௞,௜݌ ܯ− ∙ ൬
2 + ௝ܺ,௜,௞

− ௝ܻ,௜,௟ − ௞ܻ,௜,௟
൰ ∀௝ழ௡,௞வ௝,௜,௟ (4)

௝,௜ܥ ≥ ௜ܵ,௟ + ௝,௜݌ ܯ− ∙ ൫1 − ௝ܻ,௜,௟൯  ∀௝,௜,௟ (5)

௜,௟ܨ ≥ ௝,௜ܥ ܯ− ∙ ൫1 − ௝ܻ ,௜,௟൯ ∀௝,௜,௟ (6)

௜,௟ܨ = ௜ܵ ,௟ +෍ ௝ܻ,௜,௟ ∙ ௝,௜݌

௡

௝ୀଵ

 ∀௜,௟ (7)

௠௔௫ܥ ≥ ௝,௠ ∀௝ܥ  (8)

௝,௜ܥ ≥ 0 ∀௝,௜ (9)

௜ܵ,௟ ≥ 0 ∀௜,௟ (10)

௜,௟ܨ ≥ 0 ∀௜,௟ (11)

௝ܺ,௜,௞ ∈ {0, 1} ∀௝,௜,௞வ௝  (12)

௝ܻ,௜,௟ ∈ {0, 1} ∀௝,௜,௟ (13)

 
Constraint set (1) assigns each operation to one of 

machines of its corresponding stage. Constraint set (2) 
ensures that each job can be processed by at most one 
machine at a time. Constraint sets (3) and (4) are the pair 
of disjunctive constraints (one of them holds at most 
depending on which job proceeds the other one) that show 
each machine can process at most one job at a time. 
Constraint sets (5), (6), and (7) ensure that no-idle 
restrictions are met. Constraint set (8) calculates 
makespan. Finally, Constraint sets (9) and (13) define the 
decision variables. 
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3. Developed Metaheuristics 

In this paper, we develop two metaheuristics of variable 
neighborhood search and genetic algorithm to solve large 
instances of the problem. Later on, the variable 
neighborhood search and genetic algorithm are described 
in detail. 

3.1. Variable neighborhood search 

The general timetabling problem is known to be 
complex and difficult. In this context, exact solutions 
would be only possible for problems of limited sizes. 
Instead, solution algorithms based on metaheuristics have 
shown to be highly effective. Examples of these 
algorithms include genetic algorithm (Wang, 2002; Wang, 
2003), Tabu Search (Aladag et al., 2009), simulated 
annealing (Zhang et al., 2010), variable neighborhood 
search (Burke et al., 2010), and etc.  

Variable neighborhood search (VNS) is a simple but 
effective local search-based metaheuristic proposed by 
Mladenovic and Hansen (1997). Local search-based 
methods have been applied in the optimization literature 
with very good results, like simulated annealing (SA), 
tabu search (TS), and the iterated local search (ILS). 
However, all these methods are based on the exploration 
of a single neighborhood structure. Hence, there exists 
high probability for them to get trapped in local optima 
after a certain number of iterations and the move required 
to separate the algorithms from the local optima cannot be 
performed. Therefore, they need mechanisms to have 
sufficient potentiality to escape from local optima. 

Instead of iterating over one constant type of 
neighborhood structure and relying on mechanisms such 
as random perturbations of ILS or memory structures of 
TS or metropolis mechanism of SA, VNS proceeds in this 
case by using a different type of neighborhood structure, 
which might contain the required improving moves. The 
term “VNS” is referred to all local search-based 
approaches that are centered on the principle of 
systematically exploring more than one type of 
neighborhood structure during the search. VNS is based 
on two important facts: (1) a local optimum, with respect 
to one type of neighborhood, is not necessarily so with 
respect to another type; (2) a global optimum is a local 
optimum with respect to all types of neighborhoods 
(Hansen and Mladenovic, 2001). 

The reasons why VNS has obtained its acceptability 
and popularity among researcher are due to the utilization 
of several neighborhood structures, easy to implement, 
and high flexibility, and brilliant adaptability of VNS to 
different problems. VNS has been applied with success to 
other problems including (Flesza and Hindi 2004; Liao 
and Cheng 2007). In the following sections, we provide 
the proposed VNS methods with further details. 

