
Journal of Optimization in Industrial Engineering,Vol.11, Issue1, Winter and Spring 2018, 103-111 
DOI:  10.22094/JOIE.2018.266 

 

A Stochastic Optimization Approach to a Location-Allocation 
Problem of Organ Transplant Centers 

Mahshid Ghanea, Reza Tavakkoli-Moghaddamb,* 
a

M.sc.,
 
Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

b
Professor, School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran 

 

Received 28April 2016; Revised 29 November 2016; Accepted 26 December 2016 
 
 

 

Abstract 
 

Decision-making concerning the location of critical resource on the geographical network is important in many industries. In the healthcare 
system, these decisions include location of emergency and preventive care. The decisions of location play a crucial role due to determining 
the travel time between supply and demand points and response time in emergencies. Organs are considered as highly perishable products, 
whose variety of each product has a specific perish time. Despite the importance of this field, only a small proportion of healthcare sector is 
dedicated to this field. Matching and finding the best recipient for a donated organ is one of the major problems in this field, which is also 
crucial for the overall organ transplantation process. Balancing the demand and supply in a transplant organ supply chain in order to 
decrease the waiting list needs certain scheduling and management. The main contribution of this paper consists of considering recipient 
regions as another component of the supply chain; inaddition, importance of transportation time and waiting lists has led us to consider a 
bi-objective model. In addition, uncertainty of input data has led us to consider a stochastic approach. 
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1. Introduction 
 
The supply chain network design is one of the most 
important strategic decisions. Among the different kinds 
of facility problems, healthcare location has an important 
role in minimizing the cost or maximizing the people 
benefit. Many previous studies have been devoted to 
facility location problems (Drira et al., 2007; Farahani et 
al., 2010).Syam and Côté (2012) addressed a location–
allocation model fora treatment department related to 
traumatic brain injuries. A common resource constraint is 
also assumed, and minimization of the total cost is 
considered as objective function. The derived data from 
the Department of Veterans Affairs (DVA) have been 
used for testing applicability of the model. They also 
examined the effects of five critical factors (i.e., degree of 
service centralization, service level mandates by acuity, 
and lost admission cost) by equity, facility overload 
penalty cost by equity, and target utilization level by 
acuity and treatment unit. Benneyan et al. (2012) also 
proposed a multi-period integer programming model that 
would establish trade-offs between cost, coverage, service 
location and capacity for a location-allocation problem. 
Sheriff et al. (2012) addressed a capacitated maximal 
covering healthcare location problem and applied it to one 
of the districts of Malaysia, utilizing a new genetic 
algorithm. A multi-period location-allocation problem of  
 
 

an emergency blood supply system for a case study in 
Beijingwas presented by Sha and Huang (2012).They 
proposed a heuristic algorithm based on a Lagrangian 
relaxation method. Most studies related to organ 
donations and organ transplants have focused on policies 
to allocate organs to recipients (Bruni et al., 2006; Rais 
and Viana, 2011). For a recent overview of organ 
allocation and the acceptance of kidneys and livers, we 
refer to (Alagoz et al., 2009). Nevertheless, when looking 
at the broader healthcare literature, we observe that 
facility location is not a new issue at all (Rais and Viana, 
2011).Belien et al. (2011)proposed a mixed-integer linear 
programming (MILP) to optimize location of organ 
transplant centers as one of the most vital subsets of a 
supply chain network. Minimizing the transportation time 
between hospitals as supply point and transplant centers 
as demand point is considered as objective function. The 
model is applied to the Belgium organ transplant path. 
Zahiri et al. (2014a) presented a dynamic location-
allocation problem of organ transplant centers under 
uncertainty. The uncertain nature of the input data was 
handled via a robust possibilistic programming approach. 
In another paper, Zahiri et al. (2014b) presented a bi-
objective MINLP model for designing an organ transplant 
network under uncertainty.  
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A priority queuing system was applied to the model, and 
large-scale problems were solved using two meta-
heuristic algorithms. Ebbini et al. (2015) presented a 
fuzzy lung allocation system (FLAS) in order to 
determine which potential recipients would receive a lung 
for transplantation when it became available in the USA. 
According to Uehlinger et al. (2010), each organ is 
constrained by a specific cold ischemia time defined as 
the maximum period an organ can be kept outside the 
body. In this area, Bruniet al. (2006) presented a mixed-
integer linear programming (MILP) model to obtain an 
efficient system and equalize the waiting lists in Italy. To 
optimize their transplant system, they assumed that 
special centers play critical rules in managing and 
procuring the organs. Kong et al. (2010) used a branch-
and-price approach aiming at the maximization of the 
efficiency of the liver allocation systems in the USA. The 
study benefits from the clinical data for computational 
experiments. Furthermore, Belien et al. (2010)considered 
optimal locations of shipping agents solved with limited 
numbers of potential locations. A numerical example was 
obtained from real data in Belgium.Shishebori et al. 
(2015) presented an efficient mixed-integer linear 
programming model for a robust and reliable medical 
service center location network design problem, which 
simultaneously takes uncertain parameters, system 
disruptions, and investment budget constraint taken into 
account. The proposed model was formulated based on an 
efficient robust optimization approach to protect the 
network against uncertainty.Mousazadeh et al. (2015) 
presented a bi-objective mixed-integer linear 
programming model developed for a pharmaceutical 
supply chain network design problem. Since the critical 
parameters are tainted with a great degree of epistemic 
uncertainty, a robust possibilistic programming approach 
is used to handle uncertain parameters. Zahraee et al. 
(2015) applied the dynamic simulation and Taguchi 
method to design a robust blood supply chain system to 
improve the blood supply chain efficiency. The National 
Blood Center (NBC) in Iran is selected as the case of 
study. 
The main contribution of this paper consists of 
considering recipient regions as another component of the 
supply chain, and importance of transportation time and 
waiting lists has led us to consider a bi-objective model. 
Another aspect of the proposed model is to determine 
location–allocation of each mentioned center under 
uncertainty via a scenario-based stochastic approach. 
An organ transplant network consists of a donor (i.e., a 
person who donates an organ), a recipient (i.e., a patient 
who receives the organ), hospitals, transplant centers, and 
shipping agents. The network of the transplant system 
consists of donors (D), recipient zones (RZ), hospitals 
(H), transplant centers (TC), and shipping agents 
(Sh.A).Brain death patients and donors are kept in 
hospital; blood sampling, registration, and organ 
transplant surgery are accomplished in the transplant 
centers, and also shipping agents are ready to transport the 
organ between the transplant center and the hospital. 

