
Measuring the Overall Performances of Decision-Making Units in the 
Presence of Imprecise Data 

Hossein Azizia,*, Alireza Baharib, Rasul Jahedc 
a MSc, Parsabad Moghan Branch, Islamic Azad University, Parsabad Moghan, Iran 

b MSc, Qom Branch, Islamic Azad University, Qom, Iran 
c MSc, Germi Branch, Islamic Azad University, Germi, Iran 

Received 20 September, 2011; Revised 23 January, 2012; Accepted 19 February, 2012 

Abstract 

Data envelopment analysis (DEA) is a method for measuring the relative efficiencies of a set of decision-making units (DMUs) that use 
multiple inputs to produce multiple outputs. In this paper, we study the measurement of DMU performances in DEA in situations where 
input and/or output values are given as imprecise data. By imprecise data we mean situations where we only know that the actual values lie 
in certain intervals, or cases in which data are given only as ordinal relationships. In this paper, we present two distinct approaches 
obtaining the upper and lower bounds of efficiency which the DMU under evaluation can have with imprecise data. The optimistic 
approach seeks the best score among the various values of the efficiency score, while the pessimistic approach seeks the worst score. The 
main idea of the paper is illustrated using an example. Also, two real-world cases are presented to demonstrate how the efficiency interval 
is interpreted. The efficiency interval not only describes the actual situation in more detail, but also relieves the psychological pressure on 
all the evaluated DMUs and the decision-maker. 
Keywords: Data envelopment analysis; imprecise data; optimistic efficiency interval; pessimistic efficiency interval; overall efficiency 
interval.

1. Introduction 

Data Envelopment Analysis (DEA) is widely used for 
evaluation and estimation of efficiency. DEA, first 
developed by Charnes et al. (2000), has been extensively 
applied to measurement and benchmarking of relative 
efficiency for various decision-making entities in the 
public and private sectors. In recent years, numerous 
articles and reports have investigated the application of 
DEA in educational centers, industry, and so on. 

DEA computes an efficiency score for each decision-
making unit (DMU) under evaluation against a set of 
DMUs. DEA efficiency score indicates the maximum 
radial (proportional) decrease in all inputs (increase in all 
outputs) which can cause an increase in the efficiency of a 
DMU similar to the most efficient DMUs in the evaluated 
set. In other words, it chooses the most favorable weights 
for each DMU under evaluation. For this reason, it is said 
that the method proposed by Charnes et al. (2000) 
measures the performance of the DMUs from the 
optimistic point of view. The efficiency measured in this 
way is called the best relative efficiency or the optimistic 
efficiency. Its value, in the input-oriented mode, is 
restricted to values less than or equal to one. If the value  

 
 
 
 

of the optimistic efficiency of a DMU is equal to one, that 
DMU is said to be DEA-efficient or optimistic efficient; 
otherwise, it is said to be DEA-non-efficient or optimistic 
non-efficient. It is usually held that optimistic efficient 
DMUs have a better performance than optimistic non-
efficient DMUs. 

On the other hand, another approach has been 
proposed by Parkan and Wang (2000) that measures the 
performances of DMUs from the pessimistic point of 
view. This approach selects the most unfavorable weights 
for each DMU under evaluation. The efficiency measured 
from the pessimistic point of view is called the worst 
relative efficiency or the pessimistic efficiency. Its value, 
in the input-oriented mode, is restricted to values greater 
than or equal to one. If the value of the pessimistic 
efficiency of a DMU is equal to one, that DMU is said to 
be pessimistic inefficient or DEA-inefficient; otherwise, it 
is said to be pessimistic non-inefficient or DEA-non-
inefficient. It is usually believed that pessimistic 
inefficient DMUs have a worse performance than 
pessimistic non-inefficient DMUs. 
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Optimistic and pessimistic efficiencies measure two 
extremes of the performance of each DMU. Any 
evaluation method that considers only one of these two 
efficiencies is bound to be biased. For determination of 
the overall performance of each DMU, both of them 
should be considered simultaneously. 

Entani et al. (2002) proposed a pair of DEA models 
with interval efficiencies that are measured from both 
optimistic and pessimistic points of view. Their pair of 
DEA models was first developed for crisp data and was 
then extended to interval and fuzzy data. These models 
are theoretically able to work with interval and fuzzy data, 
but they have some drawbacks. Namely, these models use 
only one input and one output for computation of lower 
bound efficiency regardless of the number of inputs and 
outputs in the problem. As a result, their model leads to 
loss of input and output information of the DMU under 
consideration. Furthermore, their DEA models use 
variable production frontiers for measurement of 
efficiency intervals of various DMUs. Before Entani et al. 
(2002), Doyle et al. (1995) were the first to study DMU 
performance from both optimistic and pessimistic 
perspectives. They obtained three pairs of models for 
evaluation of the upper and lower bounds for crisp data. 
Their models have a structure similar to Entani et al.’s 
(2002) models. 