 
 

3.1.1. Solution representation 

The proposed algorithms are based on permutation 
encoding scheme. The permutation scheme is a sorted list 
of all the jobs being processed. By considering the 
permutation from left to right, the relative sequence of 
jobs is determined. For the sake of simplicity, let us 
describe the permutation scheme by an example. Suppose 
that we have a problem with ݊ = 5 . In the case of 
permutation list, {2,5,1,4,3} is one possible permutation. 
This permutation merely shows the relative order of jobs 
at the first stage. Jobs are taken one by one from the list 
and assigned to the first available machine. The sequence 
of jobs at the subsequent stages is determined by the 
earliest completion time of jobs at the previous stage. The 
first available machine rule is also used for the 
assignment. 

While decoding the encoded solution, no-idle 
restriction has to be fulfilled. Note that no-idle restriction 
in the first stage is always held. To meet this restriction 
for the rest, the following two-phase decoding scheme is 
used. In the first phase, no-idle restriction is ignored; jobs 
are sequenced and assigned according to “earliest 
completion time” and “first available machine” rules, 
respectively. In the second phase, the last job of each 
machine is fixed; the preceding jobs are moved left. That 
is, the processing of a job is postponed so as to make sure 
that the job is completed when the next job can be started.  

3.1.2. General structure of the proposed VNS and its 
neighborhoods 

Generally, VNS iterates over some neighborhood 
structures until some stopping criterion is met. Our 
proposed VNS algorithm incorporates two different local 
search types: one local search for small changes and 
another for larger changes. The stopping criterion is set at 
a limit CPU time fixed to ݊݉  seconds. This stopping 
criterion allows for more time as the number of jobs and 
stages increases.  

In the first local search, one job is randomly selected 
and reinserted into another randomly selected position. 
For example, consider a problem with ݊ = 5. Suppose that 
the current solution is {2,5,1,4,3}. The randomly selected 
job is job 5 and randomly selected position is 4. In this 
case, new solution becomes {2,1,4,5,3}. This local search 
repeats for ߩଵ  times and each time, a new solution is 
generated.  

After generating each new solution, it can be either 
accepted or rejected by another mechanism. If this new 
solution improves the current solution, it is accepted. If 
new solution deteriorates the current solution by more 
than 10% (called i), it is rejected. Otherwise, it is 
probably accepted. The probability of acceptance depends 
on the inferiority gap size. The larger the inferiority gap 
size is, the lower its chance of being accepted becomes. A 
new solution with g% inferiority gap is accepted with 
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probability of   10-g%. Figure 2 shows the outline of the 
proposed VNS. 

 
Procedure: The_local_search_type 1 
 
For ݅ = 1 to ߩଵ do 

Reinsert a job into a new position 
Accept/reject the new solution 

Endfor 

Fig. 2. General outline of local search type 1 
 
If the local search type one is implemented and the 

best solution is improved, it is re-implemented. 
Otherwise, the local search type two is performed. In the 
local search type two, two jobs are randomly selected and 
they are reinserted into new randomly selected positions. 
This local search also repeats for ߩଶtimes. Each time, a 
new solution is generated. To accept or reject a new 
solution, the mentioned acceptance mechanism of the first 
local search is used. Figure 3 shows the outline of the 
proposed VNS. 
 

Procedure: The_proposed_VNS 
 
Step 1: Generate initial solution, say ߠ. 
Step 2: If the stopping criterion is not met, 
go to step 3. 
Step 3: Apply local search 1. 
Step 4: If ߠ  is improved; go to step 3; 
otherwise, go to step 5. 
Step 5: Apply local search 2. 
Step 6: If ߠ  is improved, go to step 5; 
otherwise, go to step 2. 

Fig. 3. General outline of the proposed VNS 
 

3.2. Genetic algorithm 

Genetic algorithm (GA) is designed to deal with 
some problems of industry that were difficult to solve by 
conventional methods. Todays, GA is a well-known 
population-based evolutionary algorithm tackling both 
discrete and continuous optimization problems. The idea 
behind GA comes from Darwin’s ‘‘survival of the fittest’’ 
concept, meaning that good parents produce better 
offsprings. Many hard optimization problems have been 
successfully solved by GA (Wang, 2002; Toledo et al., 
2013; Balakrishnan et al., 2003). Wang (2002) solved 
teacher assignment problems by GA. Toledo et al. (2013) 
developed a GA to tackle lot-sizing problems. 
Balakrishnan et al. (2003) also solved dynamic layout 
problem by GA. 

3.2.1. General structure 

GA searches for a solution space with a population of 
chromosomes, each of which represents an encoded 
solution. A fitness value is assigned to each chromosome 
according to its performance. The better the chromosome 
is, the higher this value becomes. The population evolves 
by a set of operators until some stopping criteria are 

visited. A typical iteration of a GA, generation proceeds 
as follows. The best chromosomes of current population 
are directly copied to next generation (reproduction). A 
selection mechanism chooses chromosomes of the current 
population so as to give higher chance to chromosomes 
with the higher fitness value. The selected chromosomes 
are crossed to generate new offspring. After crossing 
process, each offspring might mutate by another 
mechanism called mutation. Afterwards, the new 
population is evaluated again and the whole process is 
repeated. The outline of the proposed GA is shown in 
Figure 4. 