2. Problem Definition 
 
This paper presents a bi-objective stochastic mathematical 
model for a location-allocation problem of organ 
transplant centers. First, a deterministic bi-objective 
mixed-integer nonlinear programming model is developed 
that minimizes the total transportation time and the 
maximum shortage of organ simultaneously. Additionally, 
this proposed model uses a scenario-based stochastic 
approach, and then is solved by the ε-constraint method. 
The efficiency of this model is demonstrated by some 
numerical experiments and two test problems in small and 
large sizes. Finally, the conclusion and future studies are 
provided. 
According to Fig. 1, when a donor is volunteered for 
donating an organ (1), a shipping agent team will be sent 
to the hospital (2) and delivers donor’s information and 
blood samples to the transplant center (3), then the 
shipping agent team will return to the hospital (4). The 
surgical operation of removing an organ from the donor’s 
body is applied in the hospital, then the removed organ 
will be sent to the transplant center for transplantation (5, 
5’). Subsequently, qualified recipient is notified and 
should be at the current time (6). 
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Fig. 1.Schematic view of the considered network. 

 
As an international organ supply chain, both domestic and 
foreign surgical operations have been taken in to 
consideration with a little difference. In case of a foreign 
recipient or donator, the organ recipient can be foreigner, 
so an organ should be delivered to the airport to arrive at 
the TC for operation (5’). One of the important issues that 
can be considered in this paper is perishability of the 
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organs. Maximum time that an organ can be kept outside 
the body is referred to cold ischemia time. Cold ischemia 
time has a direct negative influence on the chances of a 
successful transplant; if the transport time between a 
hospital and a transplant center exceeds this time for a 
particular organ, we assume that the organ cannot be 
transported to the transplant center. Hence, in this paper, 
we develop a location-allocation of organ transplant 
centers under different possible scenarios of input data. 
The minimization of the transportation time and 

minimization of the maximum shortage of an organ are 
considered as bi-objective functions. 
In this section, a bi-objective mathematical model for a 
location-allocation problem of an organ supply chain 
under uncertainty is taken into consideration. The aim of 
this model is to minimize the transportation time and 
maximum shortage of the organ. We utilize the ε-
constraint method for solving this problem. The notations 
of the model represented below. 

 
Sets: 

H Set of hospitals h∈H 
O Set of organs o∈O 
V Set of shipping agentv∈V 
A Set of airportsa∈A 
I Set of transplant centers i∈I 
K Set of recipient zonek∈K 

 
Parameters: 

 ௜ Fixed cost of locating TC at potential location iܥ
 ௛ Fixed cost of locating hospital at potential location hܥ
 ௩ Fixed cost of locating shipping agent at potential location vܥ
 ௩௛ Cost of having a contract of hospital h with shipping agent vܥ
 ௜௛ Transportation time between TC and hospitalݐ
 ௛௜ Transportation time between hospital and TCݐ
  ௔௜ Transportation time between airport and TCݐ
  ௞௜ Transportation time between recipient zone and TCݐ
 ௢ Cold ischemia time of organ oݐ
௢௛ݏ

஽  Arrival flow of organ o coming from domestic donors 
௢௛ݏ

஺  Arrival flow of organ o coming from abroad 
 ௞௢ Demand of recipient zone k for organ oܦ
B' Available budget 

 
Decision variables: 