Wang and Yang (2007) presented a pair of bounded 
DEA models for crisp data. The pair of bounded DEA 
models makes the most use of all input and output 
information and measures the best and worst relative 
efficiencies of each DMU by including a virtual DMU 
called the anti-ideal DMU. The anti-ideal DMU is a DMU 
which consumes the most input only to produce the 
lowest amount of output, and when there is a zero value in 
each output, it has efficiency zero. As a result, their pair 
of DEA models faces problems in computation of the 
overall efficiency interval of each DMU. Recently, Azizi 
and Wang developed improved bounded DEA models that 
measure DMU efficiencies under any circumstances. 

Wang et al. (2008) developed a pair of interval DEA 
models for dealing with crisp data. Interval DEA models 
determine the overall efficiency interval of each DMU 
using the pessimistic efficiency of a virtual DMU called 
anti-ideal DMU, which consumes the most amount of 
inputs and produces the least amount of outputs, and 
compute the optimistic and pessimistic efficiencies of 
each DMU. Azizi and Jahed (2011) pointed out that their 
interval DEA models face problems in determining the 
lower bound interval efficiency when there are zero 
values in each input. To fix this drawback, they developed 
a pair of improved interval DEA models that assess the 
overall efficiency of DMUs under any conditions. 

Wang and Luo (2006) combined the Technique for 
Order Preference by Similarity to Ideal Solution 
(TOPSIS), which is a technique in multiple attribute 
decision making, with DEA. They defined two virtual 
DMUs, called the ideal DMU and the anti-ideal DMU, 
and built two DEA models for computation of the best 

and the worst relative efficiencies. Combining these two 
distinct efficiencies, they obtained a relative closeness 
index which was used as a basis for ranking DMUs. Their 
proposed DEA models have two basic drawbacks: (1) In 
most cases, their DEA models use constant weights for all 
DMUs, and (2) when there are zero values in every input 
and in every output, their DEA models are infeasible. 

Azizi and Fathi Ajirlu (2010) used the optimistic 
efficiency of the ideal DMU and the pessimistic 
efficiency of the anti-ideal DMU for determination of the 
lower bound of the overall efficiency interval for crisp 
data. Their DEA models also face difficulties in 
determining the lower bound of the overall efficiency 
interval when there are zero values in every input and in 
every output. 

Amirteimoori (2007) presented an efficiency measure 
using two ideal and anti-ideal indices that are formed 
based on the efficiency and inefficient DEA frontiers. The 
logic of these two indices is maximization of the weighted 

1L  distance from a particular DMU to the efficient and 
inefficient DEA frontiers. 

Wang et al. (2007) proposed a geometric average 
efficiency measure for evaluation of the overall 
performance of each DMU. The geometric average 
efficiency combines both measures of optimistic 
efficiency and pessimistic efficiency for each DMU and 
as such, is a more comprehensive measure of 
performance. Recently, Wang and Chin (2009) proposed a 
new overall performance measure for DMU ranking. 
Their proposed DEA approach considers the optimistic 
and pessimistic efficiencies of the DMUs simultaneously. 
The overall performance measure defined by these 
authors considers not only the magnitude of the two 
efficiencies, but also their direction. Consequently, it 
appears to be more comprehensive than the geometric 
average efficiency of Wang et al. (2007). 

According to this review of the literature, it is evident 
that considerable attempts should be made for assessment 
of the overall performance of the DMUs, since the overall 
performance of the DMUs should be considered in the 
more general case of imprecise data. Of course, Entani et 
al. (2002) have studied the DEA structure in the presence 
of interval data. However, their DEA models have some 
drawbacks that will be presented in Section 3. Besides, 
the main focus of the present paper, under the general 
topic of DEA, will be simultaneous consideration of crisp, 
ordinal, and interval data for measurement of the overall 
performance of the DMUs. The upper bound of overall 
efficiency interval is obtained from the optimistic 
perspective, i.e. according to the most favorable condition 
of each DMU and using the most favorable weights. Its 
lower bound is determined from the pessimistic point of 
view, i.e. according to the most unfavorable condition of 
each DMU and by using the most unfavorable weights. 
The overall efficiency interval provides the decision 
maker with all possible values of efficiency which reflect 
various perspectives. Three numerical examples will be 
used for illustrating the proposed method. 
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This article is organized as follows. In Section 2, we 
present the basic DEA models for measurement of the 
best and the worst relative efficiencies of the DMUs. In 
Section 3, first we will review Entani et al.’s (2002) DEA 
models and then we will present the adjusted pessimistic 
efficiency interval. The numerical examples will be 
discussed in Section 4. Section 5 will conclude the paper. 