 
The procedure: the proposed GA 
Initialization mechanism 
While the stopping criterion is not met, do 

Selection mechanism 
Crossover mechanism 
Mutation mechanism 

Endwhile 
Fig. 4. The outline of the proposed GA 

3.2.2. Initialization and selection mechanisms 

GA starts with a number of chromosomes, each of 
which represents a possible solution. The number of 
chromosomes is the population size indicated by pop, set 
to 50. The initial chromosomes are randomly generated 
from the feasible solutions. After initializing the 
algorithms, each chromosome is evaluated and its fitness 
(i.e., objective function) is determined. The chance of 
chromosome ݇ to be selected for crossover mechanism is 
as follows. 

௞݌ =
(݇)ݐ݂݅

∑ ௣௢௣(ℎ)ݐ݂݅
௛ୀଵ

 

where ݂݅ݐ(݇) is the fitness of chromosome ݇. 

3.2.3. Crossover and mutation mechanisms 

New solutions are produced by crossing two other 
solutions already selected by selection mechanism. These 
two solutions are called parents. The operators of 
combining parent are called crossover. The purpose of 
this combining is to generate better offsprings. To move 
the search towards better areas, we define a new solution 
that inherits from both parents. In fact, we combine two 
parents to form a new solution. In this research, this is 
done through an operator with the following steps. 

Two randomly cut points are selected. Then, the jobs 
between these cut points from Parent 1 are copied to 
offspring in the same positions. The remaining jobs are 
put into the empty positions of the offspring from Parent 
2. The order of the remaining jobs is determined by their 
relative order in Parent 2. For example consider a problem 
with ݊ = 6. Suppose that two parents are:  

Parent	1:	{2,1, 5,4,6,3} 
Parent	2:	{6,1, 3,2,4,5} 

Suppose that the two randomly selected cut points are 2 
and 4. In this case, the operations from position 2 to 
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position 4 are copied into the same position in the 
offspring. 

offespring:	{−,1,5,4,−,−} 
The remaining jobs are 2, 6, and 3. These jobs are 

copied into offspring according to Parent 2. Thus, the 
complete offspring becomes: 

offespring:	{6,1,5,4,3,2} 
After crossover, each solution is changed by the 

mutation operator. The main purpose of applying 
mutation is to avoid convergence to a local optimum and 
diversify the population. We use the swap mutation 
operator which works as follows. Two positions are 
randomly selected and the jobs of these two positions are 
swapped. For example, consider a problem with ݊ = 6. 
Suppose that the encoded solution is: 

	{6,1, 5,4,3,2} 
The two randomly selected positions are 3 and 6. By 

swapping the corresponding operations, we have: 
	{6,1, 2,4,3,5} 

4. Computational Evaluation 

This section numerically evaluates the performance 
of the model and algorithms. To do that, two sets of 
instances are generated: one including small instances and 
one with larger ones. First, the proposed MILP model is 
assessed by a computational experiment with small-sized 
instances. Then, the general performance of the proposed 
metaheuristics (i.e., GA and VNS) is evaluated against the 
optimal solutions obtained by the model. We use a 
performance measure named relative percentage deviation 
(RPD) obtained by the following formula: 

ܦܴܲ =
௦௢௟݈݃ܣ ௦௢௟݊݅ܯ−

௦௢௟݊݅ܯ
∙ 100  

where 	݊݅ܯ௦௢௟	and ݈݃ܣ௦௢௟are the lowest ܥ௠௔௫  for a given 
instance obtained by any of algorithms and the solution 
obtained by a given algorithm. We implement the MILP 
models in CPLEX 12 and the other algorithms in 
MATLAB and run on a PC with 2.0 GHz Intel Core 2 
Duo and 2 GB of RAM memory. The stopping criterion 
used when testing all instances with the metaheuristics is 
set to a computational time limit fixed to ݊ ×݉× 0.5 
seconds. This stopping criterion permits for more time as 
the number of jobs or machines increases. 