௛௜௢ݔ
´  Flow of organ o from hospital h to TC 

 ௛௜௢ Flow of information and blood requirement of organ o from hospital h to TCݔ
 ௛௔௢ Flow of organ o from hospital h to airport aݔ
 ௔௜௢ Flow of organ o from airport a to TCݔ
 ௞௜௢ Flow of organ o from recipient zone k to TCݔ
 ௞ Organ shortage in recipient zone kܤ
 ௛ 1, if hospital h is open, and0; otherwiseݖ
௜ݖ

´ 1, if transplant center i  is open, and 0; otherwise 
 ௛௢ 1, if hospital h is open for at least one organ o, and 0; otherwiseݕ
௜௢ݕ

´  1, if transplant center i  is open for at least one organ o, and 0; otherwise 
 ௩௛ 1, if hospital h is covered by shipping agent v, and 0; otherwiseݔ
 ௩ 1, if shipping agent v is selected, and 0; otherwiseݓ

 
Model formulation: 
 

Minܼଵ =  Max
௞

 ௞ (1)ܤ

Min ܼଶ = ෍ ෍ ෍((ݐ௛௜ + ௛௜௢ݔ(௜௛ݐ

ு

௛

ூ

௜

+ ௛௜௢ݔ௛௜ݐ)
′ )

ை

௢

) + ෍ ෍ ෍ ௞௜௢ݔ௞௜ݐ

௄

௞

ூ

௜

ை

௢

+ ෍ ෍ ෍ ௔௜௢ݔ௔௜ݐ

஺

௔

ூ

௜

ை

௢

 (2) 

s.t.  

෍ ܿ௛ݖ௛

ு

௛

+ ෍ ܿ௜ݖ௜
′

ூ

௜

+ ෍ ܿ௩ݓ௩

௏

௩

+ ෍ ෍ ܿ௩௛ݔ௩௛

௏

௩

ு

௛
≤  (3) ′ܤ

௛௢ݕ ≤ ௛,                                                            ∀ℎݖ ∈ ,ܪ ݋ ∈ ܱ, (4) 
௜௢ݕ

′ ≤ ௜ݖ
′ ,                                                             ∀݅ ∈ ,ܫ ݋ ∈ ܱ, (5) 
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෍ ௛௢ݕ

ு

௛

≥ ݋∀                                                       ,1 ∈ ܱ, (6) 

෍ ௜௢ݕ
′

ூ

௜

≥ ݋∀                                                        ,1 ∈ ܱ, (7) 

௛௜௢ݔ
′ = ௛௜௢ݐ                                                            ,0 > ௢ݐ , (8) 

෍ ௛௜௢ݔ

ூ

௜

= ௢௛ݏ)
஽ + ௢௛ݏ

஺ ௛௢ݕ( ,                           ∀ℎ ∈ ,ܪ ݋ ∈ ܱ, (9) 

௛௜௢ݔ ≤ ௢௛ݏ)
஽ + ௢௛ݏ

஺ ௜௢ݕ(
′ ,                                   ∀ℎ ∈ ,ܪ ݅ ∈ ,ܫ ݋ ∈ ܱ, (10) 

෍ ௛௜௢ݔ
′

ூ

௜

≤ ௢௛ݏ
஽ ௛௢ݕ ,                                           ∀ℎ ∈ ,ܪ ݋ ∈ ܱ, (11) 

௛௜௢ݔ
′ ≤ ௢௛ݏ

஽ ௜௢ݕ
′ ,                                                  ∀ℎ ∈ ,ܪ ݅ ∈ ,ܫ ݋ ∈ ܱ, (12) 

෍ ௛௔௢ݔ

஺

௔

≤ ௢௛ݏ
஺ ௛௢ݕ ,                                         ∀ℎ ∈ ,ܪ ܽ ∈  (13) ,ܣ

෍ ௔௜௢ݔ

ூ

௜

− ෍ ௛௔௢ݔ

ு

௛

= 0,                                ∀ܽ ∈ ,ܣ ݋ ∈ ܱ, (14) 

෍ ௞௜௢ݔ

௄

௞

= ෍ ௛௜௢ݔ
′

ு

௛

+ ෍ ௔௜௢ݔ

஺

௔

,                   ∀݅ ∈ ,ܫ ݋ ∈ ܱ, (15) 

෍ ௔௜௢ݔ

஺

௔

≤ ෍ ௢௛ݏ
஺

ு

௛

௜௢ݕ
′ ,                                   ∀݅ ∈ ,ܫ ݋ ∈ ܱ, (16) 

෍ ௩௛ݔ

௏

௩

≤ 1,                                                     ∀ℎ ∈  (17) ,ܪ

෍ ௞௜௢ݔ

ூ

௜

+ ௞௢ܤ ≥ ݇∀                                     ,௞௢ܦ ∈ ,ܭ ݋ ∈ ܱ, (18) 

௛௢ݕ ≤ ෍ ௩௛ݔ ,                                                
௏

௩

∀ℎ ∈ ,ܪ ݋ ∈ ܱ, (17) 