2. Interval DEA Models for Measurement of the Best 
and the Worst relative Efficiencies 

2.1. Interval DEA models for measurement of the best 
relative efficiencies of DMUs 

In DEA analysis, it is usually assumed that there are 
n  production units that consume m  different inputs and 
produce s  different outputs. Specifically, the j th 

production unit consumes ijx  units of input i  (

mi ,,1K= ) and produces rjy  units of output r  (

sr ,,1K= ). In interval DEA, it is assumed that some 

exact values of input ijx  and output rjy  are not known. It 
is only known that they are in the range of the upper and 
lower bounds specified by intervals ],[ U

ij
L
ij xx  and 

],[ U
rj

L
rj yy , and each DMU has a positive lower bound 

input and a positive lower bound output. 
To deal with such an uncertain situation, Wang et al. 

(2005) presented the following pair of linear 
programming (LP) models that measure the best relative 
efficiencies of DMUs: 
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where oDMU  is the DMU under evaluation, iv  (

mi ,,1K= ) and ru  ( sr ,,1K= ) are decision variables, 
and ε  is the non-Archimedean infinitesimal. U

oθ  is the 
best relative efficiency under the most favorable 
conditions and L

oθ  is the best relative efficiency under the 
most unfavorable conditions for oDMU . They form the 

optimistic efficiency interval ],[ U
o

L
o θθ . If there is a set of 

positive weights *
ru  ( sr ,,1K= ) and *

iv  ( mi ,,1K= ) 

that make 1* =U
oθ , then oDMU  is called DEA-efficient 

or optimistic efficient; otherwise, it is called DEA-non-
efficient or optimistic non-efficient. 

2.2. Interval DEA models for measurement of the worst 
relative efficiencies of DMUs 

The input-oriented framework, which is based on the 
set of input requirement and its inefficiency frontier, tries 
to increase input values as much as possible, while 
keeping the output at most at its current level. This 
emphasizes the fact that output is kept constant and input 
values are increased proportionally, until the inefficient 
production frontier is obtained. DEA estimator for 
inefficient production possibility set is called the 
pessimistic efficiency or the worst relative efficiency. For 
a particular DMU, such as oDMU , relative efficiencies 
can be calculated form the following pessimistic DEA 
models Azizi et al (2011): 
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In models (3) and (4), L
oϕ  is the worst relative 

efficiency under the most unfavorable conditions and U
oϕ  

is the worst relative efficiency under the most favorable 
conditions for oDMU . They give the pessimistic 

efficiency interval ],[ U
o

L
o ϕϕ  for oDMU . When there is a 

set of positive weights *
ru  ( sr ,,1 …= ) and *

iv  (

mi ,,1 …= ) that satisfy 1* =L
oϕ , we say that oDMU  is 

DEA-inefficient or pessimistic inefficient; otherwise, we 
say that oDMU  is DEA–non-inefficient or pessimistic 
non-inefficient. 

3. The Overall Efficiency Interval 

3.1. A review of Entani et al.’s DEA models 

To provide an overall efficiency interval for each 
DMU, Entani et al. (2002) proposed the following 
mathematical programming model for determination of 
the upper bound of the overall efficiency interval of 

oDMU : 
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where ],[ U
ij

L
ijij xxx ∈  and ],[ U

rj
L
rjrj yyy ∈ . To obtain the 

optimal value of model (5), Entani et al. (2002) simplified 
model (5) to model (6): 
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The upper bound of overall efficiency interval for 
oDMU  can be found using the following LP model: 
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In models (6) and (7), the upper bounds of input 
intervals U

iox  and the lower bounds of output intervals 
L
roy  are used for oDMU , and lower bounds of input 

intervals L
ijx  and the upper bounds of output intervals 

U
rjy  are used for other DMUs. The main drawback of 

using different sets of constraints for efficiency 
measurement of DMUs is the lack of possibility of 
comparison between efficiencies, since different 
production frontiers have been used in the process of 
efficiency measurement. We use LP model (4) for 
obtaining the upper bound of overall efficiency interval 
for each DMU. 
To obtain the lower bound of overall efficiency interval 

for oDMU , Entani et al. (2002) proposed the following 

mathematical programming model for oDMU : 
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For obtaining the optimal value of Model (8), Entani et al. 

(2002) converted model (8) into model (9): 
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In model (9), the lower bounds of input intervals L
iox  

and the upper bounds of output intervals U
roy  have been 

used for oDMU , while the upper bounds of input 

intervals U
ijx  and the lower bounds of output intervals 

L
rjy  have been used for other DMUs. Model (9) cannot be 

converted into an LP model. To obtain the optimal value 
of model (9), Entani et al. (2002), after assuming 

1/
11

=∑∑ ==

s

r
L

r
m

i
U

i rjij
yuxv  for each DEA-inefficient 

DMU, divided model (9) into 1k  sub-optimization 

problems 
1

,,1 kJJj K= , where 1k  is the number of 

DEA-inefficient units, and 
1

,,1 kJJ K  are units that are 
DEA-inefficient: 
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Model (10) can be simplified by converting into 1k  LP 
models as follows: 
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Assume that *L
ojφ  is the optimal objective function 

value for model (11). Therefore, the lower-bound 
efficiency of oDMU  is finally computed as follows: 

}{min1 ** L
ojoj

L
o φφ

≠
∧=                                                      (12) 

where },min{ baba =∧ . Accordingly, the overall 
efficiency interval for oDMU  is denoted as ],[ ** U

o
L
o Θφ , 

where *U
oΘ  is the optimal value of the upper-bound model 

(7). 
Model (10) has only one fractional constraint. 

