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Abstract 

The multivariate exponentially weighted moving average (MEWMA) control chart is one of the best statistical control chart that are usually 
used to detect simultaneous small deviations on the mean of more than one cross-correlated quality characteristics. The economic design of 
MEWMA control charts involves solving a combinatorial optimization model that is composed of a nonlinear cost function and traditional 
linear constraints. The cost function in this model is a complex nonlinear function that formulates the cost of implementing the MEWMA 
chart economically. An economically designed MEWMA chart to possess desired statistical properties requires some additional statistical 
constraints to be an economic-statistical model. In this paper, the efficiency of some major evolutionary algorithms that are employed in 
economic and economic-statistical design of a MEWMA control chart are discussed comparatively and the results are presented. The 
investigated evolutionary algorithms are simulated annealing (SA), differential evolution (DE), genetic algorithm (GA), and particle swarm 
optimization (PSO), which are the most well known algorithms to solve complex combinatorial optimization problems. The major metrics 
to evaluate the algorithms are (i) the quality of the best solution obtained, (ii) the trends of responses in approaching the optimum value, 
(iii) the average objective-function-value in all trials, and (iv) the computer processing time to achieve the optimum value. The result of the 
investigation for the economic design shows that while GA is the most powerful algorithm, PSO is the second to the best, and then DE and 
SA come to the picture. For economic-statistical design, while PSO is the best and GA is the second to the best, DE and SA have similar 
performances. 
Key Words: Economic-statistical design; Genetic algorithm; Simulated annealing; Particle swarm; Differential evolution. 

1. Introduction and Literature Review  

Control charts are powerful techniques for 
maintaining manufacturing processes in desired 
conditions by graphically plotting observations on the 
quality characteristics of the product in a suitable manner. 
For a single quality characteristic of a manufactured 
product, Shewhart (1931) was the first to introduce an X-
bar chart to monitor the mean of the quality characteristic. 
The exponentially weighted moving average (EWMA) 
control chart originally introduced by Robert (1959) is 
employed when a small deviation on the mean of the 
quality characteristic must be detected. When the vector 
mean of more than one cross-correlated quality 
characteristics is to be monitored, the multivariate 
EWMA (MEWMA) control charts are used. 

The economic design of a control chart involves 
finding the chart parameter values in such a way that the 
implementation cost of the chart is minimized. Duncan 
(1956) originally developed a cost model for economic  

 
 
 
design of an X-bar chart. However, due to the poor 
statistical performances of the economically designed 
chart, Duncan’s model is not suitable for practical 
applications. As a result, for the first time, Saniga (1989) 
developed an economic-statistical model to design an X-
bar chart by constraining Duncan’s cost model using 
statistical measures such as type-I and type-II error 
probabilities. However, since these statistical measures 
are not applicable for an EWMA-type control chart, 
Lorenzen and Vance (1986) presented a unified function 
to model the costs of implementing these charts. The 
average run length when the process is in-control (ARL0) 
and the average run length when the process goes to an 
out-of-control state (ARL1) are the two statistical 
measures that are used in the Lorenzen-Vance function. 
Later on, Linderman and Love (2000) based on the 
Lorenzen-Vance function developed economic and 
economic-statistical models to design the MEWMA 
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charts. They bounded ARL0 and ARL1 to improve the 
statistical performances of the designed MEWMA charts 
in an economic-statistical model. In a similar approach, 
Molnau et al. (2001) by proposing a different method of 
ARL calculations presented an economic-statistical 
design for MEWMA chart. 
The economic and economic-statistical models that are 
used to design the MEWMA charts are combinatorial 
optimization problems with complex and concave cost 
functions. Furthermore, the statistical constraints of the 
economic-statistical model make the problem more 
complicated; requiring a suitable method to solve. Several 
search-based algorithms in the literature are applied to 
solve the Lorenzen-Vance-based optimization models of 
either the economic or the economic-statistical designs of 
the control charts. Hooke and Jeeves' model (1961) is a 
pattern search method that was employed by Linderman 
and Love (2000) to solve the economic-statistical model 
of a MEWMA control chart. Chou et al. (2006) used a 
genetic algorithm (GA) approach to solve a similar 
economic model of variable sampling interval (VSI) 
EWMA control charts that is based on the Lorenzen-
Vance cost function. Nelder-Mead's downhill method 
(1965) is another search-based algorithm that was used by 
Serel and Moskowitz (2008) for the Lorenzen-Vance cost 
function. Serel (2009) concluded that his proposed 
method does not guarantee convergence to the global 
optimal solution. Aparisi and Diaz (2004) employed a GA 
method to design and optimize a MEWMA chart. Niaki et 
al. (2010) in addition to improving the Lorenzen-Vance 
cost function presented a GA for the economic and 
economic-statistical design of the MEWMA control 
charts.  
Evolutionary algorithms that are stochastic and are 
inspired by natural phenomena evolutionary achieve the 
optimum value of a complex functions. The stochastic 
property of these algorithms is the main feature that is 
helpful to avoid falling in the local optima. The four main 
traditional evolutionary algorithms that are employed in 
this paper are genetic algorithm (GA), simulated 
annealing (SA), particle swarm optimization (PSO), and 
differential evolution (DE).  
GA is a global-search optimization technique that is 
inspired by biological systems (Davis 1956, Goldberg 
1989). In this algorithm, due to many concurrent feasible 
solution evaluations using an appropriate fitness function, 
there is a low chance to entrap to local optima. As a 
result, there are many applications of this algorithm in the 
literature in different areas such as production planning 
and control (Disney et al. 2000) and job-shop scheduling 
problems (Kim et al. 2003).  
The PSO algorithm, first developed by Kennedy and 
Eberhart 1995), is a population- based algorithm inspired 
by social behavior of swarms in finding particles (for 
more information see Kennedy et al. 2001 and Omran 
2005). Individual swarms that are named particles follow 
previous particles that were closer to the food source than 
the other particles. In PSO algorithm, particles fly through 