෍ ௩ݓ

௏

௩

≥ 1, (18) 

௩௛ݔ ≤ ௩ݓ ݒ∀                                                       , ∈ ܸ, ℎ ∈  (19) ,ܪ

௩ݓ ≤ ෍ ௩௛ݔ ,                                                
ு

௛

ݒ∀ ∈ ܸ, (20) 

௛ݖ , ௜ݖ
′ , ,௛௢ݕ ௜௢ݕ

′ , ௩ݓ , ௩௛ݔ ∈ {0,1}, ∀݅, ℎ, ,݋  (21) ,ݒ
௛௜௢ݔ

′ , ௛௔௢ݔ , ௔௜௢ݔ , ௞௜௢ݔ , ௛௜௢ݔ , ௢௞ܤ ≥ 0, ,݅∀            ,ݐ݊݅ ℎ, ,݋ ܽ, ݇. (22) 
 

 
The first (1) and second (2) objective functions minimize 
the maximum organ shortage and organ transportation 
time, respectively. Constraint (3) defines the budget 
constraint. Constraint (4) indicates that a hospital can only 
be able to donate a particular organ if the hospital itself is 
open. Constraint (5) has the same definition for each 
transplant centers. Constraints (6) and (7) indicate that at 
least one hospital and one transplant center should be 
open, respectively. Constraint (8) ensures that organ 
transportation time between hospital and TC should not 
exceed the cold ischemia time of each organ. Constraints 
(9) and (10) ensure that flows of information and blood 
samples are only able to be transported from hospital to 
TC if hospital and TC are open. Constraints (11) and (12)  

 
have the same definition for flow of organ from hospital 
to TC. Constraint (13) ensures that flow of organ from 
hospital to airport is only possible if a hospital for 
particular organ is open. Constraint (14) ensures that the 
total flows of an organ from a hospital to an airport are 
equal to the flow from an airport to a TC. Constraint (15) 
ensures that flows of an organ from a recipient zone to a 
TC are equal to flows from a hospital and an airport to a 
TC. Constraint (16) indicates that the flow of an organ is 
feasible only if a TC is open. Constraint (17) ensures that 
each hospital should be covered by at most one shipping 
agent. Constraint (18) indicates that the total demand is 
satisfied. Constraint (19) ensures that each opened 
hospital should be covered by at least one shipping agent. 
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Constraint (20) ensures that at least one shipping agent 
should be located. Constraint (21) indicates that a hospital 
is covered by shipping agent only if the shipping agent is 
selected. Finally, Constraint (22) minimizes the number of 
unused shipping agents and flows. 
 
3. Stochastic Optimization Model 
 

Since a demand for an organ is not certain, we consider 
the presented model under uncertainty parameters under 

different scenarios. To develop the stochastic optimization 
model, the demands, the supply, the fixed opening 
facility, the transportation time between facility, the cost 
of having a contract between facility, and the budget are 
considered as uncertain parameters with uniform 
distribution. Let Ω be the set of all possible scenarios and 
ߠ a particular scenario. According to the above 
description, the presented model and notations 
aremodified as follows: 

 
 

Sets: 
Ω Set of potential scenariosߠ ∈ Ω 
 
Parameters: 

 ߠ ఏ Probability of scenarioߨ
 ߠ ௜ఏ Fixed cost of locating TC at potential location i for scenarioܥ
 ߠ ௛ఏ Fixed cost of locating hospital at potential location h for scenarioܥ
 ߠ ௩ఏ Fixed cost of locating shipping agent at potential location v for scenarioܥ
 ߠ ௩௛ఏ Cost of having a contract of hospital i with shipping agent v for scenarioܥ
 ߠ ௜௛ఏ Transportation time between TC and hospital for scenarioݐ
 ߠ ௛௜ఏ Transportation time between hospital and TC for scenarioݐ
 ߠ ௔௜ఏ Transportation time between airport and TC for scenarioݐ
 ߠ ௞௜ఏ Transportation time between recipient zone and TC for scenarioݐ
௢௛ఏݏ

஽  Arrival flow of organ o coming from domestic donors for scenario ߠ 
௢௛ఏݏ

஺  Arrival flow of organ o coming from abroad for scenario ߠ 
ఏܤ

′
 Available budget for scenario ߠ 

 ߠ ௞௢ఏ Demand of recipient zone k for organ o for scenarioܦ
 
Decision variables: 
 and 0 otherwise ;ߠ ௩௛ఏ 1, if hospital h is covered by shipping agent v for scenarioݔ
 ߠ ௞ఏ Organ shortage in recipient zone k  for scenarioܤ
௛௜௢ఏݔ

´  Flow of organ o from hospital h to TC for scenario ߠ 
 ߠ ௛௜௢ఏ Flow of information and blood requirement of organ o from hospital h to TC for scenarioݔ
 ߠ ௛௔௢ఏ Flow of organ o from hospital h to airport a for scenarioݔ
 ߠ ௔௜௢ఏ Flow of organ o from airport a to TC for scenarioݔ
 ߠ ௞௜௢ఏ Flow of organ o from recipient zone k to TC for scenarioݔ
 