Therefore, regardless of the number of inputs and outputs 
in the problem under consideration, only two decision 
variables can be non-zero, one for the input weight and 
the other for the output weight. As such, Entani et al.’s 
(2002) DEA models measure the optimistic efficiency of 

each DMU by taking into account only one input and one 
output. Furthermore, an important feature of measurement 
of the optimistic efficiency of DMUs is identification of 
DEA-efficient DMUs, which have the best performance 
among the DMUs from the optimistic point of view and 
form the efficiency frontier. Consequently, the decision 
maker can know which DMUs are DEA-efficient and 
which DMUs are not. In this regard, model (11) is not 
able to accurately identify DEA-efficient DMUs and the 
efficiency frontier. Compared with model (11), model (2) 
is able to accurately identify the optimistic efficient units 
and the efficiency frontier. 

The pessimistic efficiency score is the opposite of the 
optimistic efficiency score. It is a score that each DMU 
obtains in its most unfavorable situation (or the most 
favorable situation) using the most unfavorable weights. 
Theoretically, the best and the worst relative efficiencies 
should be calculated in a common range and should form 
an interval for each DMU. For example, they can be 
measured in the interval ]1,[β , where 0>β  is a 
parameter. In the nest section, we will find a suitable 
value for β . 

3.2. Adjustment of the worst relative efficiencies 

Theoretically, the best and the worst relative 
efficiencies should form an interval. For this purpose, the 
best relative efficiencies obtained from model (1) and (2) 
must be adjusted. Suppose that β  ( 10 ≤< β ) is the 
adjustment factor. Then the adjusted best relative 
efficiencies can be written as 
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≤ . Since the value of β  is not 

zero, we can compute the best performance of DMUs in 
the range of the interval ]1,[β  using the following 
models: 
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Models (13) and (14) can be converted into the 
following two LP models: 
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Let *U
oψ  and *L

oψ  be the optimal values of models 
(15) and (16), respectively. Then they form a optimistic 
efficiency interval, which we denote by ],[ ** U

o
L
o ψψ . By 

repeating models (15) and (16) for each DMU, we can 

obtain the best performance of n  DMUs. We denote their 
optimistic efficiency interval by ],[ ** U

j
L
j ψψ  ( nj ,,1 …= ). 

DMUs can be evaluated relatively from various 
perspectives, and any method that considers only one of 
the optimistic and pessimistic viewpoints will be a one-
sided approach. In order to obtain more trustworthy 
results, we must consider both perspectives simultaneously 
for scoring a problem. Thus, by integrating the optimistic 
efficiency interval and the pessimistic efficiency interval 
of the DMUs, we obtain a new interval of efficiency 
called the overall efficiency interval, in which the upper 
and lower bounds, i.e. the extreme values, are from 
different perspectives. As a result, for jDMU , the overall 
efficiency interval is defined as ],[ ** U

j
L
j ϕψ  ( nj ,,1 …= ). 

The overall efficiency interval represents all possible 
evaluations from various perspectives. 

Regarding the overall efficiency interval ],[ ** U
o

L
o ϕψ , 

we have the following definitions. 
Definition 1. oDMU  is called DEA-inefficient or 

pessimistic inefficient, if 1* =U
oϕ , otherwise it is called 

DEA–non-inefficient. 
Definition 2. oDMU  is called DEA-efficient or 

optimistic efficient, if βψ =*L
o , otherwise it is called 

DEA–non-efficient. 
Definition 3. oDMU  is called DEA-unspecified if and 

only if it is neither DEA-efficient nor DEA-inefficient. 
Regarding DEA-unspecified units, we could say that 

they are always circumscribed between the efficient and 
inefficient frontiers Entani et al. (2002). 

4. Illustrative Examples 

In this section, we present three numerical examples 
taken from the literature in order to illustrate the 
simplicity and usefulness of the DEA method with 
efficient and inefficient frontiers in evaluating DMU 
performances. In all three examples, the value of the non-
Archimedean infinitesimal is assumed to be 1010−=ε . 