the solution space following the current optimum 
particles. 
Another algorithm that is used in this paper is SA that has 
its origin in the annealing process of metals (Cerny 1985 
and Kirkpatrick et al. 1983). Annealing is the process of 
cooling the molten metal slowly at high temperature to 
shape crystals. The type of crystals and their energy are 
mainly the function of cooling rate and other 
characteristics of metals. In high temperatures, the 
movements of atoms are fast and as the temperature is 
reduced, these movements are declined and the atoms 
start to form crystals with a higher energy than their initial 
energy. In other words, if the crystallization process takes 
place at a fast rate, the polycrystalline with a higher 
energy is made. Thus, to achieve a minimum energy with 
atoms that have been arranged uniformly in a state called 
crystalline, a slow cooling rate is necessary. Analogously, 
SA simulates this process on the optimization models and 
uses a model called Boltzmann probability distribution in 
which at each temperature T the probability of the energy 
of the molten metal is calculated by ܲሺܧሻ ൌ ݁ሺିா ௞್்⁄ ሻ 
where ܧ is the size of the system energy and ݇௕ is the 
Boltzmann constant. In order to implement the Boltzmann 
function in the minimization process, Metropolis 
suggested a SA method (For a practical implementation 
see Vasan and Komaragiri 2009).  
The last implemented evolutionary algorithm of this 
research is the differential evolution (DE) with the main 
idea of weighting the difference between two vectors to 
obtain a new vector. Then, the new vector is combined 
with the basic vector to evolutionary improving the 
process to achieve the best vector. This algorithm, 
originally developed by Storn and Price (1997), is mainly 
used to minimize nonlinear and non-differentiable 
continuous functions.  
The aim of this research is to compare the efficiency of 
the four aforementioned evolutionary algorithms in 
solving traditional economic and economic-statistical 
models of the MEWMA control chart introduced by 
Linderman and Love (2000) using some performance 
measures.  
The remainder of the paper is organized as follows. The 
economic and economic-statistical model of designing a 
MEWMA chart is detailed in the next Section. Section 3 
explains the four evolutionary algorithms that are used for 
the comparison study. The results of investigations on the 
efficiency of the algorithms and the descriptions of the 
employed metrics are given in Section 4. Section 5 
contains conclusions and some considerations for future 
research. 

2. A Model to Design MEWMA Charts 

An economic-statistical model to design a MEWMA chart 
with minimum implementation cost and desired statistical 
properties is given in Equation (1), where ܥ denotes the 
cost function (the Lorenzen-Vance function), ݊ is the 
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sample size, ݄ is the time between two consecutive 
samples, ݎ is the chart smoothing parameter, and ܮ is the 
chart control limit parameter (Linderman and Love 2000).  
Minimize ܥሺ݊, ݄, ,ݎ  ሻܮ
Subject to 

଴ܮܴܣ ൐  ௅    (1)ܮܴܣ
ଵܮܴܣ ൏  ௎ܮܴܣ
݊ is a positive integer  
݄ and ܮ ൐ 0 
0 ൏ ݎ ൑ 1 

Furthermore, without the first two statistical 
constraints, a model for designing the chart economically 
is obtained as given in (2).  
Minimize ܥሺ݊, ݄, ,ݎ   ሻܮ
Subject to     (2)  

݊ is a positive integer  
݄ and ܮ ൐ 0 

0 ൏ ݎ ൑ 1 
The MEWMA chart along with the Lorenzen-Vance 

cost function is briefly introduced in Subsections 2-1 and 
2-2, respectively. 