Formulation: 

Minܼଵ =  Max
௞

෍ ௞ఏܤఏߨ

Ω

ఏ

 (23) 

Min ܼଶ = ෍ ఏߨ ൭෍ ෍ ෍((ݐ௛௜ఏ + ௛௜௢ఏݔ(௜௛ఏݐ

ு

௛

ூ

௜

ை

௢

+ ௛௜௢ఏݔ௛௜ఏݐ)
′ )) + ෍ ෍ ෍ ௞௜௢ఏݔ௞௜ఏݐ

௄

௞

ூ

௜

ை

௢

+ ෍ ෍ ෍ ௔௜௢ఏݔ௔௜ఏݐ

஺

௔

ூ

௜

ை

௢

൱
Ω

ఏ

 (24) 

s.t.  

෍ ܿ௛ݖ௛

ு

௛

+ ෍ ܿ௜ݖ௜
′

ூ

௜

+ ෍ ܿ௩ݓ௩

௏

௩

+ ෍ ෍ ܿ௩௛ఏݔ௩௛ఏ

௏

௩

ு

௛
≤ ఏܤ

′  (25) ,ߠ∀      ,

௛௢ݕ ≤ ௛,                                                            ∀ℎݖ ∈ ,ܪ ݋ ∈ ܱ, (26) 

௜௢ݕ
′ ≤ ௜ݖ

′ ,                                                             ∀݅ ∈ ,ܫ ݋ ∈ ܱ, (27) 

෍ ௛௢ݕ

ு

௛

≥ ݋∀                                                       ,1 ∈ ܱ, (28) 

෍ ௜௢ݕ
′

ூ

௜

≥ ݋∀                                                        ,1 ∈ ܱ, (29) 

௛௜௢ఏݔ
′ = ௛௜௢ఏݐ                                                            ,0 >  ௢, (30)ݐ
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෍ ௛௜௢ఏݔ

ூ

௜

= ൫ݏ௢௛ఏ
஽ + ௢௛ఏݏ

஺ ൯ݕ௛௢ ,                           ∀ℎ ∈ ,ܪ ݋ ∈ ܱ,  (31) ,ߠ

௛௜௢ఏݔ ≤ ൫ݏ௢௛ఏ
஽ + ௢௛ఏݏ

஺ ൯ݕ௜௢
′ ,                                   ∀ℎ ∈ ,ܪ ݅ ∈ ,ܫ ݋ ∈ ܱ,  (32) ,ߠ

෍ ௛௜௢ఏݔ
′

ூ

௜

≤ ௢௛ఏݏ
஽ ௛௢,                                           ∀ℎݕ ∈ ,ܪ ݋ ∈ ܱ,  (33) ,ߠ

௛௜௢ఏݔ
′ ≤ ௢௛ఏݏ

஽ ௜௢ݕ
′ ,                                                  ∀ℎ ∈ ,ܪ ݅ ∈ ,ܫ ݋ ∈ ܱ,  (34) ,ߠ

෍ ௛௔௢ఏݔ

஺

௔

≤ ௢௛ఏݏ
஺ ௛௢,                                         ∀ℎݕ ∈ ,ܪ ܽ ∈ ,ܣ  (35) ,ߠ

෍ ௔௜௢ఏݔ

ூ

௜

− ෍ ௛௔௢ఏݔ

ு

௛

= 0,                                ∀ܽ ∈ ,ܣ ݋ ∈ ܱ,  (36) ,ߠ

෍ ௞௜௢ఏݔ

௄

௞

= ෍ ௛௜௢ఏݔ
′

ு

௛

+ ෍ ௔௜௢ఏݔ

஺

௔

,                   ∀݅ ∈ ,ܫ ݋ ∈ ܱ,  (37) ,ߠ

෍ ௔௜௢ఏݔ

஺

௔

≤ ෍ ௢௛ఏݏ
஺

ு

௛

௜௢ݕ
′ ,                                   ∀݅ ∈ ,ܫ ݋ ∈ ܱ,  (38) ,ߠ

෍ ௩௛ఏݔ

௏

௩

≤ 1,                                                     ∀ℎ ∈ ,ܪ  (39) ,ߠ

෍ ௞௜௢ఏݔ

ூ

௜

+ ௞ఏܤ ≥ ௞௢ఏܦ ,                                     ∀݇ ∈ ,ܭ ݋ ∈ ܱ,  (40) ,ߠ

௛௢ݕ ≤ ෍ ௩௛ఏݔ ,                                                
௏

௩

∀ℎ ∈ ,ܪ ݋ ∈ ܱ,  (41) ,ߠ

෍ ௩ݓ

௏

௩

≥ 1,                                                       (42) 