Example 1. Consider a problem involving 
performance measurement in the manufacturing industry 
in which seven manufacturing businesses from various 
cities are evaluated for performance. The DEA inputs are 
capital and labor, and the DEA output is gross output 
value. All data are imprecise and therefore estimated. 
They are given as bounds, which are shown in Table 1. 
Data for this analysis are from Wang et al. (2005). 
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Table 1 
 Data for seven DMUs with two inputs and one output. 

DMU Inputs  Output 
Capital Labor  Gross Output 

Value 
1 [564403, 

621755] 
[674111, 
743281] 

 [806549, 
866063] 

2 [614371, 
669665] 

[685943, 
742345] 

 [917507, 
985424] 

3 [762203, 
798427] 

[762207, 
805677] 

 [1117142, 
1195562] 

4 [862016, 
937044] 

[779894, 
846496] 

 [1206179, 1 
261031] 

5 [1016898, 
1082662] 

[799714, 
877137] 

 [1381315, 
1462543] 

6 [1164350, 
1267970] 

[807172, 
889416] 

 [1497679, 
1652787] 

7 [1731916, 
1816008] 

[818090, 
895746] 

 [1702249, 
1812655] 

 

Using interval DEA models (1)–(4) and (15) and (16), 
we obtain the scoring results listed in Table 2. From Table 
2, it can be seen four DMUs, namely 2DMU , 3DMU , 

6DMU , and 7DMU , are DEA-efficient according to 
model (1). These four DEA-efficient units collectively 
form the efficiency frontier. Also, from the pessimistic 
efficiency perspective, two DMUs, namely 1DMU  and 

7DMU , are DEA-inefficient. Together, they form an 

inefficiency frontier. Furthermore, units 4DMU  and 

5DMU  are DEA-unspecified units. Using Table 2, the 

value of β  is obtained as 
5924.02365.1/7325.0/ *

min
*

max === UL θϕβ . 
 
Table 2 
 Interval efficiencies for the seven DMUs. 

DMU Optimistic 
efficiency 
interval 

(
],[ ** U

j
L
j θθ

) 

Pessimistic 
efficiency 
interval 

( ],[ ** U
j

L
j ϕϕ ) 

Adjusted 
optimistic 
efficiency 
interval 

( ],[ ** U
j

L
j ψψ ) 

Overall 
efficiency 
interval 

(
],[ ** U

j
L
j θψ

) 
1 [1.0453, 

1.2365] 
[0.8450, 
1.0000] 

[0.6192, 
0.7325] 

[0.6192, 
1.0000] 

2 [1.0000, 
1.1689] 

[0.7835, 
0.9143] 

[0.5924, 
0.6925] 

[0.5924, 
0.9143] 

3 [1.0000, 
1.1230] 

[0.7632, 
0.8589] 

[0.5924, 
0.6653] 

[0.5924, 
0.8589] 

4 [1.0406, 
1.1821] 

[0.7849, 
0.8915] 

[0.6164, 
0.7003] 

[0.6164, 
0.8915] 

5 [1.0185, 
1.1571] 

[0.7562, 
0.8620] 

[0.6033, 
0.6855] 

[0.6033, 
0.8620] 

6 [1.0000, 
1.2052] 

[0.7325, 
0.8839] 

[0.5924, 
0.7139] 

[0.5924, 
0.8839] 

7 [1.0000, 
1.1542] 

[0.8956, 
1.0000] 

[0.5924, 
0.6837] 

[0.5924, 
1.0000] 

 

The upper bound of the overall efficiency interval is 
computed from the optimistic point of view, i.e. according 
to the most favorable conditions for each DMU and based 
on the most favorable weights. The lower bound of the 
overall efficiency interval is computed from the 

pessimistic point of view, i.e. according to the most 
unfavorable conditions for each DMU and based on the 
most unfavorable weights. The overall efficiency interval 
comprises all possible evaluations from various 
perspectives. As such, the overall efficiency interval 
provides the decision maker with all possible values of 
efficiency that reflect various perspectives. 

Example 2. Consider the example discussed by 
Cooper et al. (1999). We have five DMUs that use two 
inputs, one crisp and the other interval, and produce two 
outputs, one crisp and the other ordinal. The data set is 
shown in Table 3. 
 
Table 3 
 Imprecise data and ordinal data converted for five DMUs. 

DMU Inputs   Outputs  Converted 
ordinal 

data jx1  

(exact) 
jx2  

(interval) 

 
jy1  

(exact) 
jy2  

(ordinal1) 
1 100 [0.6, 0.7]  2000 4 [0.3456, 

0.8333] 
2 150 [0.8, 

0.9] 
 1000 2 [0.2400, 

0.5787] 
3 150 [1, 1]  1200 5 [0.4147, 

1.0000] 
4 200 [0.7, 0.8]  900 1 [0.2000, 

0.4823] 
5 200 [1, 1]  600 3 [0.2880, 

0.6944] 
1 ranking, such that 5 ≡ highest rank, …, 1 ≡ lowest rank (

242123 yyy >…>> ). 
For conversion of ordinal preference information into 

interval data, we used the approach proposed by Wang et 
al. (2005). For this example, the preference intensity 
parameter and the ratio parameter about the strong ordinal 
preference information were determined (or estimated) as 

2.12 =χ  and 2.02 =σ , respectively. Using the technique 
described in Wang et al. (2005), we can obtain an interval 
estimate for the second output of each DMU, which is 
shown in the last column of Table 3. 