4.1. Evaluation on small-sized instances 

This subsection first evaluates the efficiency of the 
MILP model to solve the problem under consideration. 
We generate a set of different instances as follows. We 
have 6 problem sizes  

݊ = {4,6,8} and ݉ = {2,4} 
The processing times are randomly distributed over (1, 
99). For each problem size, we generate 2 instances.  
Therefore, it sums up to 12 instances. The MILP model is 
allowed a maximum of 1000 seconds of computational 

time. Table 2 shows the results obtained by the model. 
The model can optimally solve instances up to 6 jobs and 
2 stages. The required computational time is less than 6 
seconds. Yet, for larger instances than 6 jobs and 2 stages, 
it yields average optimality gap of 9%. 

 
Table 2 
Model’s results (computational time in seconds) 

݊ × ݉ Model 
Cmax Time Optimality Gap 

4×2 161 0.06 0 
4×2 153 0.06 0 
4×4 274 3.84 0 
4×4 288 1.34 0 
6×2 196 2.28 0 
6×2 236 5.03 0 
6×4 348 1000 7% 
6×4 346 1000 11% 
8×2 281 1000 8% 
8×2 258 1000 6% 
8×4 316 1000 12% 
8×4 335 1000 6% 

 
We are going to evaluate the algorithms (i.e., GA and 

VNS) against the optimal solutions obtained by the 
models in the previous small instances. Table 3 shows the 
results. GA and VNS perform the same by optimally 
solving 5 instances out of 6 instances. The average 
optimality gap becomes 0.63%. 

 
Table 3 
Algorithm’ results on small instances 

݊ × ݉ Model Algorithm 
GA VNS 

4×2 161 161 161 
4×2 153 153 153 
4×4 274 275 275 
4×4 288 298 298 
6×2 196 196 196 
6×2 236 236 236 

Average  0.63% 0.63% 

4.2. Evaluation on large-sized instances 

After having investigated the general performance of 
the metaheuristics, we intend to further compare the 
proposed algorithms against a set of large instances. We 
consider the following 16 combinations of ݊, ݉, and ݉௜. 

݊ = {20,50,100},݉ = {5,10}, ݉௜ = {2, ܷ[1,3]}	
For each combination, we generate 5 random instances by 
producing random processing times from a uniform 
distribution over (1, 99). In this case, we have 60 
instances. We use the RPD measure to compare the 
algorithms. 

Table 4 summarizes the results of the experiments 
averaged for each combination of ݊ and	݉. GA is still the 
best performing algorithm with RPD of 0.26%. VNS 
yields average RPD of 1.60%. 
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Table 4 
Algorithm’ results on small instances 

݊ × ݉ Algorithm (gap) 
VNS GA 

20×5 1.6503 0.4487 
20×10 1.1072 0.6285 
50×5 2.0444 0.2082 
50×10 1.8091 0.217 
100×5 0.9875 0.0509 
100×10 2.0134 0.0168 
Average 1.602 0.2617 

 
To further statistically analyze the results, we carry 

out an analysis of variance test or ANOVA. The results 
demonstrate that there are significant differences between 
the algorithms with p-value very close to 0. Figure 5 
shows the mean of plot and least significant difference or 
LSD intervals at 95% confidence level for the different 
algorithms. 

 
Fig. 5. The average RPD and LSD interval of the algorithms 

 
It is also interesting to plot the performance of the 

algorithms versus the problem size. Figure 6 shows the 
mean obtained by the algorithms in the different problem 
sizes. In all the three problem sizes, GA outperforms 
VNS. There is a clear trend that GA works better in larger 
sizes. 

 

 
Fig. 6. The average RPD of the algorithms versus the problem size 

 

5. Conclusion 

This paper considered a practical extension of hybrid 
flow shops, called no-idle scheduling. In this type of 
scheduling, it is assumed that a machine has to 
continuously process jobs. That is, no idle time on 
machine is allowed. Although no-idle scheduling is an 
active field of research in the literature, all the papers in 
this area focus on flow shop problems and there is no 
paper studying no-idle hybrid flow shops. For the very 
first time, this problem is mathematically formulated by a 
mixed integer linear programming model. Using this 
model and CPLEX software, the instances up to 6 jobs 
can be solved to optimality. Yet, larger instances cannot 
be optimally solved due to hardness of the problem. 
Therefore, two metaheuristics in form of variable 
neighborhood search and genetic algorithm were 
developed.  

To evaluate the performances of model and 
metaheuristics, two computational experiments were 
done. In the first experiment, small instances were used to 
assess the model’ computational time to solve the 
instances (Table 2). The experiment was implemented in 
CPLEX software. Moreover, the general performance of 
the proposed metaheuristics was evaluated (Table 3). The 
results of numerical experiment showed that the proposed 
metaheuristics effectively solve the problem. In the 
second experiment, using large instances, the proposed 
metaheuristics were compared (Table 4). The results 
showed that genetic algorithm outperformed variable 
neighborhood search. 
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