௩௛ఏݔ ≤ ݒ∀                                                       ,  ௩ݓ ∈ ܸ, ℎ ∈ ,ܪ  (43) ,ߠ

௩ݓ ≤ ෍ ௩௛ఏݔ ,                                                
ு

௛

ݒ∀ ∈ ܸ,  (44) ,ߠ

௛ݖ , ௜ݖ
′ , ௛௢ݕ , ௜௢ݕ

′ , ௩ݓ , ௩௛ఏݔ ∈ {0,1}, ∀݅, ℎ, ,݋ ,ݒ  (45) ,ߠ

௛௜௢ఏݔ
′ , ௛௔௢ఏݔ , ௔௜௢ఏݔ , ௞௜௢ఏݔ , ௛௜௢ఏݔ , ௞ఏܤ ≥ 0, ,݅∀            ,ݐ݊݅ ℎ, ,݋ ܽ, ݇,  (46) ,ߠ

 
In this model, probabilities are associated with scenarios, 
and a solution is sought which is immunized against all 
possible scenarios. The probabilities assigned to scenarios 
represent the importance of each scenario in an uncertain 
environment. A scenario is a description of a future 
situation and the course of events that enables one to 
progress from the original situation to the future situation. 
The hypotheses used to build a suitable scenario must 
simultaneously be relevant, consistent, plausible, 
important, and transparent to meet all of desirable criteria 
(Pishvaei et al., 2009). 
 
4. Numerical Example 
 

In this section, theε-constraint method is described briefly. 
Assume the following MOMP problem: 

Min( ଵ݂(ݔ), ଶ݂(ݔ), … , ௣݂(ݔ)) 
s.t. 

X߳ܵ. 

wherex is the vector of decision 
variables, ଵ݂(ݔ), ଶ݂(ݔ), … , ௣݂(ݔ)are p objective functions, 
and S is the feasible region. In the ε-constraint method, we 
optimize one of the objective functions using the other 
objective functions as constraints, incorporating them in 
the constraint part of the model as shown below. 
 

Min ଵ݂(ݔ) 
s.t. 

ଶ݂(ݔ) ≥ ݁ଶ, 
ଷ݂(ݔ) ≥ ݁ଷ, 
୮݂(ݔ) ≥ ݁௣, 

X߳ܵ. 
In order to properly apply the ε-constraint method, the 
ranges of at least p−1 objective functions are needed, 
which will be founded by calculating the utopia and nadir 
points of each objective function. By parametrical 
variation in the RHS of the constrained objective 
functions (݁௜ ),the efficient solutions tothe problem are 
obtained in the objective functions range.This method is 
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applied to the small and large-sized problems and the obtained Pareto solution, as shown in Table 1. 
 

Table 1 
E-constraint method 

Problem Size OFV2 ε OFV1 

4∗7∗7∗1∗2∗2 

592332.4 

30 

556 
458042 586 

361373.5 616 
308515.8 646 
202773.1 676 
125690.2 706 
85401.2 736 
73539.2 766 
67497.7 796 
64005.7 826 

 
5. Computational Results 
 
In order to assess the performance of the proposed 
stochastic model, two test problems are selected; in each 
size, three scenarios are considered.The scenarios for the 
two test problems are described in Table 2. The first 
scenario in each problem that has a higher probability has 
been used as nominal data for deterministic model; the 
number of variables and constraints for the two models 

shows the higher degree of complexity of the stochastic 
model. For applicability evaluation of the proposed 
models, a numerical example is implemented and reported 
in this section. Table 3 shows the obtained Pareto solution 
tithe two test problems. As shown in Table 3, the 
objective function has a conflict that increasing one of the 
objective function causes reduction in the other one. It 
should be noted that all the results are obtained by GAMS 
22.9 software using Core i7 and 8.0GB of RAM. 

 

Table 2 
Value of the parameters used in the model 

 

ᇱ t௛௜ܤ  t௔௜  t௞௜  c௩௛ c௩  c௜  c௛ ݏ௢௛
஺ ௢௛ݏ 

஽  D௢௞  ߨఏ Ω  ∗

K
∗

A
∗

V
∗

uniform~ 

[4000,7000]  

uniform
~ 

[40,90]  

uniform
~ 

[40,110]  

uniform
~ 

[10,60]  

uniform
~ 

[1,2]  

uniform
~ 

[100,200
]  

uniform~ 

[800,100
0]  

uniform
~ 

[300,700
]  

uniform
~ 

[90,150]  

uniform
 ~ 

[180,300
]  

uniform
 ~ 

[700,850
]  

.5  1  

4∗
7∗

7∗
1∗

2∗
2

  

uniform~ 

[6000,12000]  

uniform
~ 

[50,120]  

uniform
~ 

[60,150]  

uniform
~ 

[20,70]  

uniform
~ 

[1,3]  

uniform
~ 

[70,200]  

uniform~ 

[700,900]  

uniform
~ 

[450,650
]  

uniform
~ 

[100,200
]  

uniform
 ~ 

[230,350
]  

uniform
 ~ 

[750,900
]  