For the input and output data of Table 3, interval DEA 
models (1) and (2) are executed for each DMU, to obtain 
their optimistic efficiency interval. The results are shown 
in Table 4. In Table 4, it is evident that only one DMU, 
i.e. 1DMU , is DEA-efficient and determines the 
efficiency frontier. Also, by running interval DEA models 
(3) and (4) for each DMU, we obtain the pessimistic 
efficiency interval for the five DMUs. From the 
pessimistic point of view, two DMUs, i.e. 4DMU  and 

5DMU , are DEA-inefficient. Furthermore, we 
determine the adjusted optimistic interval efficiencies of 
the five DMUs by determining the value of β  and by 
running interval DEA models (15) and (16) for each 
DMU. Using the pessimistic efficiency intervals and the 
adjusted optimistic efficiency intervals of the five DMUs, 
we obtain the overall performance score, i.e. the overall 
efficiency interval, of each DMU. The results are shown 
in Table 4. 
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Table 4 
 Interval efficiencies for the five DMUs. 

DMU Optimistic 
efficiency 
interval 

( ],[ ** U
j

L
j θθ

) 

Pessimistic 
efficiency 
interval 

(
],[ ** U

j
L
j ϕϕ

) 

Adjusted 
optimistic 
efficiency 
interval 

( ],[ ** U
j

L
j ψψ ) 

Overall 
efficiency 
interval 

(
],[ ** U

j
L
j θψ

) 
1 [1.0000, 

1.0000] 
[0.2033, 
0.5064] 

[0.0422, 
0.0422] 

[0.0422, 
0.5064] 

2 [1.9199, 
3.0000] 

[0.4800, 
0.9549] 

[0.0810, 
0.1266] 

[0.0810, 
0.9549] 

3 [1.2500, 
2.5000] 

[0.5000, 
0.6608] 

[0.0527, 
0.1055] 

[0.0527, 
0.6608] 

4 [2.0157, 
2.9630] 

[0.6667, 
1.0000] 

[0.0851, 
0.1250] 

[0.0851, 
1.0000] 

5 [2.0000, 
4.8223] 

[1.0000, 
1.0000] 

[0.0844, 
0.2035] 

[0.0844, 
1.0000] 

 

It should be noted that Entani et al. (2002) have 
developed an approach for finding efficiency intervals for 
crisp data, interval data, and fuzzy data. However, they 
have not described the method of computation of the 
overall efficiency interval. Besides, they have not 
considered the overall efficiency interval for a mixture of 
crisp data, interval data, and fuzzy data. Furthermore, their 
upper and lower bound DEA models are not able to 
accurately identify DEA-efficient and DEA-inefficient 
units. 

Example 3. Consider the problem of performance 
measurement of a set of 20 branches of a commercial 
bank in Taiwan (DMUs). Each branch was evaluated for 
three inputs (total deposits, interest expenses, and non-

interest expenses) and three outputs (total loans, interest 
income, and non-interest income). The data set for this 
analysis was borrowed from Kao and Liu (2004). 

Tables 5 and 6 show the interval inputs and the 
interval outputs for these DMUs. Furthermore, Table 7 
presents overall efficiency interval scores, optimistic 
efficiency intervals, pessimistic efficiency intervals, and 
adjusted optimistic efficiency intervals for these DMUs 
according to models (1)–(4) and (15) and (16). 

When we evaluate bank branches from the optimistic 
point of view, 11 DMUs achieve the efficiency score of 
100% under the best conditions. These 11 DMUs are 
classified as optimistic efficient and are considered to 
have the best performance. (If they are in the best 
production conditions, they are DEA-efficient; otherwise 
they are DEA–non-efficient.) However, when the bank 
branches are evaluated form the pessimistic point of view, 
4 DMUs obtain the smallest efficiency scores under the 
worst conditions. These 4 DMUs are classified as 
pessimistic inefficient and are considered to have the 
worst performance. (If they are in the worst production 
conditions, they are DEA-inefficient; otherwise they are 
DEA–non-inefficient.) These 4 DMUs are candidates for 
bankruptcy. Evaluation of the investment risk is an 
important issue for financial institutes or business 
investors in bank branches. Consequently, financial 
institutes or individual investors must definitely evaluate 
the performance of bank branches before investing in the 
banking industry. 

 
Table 5 
 Inputs and outputs data for 24 bank branches. 

jDMU
 

L
jx1  

L
jx2  

L
jx3

L
jy1
 L

jy2
 L

jy3
 

1 788670.598 40241.939 11811.938 724380.137 60822.392 7094.716 
2 926135.923 42863.302 15496.878 786268.246 66067.139 12826.685 
3 895985.403 40469.853 13030.998 770236.241 57395.587 11691.722 
4 458981.787 29869.433 6267.727 418079.491 44354.534 5663.309 
5 235351.052 7881.369 2820.190 169336.032 11427.471 1618.144 
6 256277.540 8499.210 1163.290 200432.663 11234.126 2845.686 
7 108792.763 5421.990 1405.508 80058.742 7848.875 302.146 
8 78795.804 4052.711 2488.023 47904.990 4975.084 249.434 
9 383560.820 27531.866 5352.499 325799.311 3534.225 5393.143 
10 507635.274 22708.680 3727.914 402910.427 37609.645 3298.457 
11 166251.006 8518.755 3621.040 147175.582 11443.133 1671.398 
12 176709.762 8324.757 1554.942 158536.003 11591.017 710.441 
13 432487.877 21002.182 2693.838 349537.634 29012.385 4799.480 
14 717622.843 32432.931 5207.240 591874.449 45500.257 3017.951 
15 101281.254 5491.093 4927.333 78813.646 7421.864 578.585 
16 126969.320 7023.181 3063.381 122170.193 9147.275 1698.281 
17 145850.899 7933.351 5981.423 127122.118 12139.733 757.213 
18 143347.258 8101.257 2799.391 126680.923 11828.337 2366.530 
19 190173.529 9307.438 661.977 145200.476 13106.068 2027.188 
20 216899.750 9514.108 1910.872 149165.081 12403.453 4760.565 
21 131203.426 6496.850 3852.749 101543.039 8989.748 1593.302 
22 214511.844 10666.968 4651.894 171767.407 19395.850 3022.838 
23 155200.082 9242.283 14248.464 91728.198 10657.757 1038.968 
24 153476.455 7816.278 1619.780 144453.154 11601.726 918.045 
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Table 6 
Inputs and outputs data for 24 bank branches. 

jDMU
 

U
jx1  U

jx2  
U

jx3
U

jy1  U
jy2  U

jy3  

1 840589.352 43683.964 12022.587 773314.721 66231.622 7623.200 
2 1014339.344 49421.622 17952.668 850782.563 72605.032 14022.957 
3 989805.864 43436.229 13986.150 861676.051 64209.395 13079.723 
4 516654.891 32997.122 6924.034 467712.458 49620.152 6335.638 
5 259995.141 8706.643 3115.498 189439.027 12784.101 1810.244 
6 283112.884 9389.179 1285.101 224227.342 12567.803 3183.516 
7 120184.676 5791.026 1596.834 89563.042 8612.776 338.016 
8 85261.100 4430.684 2720.066 53079.753 5459.290 279.046 
9 411675.225 29694.054 5744.829 353146.196 3831.942 5963.517 
10 560790.800 25086.553 4118.272 441709.209 42074.533 3543.683 
11 182253.777 8960.141 3886.457 167355.327 12593.500 1869.820 
12 194858.332 8804.193 1644.494 177494.947 12967.063 794.782 
13 477774.566 23201.364 2975.916 391033.546 32456.636 5369.258 
14 770223.470 35154.161 5577.298 662139.758 50901.891 3376.232 
15 111886.621 6066.077 5443.284 87607.243 8302.962 647.272 
16 141594.059 7758.592 3384.154 136673.820 10233.208 1899.895 
17 164181.887 8573.004 6607.750 144379.110 13437.207 8487.107 
18 165099.735 8949.557 2904.323 144429.801 13232.557 2647.476 
19 210086.987 10282.038 731.294 162438.180 14661.976 2267.849 
20 239611.766 10510.350 2110.963 166873.449 13875.948 5016.701 
21 141507.360 7041.088 4119.012 108383.652 9644.386 1718.138 
22 239220.015 11895.624 5187.714 194236.441 21933.037 3418.258 
23 167934.447 10000.625 15577.337 105261.867 12003.138 1190.318 
24 166608.130 8307.353 1721.547 157371.729 12320.208 969.975 
 

Now taking joint advantage of the set of upper bound of 
pessimistic efficiency and lower bound of optimistic 
efficiency, we can determine the lower bound of the 
overall efficiency interval for each DMU, obtaining the 
value 3402.06865.1/5738.0/ *

max
*

min === UL θϕβ . The 
overall efficiency intervals for the DMUs are shown in 

Table 7. 
Consequently, our study makes it possible to provide the 
bank branch managers with more useful resources of 
information. It’s for this reason that our study is necessary 
and desirable for dealing with imprecise data.