.3  2  

uniform~ 

[7000,10000]  

uniform
~ 

[30,95]  

uniform
~ 

[70,160]  

uniform
~ 

[30,90]  

uniform
~ 

[2,4]  

uniform
~ 

[90,170]  

uniform~ 

[950,120
0]  

uniform
~ 

[500,650
]  

uniform
~ 

[70,130]  

uniform
 ~ 

[150,280
]  

uniform
 ~ 

[630,890
]  

.2  3  

uniform~ 

[12000,1800
0]  

uniform
~ 

[40,90]  

uniform
~ 

[40,110]  

uniform
~ 

[10,60]  

uniform
~ 

[1,2]  

uniform
~ 

[100,200
]  

uniform~ 

[800,100
0]  

uniform
~ 

[300,700
]  

uniform
~ 

[70,120]  

uniform
~ 

[100,200
]  

uniform
 ~ 

[350,450
]  

.5  1  

8∗
22

∗3
0∗

1∗
4∗

2
 

uniform~ 

[13000,1700
0]  

uniform
~ 

[50,120]  

uniform
~ 

[60,150]  

uniform
~ 

[20,70]  

uniform
~ 

[1,3]  

uniform
~ 

[70,200]  

uniform~ 

[700,900]  

uniform
~ 

[450,650
]  

uniform
~ 

[100,200
]  

uniform
~ 

[150,350
]  

uniform
~ 

[450,600
]  

.3  2  

uniform~ 

[15000,2100
0]  

uniform
~ 

[30,95]  

uniform
~ 

[70,160]  

uniform
~ 

[30,90]  

uniform
~ 

[2,4]  

uniform
~ 

[90,170]  

uniform~ 

[950,120
0]  

uniform
~ 

[500,650
]  

uniform
~ 

[70,100]  

uniform
~ 

[90,150]  

uniform
~ 

[330,390
]  

.2  3  
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Model 
OFV2 OFV1  OFV2 OFV1 

4∗7∗7∗1∗2∗2 

123842.8  735  592332.4 556 
122590.7  736  458042 586 
114326.7 745 361373.5 616 
108752 751 308515.8 646 
90534 781 202773.1 676 
79794 811 125690.2 706 
77904 828 85401.2 736 

 -- -- 73539.2 766 
 -- -- 67497.7 796 
 -- -- 64005.7 826 
 -- -- 62892.5 842 

8∗22∗30∗1∗4∗2 

150399.9 785 2227959.2 608 
124096 798 1370975 643 
86131 808 904458 683 
75718 818 475748 723 
70268 828 205603 763 
67893 838 76897 803 
67396 842 51620 843 

 -- -- 51230 846 

  
Opening and closing a facility is both an expensive and 
time-consuming process; thus, changing facility location 
is impossible in the short run. On the other hand, 
determining the quantity of flow between network 
facilities as a tactical decision is more flexible to change 
in the short run. Therefore, to assess the performance of 
the deterministic and stochastic models under each 
scenario, firstly, the small-scalemodelwassolved by 

GAMS22.9. Then, the solutions were assessed under each 
scenario by allowing the model to update their decision 
variables on quantity of flows between facilities 
(continuous variables) under each scenario. It should be 
mentioned that the location and the number of facilities 
(binary variables) cannot be changed, as shown in Table 
4. 

 
Table 4 
Computational result under realization 

Problem size Scenarios Scenario 
probability 

Feasibility state No. of constraints No. of variables 
I∗H∗K∗A∗V∗O Deterministic Stochastic Deterministic Stochastic Deterministic Stochastic 

4∗7∗7∗1∗2∗2 
1 0.5 feasible 49076.8  

372 1044 248 670 2 0.3 infeasible 39906.9  
3 0.2 feasible 17099.3  

 
The optimal value of binary variables shows that the 
stochastic model determines the number and location of 
facilities in a way that they can satisfy all the scenarios. It 
is obvious from Table 4that the deterministic model 
results in infeasiblesolutions for scenarios 2. Therefore, it 
can be concluded that deterministic model is unable to 
handle data uncertainty. 
 
6. Conclusion 
 
In this paper, we have developed mixed-integer nonlinear 
programming model that minimizes the total 
transportation time and maximum organ shortage. With 
regard to handling the uncertain nature of some input 
parameters, a scenario-based stochastic approach has been 
utilized. Computational results show that the stochastic 
model could handle data uncertainty; therefore, it can be 
concluded that the proposed MINLP model can be used as 
a powerful tool in practical cases. Considering the model 
under the dynamic nature of facilities and facility 
disruptions, utilizing other efficient methods to cope with 
the uncertainty can be taken into account as the future 
research in this field. 

 
References 
 
Alagoz, O., Schaefer, A.J. & Roberts, M.S. (2009). 

Optimizing organ allocation and acceptance,in: P. 
Pardalos, E. Romeijn (Eds.), Handbook of 
Optimization in Medicine, Springer,  1–24. 