 
Table 7 
Interval efficiencies of the 24 bank branches 

DMU Optimistic efficiency interval 
( ],[ ** U

j
L
j θθ ) 

Pessimistic efficiency interval
( ],[ ** U

j
L
j ϕϕ ) 

Adjusted optimistic efficiency interval 
( ],[ ** U

j
L
j ψψ ) 

Overall efficiency interval
( ],[ ** U

j
L
j θψ ) 

1 [1.0202, 1.1751] [0.6102, 0.6976] [0.3471, 0.3998] [0.3471, 0.6976] 
2 [1.0302, 1.2639] [0.6491, 0.7726] [0.3497, 0.4300] [0.3497, 0.7726] 
3 [1.0066, 1.2236] [0.6431, 0.7947] [0.3412, 0.4163] [0.3412, 0.7947] 
4 [1.0000, 1.2418] [0.5951, 0.7355] [0.3402, 0.4225] [0.3402, 0.7355] 
5 [1.0067, 1.2442] [0.7903, 0.9767] [0.3402, 0.4233] [0.3402, 0.9767] 
6 [1.0000, 1.2359] [0.7547, 0.9327] [0.3402, 0.4204] [0.3402, 0.9327] 
7 [1.1385, 1.3762] [0.8420, 1.0000] [0.3873, 0.4682] [0.3873, 1.0000] 
8 [1.4068, 1.6865] [0.8390, 1.0000] [0.4786, 0.5738] [0.4786, 1.0000] 
9 [1.0760, 1.2559] [0.8595, 1.0000] [0.3661, 0.4272] [0.3661, 1.0000] 
10 [1.0000, 1.2196] [0.6635, 0.8085] [0.3402, 0.4149] [0.3402, 0.8085] 
11 [1.0289, 1.2468] [0.6128, 0.7574] [0.3500, 0.4242] [0.3500, 0.7574] 
12 [1.0000, 1.2006] [0.7618, 0.9398] [0.3402, 0.4084] [0.3402, 0.9398] 
13 [1.0000, 1.2359] [0.6646, 0.8214] [0.3402, 0.4204] [0.3402, 0.8214] 
14 [1.0223, 1.2320] [0.7734, 0.9287] [0.3478, 0.4091] [0.3478, 0.9287] 
15 [1.1475, 1.4122] [0.6959, 0.8601] [0.3904, 0.4804] [0.3904, 0.8601] 
16 [1.0000, 1.2413] [0.5738, 0.7159] [0.3402, 0.4223] [0.3402, 0.7159] 
17 [1.0000, 1.2625] [0.5883, 0.7843] [0.3402, 0.4295] [0.3402, 0.7843] 
18 [1.0076, 1.2855] [0.5813, 0.7574] [0.3428, 0.4373] [0.3428, 0.7574] 
19 [1.0000, 1.2359] [0.6869, 0.8489] [0.3402, 0.4204] [0.3402, 0.8489] 
20 [1.0000, 1.1642] [0.7807, 0.9648] [0.3402, 0.3960] [0.3402, 0.9648] 
21 [1.1775, 1.3608] [0.7132, 0.8223] [0.4006, 0.4629] [0.4006, 0.8223] 
22 [1.0000, 1.2611] [0.6077, 0.7664] [0.3402, 0.4290] [0.3402, 0.7664] 
23 [1.3706, 1.6702] [0.8137, 1.0000] [0.4663, 0.5682] [0.4663, 1.0000] 
24 [1.0000, 1.1567] [0.6535, 0.7523] [0.3402, 0.3935] [0.3402, 0.7523] 
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5. Conclusions 

Measurement of DMU efficiencies is a complicated 
yet important decision-making problem which requires 
taking into account multiple quantitative and qualitative 
selection criteria. In the present article, we developed a 
new approach for dealing with interval data, ordinal 
preference data, and their mixtures in DEA. This 
approach provides more complete features for using the 
conventional DEA in working with imprecise data. The 
proposed method measures the efficiency of each DMU 
from both optimistic and pessimistic perspectives. This 
method leads to the creation of an upper bound and a 
lower bound for efficiency, which we call overall 
efficiency interval. The overall efficiency interval 
represents the whole range of imprecise efficiency for 
each DMU. Using the overall efficiency interval, we can 
further prioritize DMU performances. Compared with the 
overall efficiency interval developed by Entani et al. 
(2002), our proposed efficiency interval uses two constant 
and unified production frontiers (the efficient frontier and 
the inefficient frontier) as a benchmark for measurement 
of the efficiency of all DMUs. This causes our overall 
efficiency interval to be more logical, more reliable, and 
more usable. The overall efficiency interval not only 
describes the actual situation in more detail, it also 
diminishes the psychological pressure upon all DMUs 
under consideration and the people performing the 
evaluations. Three numerical examples were studied to 
illustrate the simplicity and utility of the proposed 
approach for measurement of DMU efficiencies. 
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