Belien, J., De Boeck, L., Colpaert, J., Devesse, S., & Van 
den Bossche, F. (2011). Optimizing the supply chain 
design for organ transplants.Hoge school- 
UniversiteitBrussel, Faculteit Economie en 
Management, Working papers. 

Belien.  J., De Boeck. L., Colpaert, J.,  Devesse. S.  & 
Van den 
Bossche. F. (2013). Optimizing the facility location 
design of organ transplant centers, Decision Support 
Systems, 54 (4), pp.1568–1579. 

Benneyan. J. C. and Musdal. H. and Ceyhan. M. E. and 
Shiner. B. & Watts. B. V.(2012). “Specialty care 
single and multi-period location–allocation models 
within the Veterans Health Administration”, Socio-
Economic Planning Sciences, 46 (2), 136–148. 

Bruni, M. E., Conforti, D., Sicilia, N., & Trotta, S.
(2006). Aneworgan transplantation location–allocation 

    Table 3 
    Computational result under nominal data 

Problem Size  Stochastic Model Deterministic 



111 

 

policy: A case study of Italy. Health Care 
Management Science, 9, 125–142. 

Drira.A.,Pierreval.H. & Hajri-Gabouj.S.(2007).Facility 
layout problems: A survey,Annual Reviews in Contro 
l,31, 255–267. 

Ebbini. L, Oztekin. A,Chen. Y. (2015).FLAS:Fuzzy lung 
allocation system for US-based transplantations. 
European  Journal of  Operational Research.1-15. 

Farahani. R. Z. and SteadieSeifi. M. &Asgari.N. 
(2010).Multiple criteria facility location problems: A 
survey, Applied Mathematical Modelling, 34,1689–
1709. 

Kong, N., Schaefer, A. J., Hunsaker, B., & Roberts, M. S. 
(2010). Maximizing the efficiency of the US liver 
allocation system through region design. Management 
Science, 56, 2111–2122. 

Mousazadeh. M, Torabi. S. A.&Zahiri. B. (2015).A robust 
possibilistic programming approach for 
pharmaceutical supply chain network 
design.Computer and Chemical Engineering. 

Pishvaei, M., Jolai, F.&Razmi, J. (2009).A stochastic 
optimization model for integrated forward/reverse 
logistics network design. Journal of Manufacturing 
System, 28, 107-114. 

Rais, A.&Viana, A. (2011). Operations research in 
healthcare: a survey, International Transactions in 
Operational Research, 18, 1–31 

Sha.Y. and Huang.J. (2012).The multi-period location–
allocation problem of engineering emergency blood 
supply systems, Systems Engineering Procedia, 5, 21–
28. 

Shariff.S. and Moin. N. H. & Omar. M. (2012).Location 
allocation modeling for healthcare facility planning in 

Malaysia, Computers and Industrial Engineering, 62, 
1000–1010. 

Shishebori.D, &Yosefibabadi.A, (2015). Robust 
and reliable medical services network design 
underuncertain environment and system disruptions. 
Transportation Research Part E, 77, 268–288. 

Syam. S. S. & Cote. M. J. (2012).A comprehensive 
location–allocation method for specialized healthcare 
services, Operations Research for Health Care,1 
(4),73–83. 

Uehlinger, N., Beyeler, F., Marti, H., &Immer, F. (2010). 
Organ transplantation in Switzerland: Impact of the 
new transplant law on cold ischaemia time and organ 
transports. Swiss Medical Weekly.140, 222. 

Zahiri, B., Tavakkoli-Moghaddam, R.&Pishvaee, M.S. 
(2014). A robust possibilistic programming approach 
to multi-period location-allocation of organ transplant 
centers under uncertainty. Computers & Industrial 
Engineering, 74, 139-148. 

Zahiri, B., Tavakkoli-Moghaddam, R., Mohammadi, 
M.&Jula, P. (2014).Multi-objective design of an organ 
transplant network under uncertainty. Transportation 
Research Part E: Logistics and Transportation 
Review,72, 101-124. 

Zahraee. M, Rouhani. J, Firouzi. A. &Shahpanah.A. 
(2015). Efficiency improvement of blood supply chain 
system using Taguchi method and dynamic 
simulation. 2nd International Materials, Industrial, and 
Manufacturing Engineering Conference, MIMEC, Bali 
Indonesia. Procedia Manufacturing, 2. 1-5. 

 

 
 
This article can be cited: Ghane, M. Tavakkoli-Moghaddam, R. (2018). A Stochastic Optimization  
Approach to a Location-AllocationProblem of Organ Transplant Centers. Journal of  Optimization 
in Industrial Engineering.11 (1), 103-111. 
 

URL: http://www.qjie.ir/article_266.html 
DOI:  10.22094/JOIE.2018.266 

 

 

 

 
 
 

 

 

 

Journal of Optimization in Industrial Engineering,Vol.11, Issue1, Winter and Spring 2018, 103-111
 