2.1. Brief background of the MEWMA control chart 

In a univariate EWMA chart, first introduced by 
Roberts (1959), let ݔ௜ be the value of a quality 
characteristic ݔ that must be monitored and without loss 
of generality consider it as a deviation from its mean µ. 
The chart depicts ݖ௜ given in equation (3) when the on-
target mean and variance of ݔ are 0 and ߪଶ, respectively. 
௜ݖ ൌ ௜ݔݎ ൅ ሺ1 െ  ௜ିଵ    (3)ݖሻݎ
in which ݖ଴ ൌ 0 and 0 ൏ ݎ ൑ 1 is a parameter that 
controls the magnitude of smoothing. Furthermore, the 
mean and variance of ݖ௜ are 0 and 

௭೔ߪ
ଶ ൌ ൜௥ൣଵିሺଵି௥ሻమ೔൧

ଶି௥
ൠ  ଶ    (4)ߪ

In order to monitor the means of more than one cross-
correlated characteristics, consider ࢄ a p-dimensional 
vector containing the ݌ characteristics with a multivariate 

normal distribution ௣ܰሺμ, ;   ࢏ࢄ ሻ. Letࢳ    ݅ ൌ 1,2, … , ݊  be 
the realization on ࢄ in which ࢳ  is a known covariance 
matrix. Then the MEWMA chart signals if ܳ௜ ൌ
࢏ࢆ

ᇱ࢏ࢠࢳ
ି૚࢏ࢆ ൐  are the chart parameters that ݎ and ܮ where ,ܮ

are determined to achieve desired ܮܴܣ଴ and ࢏ࢆ is 
obtained using a multivariate version of equation (3), i.e., 
࢏ࢆ ൌ ࢏ࢄݎ ൅ ሺ1 െ  ૚. Furthermore, the asymptoticି࢏ࢆሻݎ
form of the covariance matrix in this case is as follows. 
ࢆࢳ ൌ ࢏ࢆࢳ௜՜ஶ݉݅ܮ ൌ ቀ ௥

ଶି௥
ቁ  (5)   ࢳ

Runger and Prabhu (1996) showed that by using the 
two transformations ܾ ൌ ሺ2 െ ሻݎ ⁄ݎ  and ିࢳଵ ଶ⁄  would ࢄ ,ࢄ
have an identity covariance matrix and ܳ௜ ൌ ܾ צ ࢏ࢆ  .ଶצ
Hence, by setting ܷܮܥ ൌ ܾଵ ଶ⁄ ଵܮ ଶ⁄  the statistic ݍ௧ ൌצ ࢚ࢆ  צ
can be plotted as an indicator of the distance in a p-
dimensional space.  
A parameter that is a metric for the shift of the process 
mean is the non-centrality parameter ߜ that is obtained 
using equation (6). Lowry et al. (1992) showed that the 
performance of a MEWMA control chart is only a 
function of this parameter. 
ߜ ൌ ሺμᇱିࢳ૚μሻଶ     (6) 

In the off target case, Runger and Prabhu (1996) 
showed that the performance of a MEWMA chart could 
be achieved by defining ࢋߜ, where ࢋ is a p-dimensional 
vector with a 1 in its first coordinate.  
In the next subsection, a function to model the total 
implementation cost of a MEWMA chart is presented. 

2.2. The Lorenzen-Vance cost function 

Equation (7) describes a cost function that is used to 
formulate the cost of implementing a MEWMA chart. In 
this function, it is assumed that the process starts in an in-
control state and the time the process goes to an out-of-
control state follows an exponential distribution with 
mean 1 ⁄ߠ .   

,ሺ݊ܥ ݄, ,ݎ ሻܮ ൌ
൜ܥ଴

ߠ ൅ ଵሺെ߬ܥ ൅ ܧ݊ ൅ ݄ሺܮܴܣଵሻ ൅ ଵߛ ଵܶ ൅ ଶߛ ଶܶሻ ൅ ܨܵ
଴ܮܴܣ

൅ ܹൠ

൜1
ߠ ൅ ሺ1 െ ݏଵሻߛ ଴ܶ

଴ܮܴܣ
െ ߬ ൅ ܧ݊ ൅ ݄ሺܮܴܣଵሻ ൅ ଵܶ ൅ ଶܶൠ

൅
ቄቂܽ ൅ ܾ݊

݄ ቃ ቂ1
ߠ െ ߬ ൅ ܧ݊ ൅ ݄ሺܮܴܣଵሻ ൅ ଵߛ ଵܶ ൅ ଶߛ ଶܶቃቅ

൜1
ߠ ൅ ሺ1 െ ݏଵሻߛ ଴ܶ

଴ܮܴܣ
െ ߬ ൅ ܧ݊ ൅ ݄ሺܮܴܣଵሻ ൅ ଵܶ ൅ ଶܶൠ

                                                                                         ሺ7ሻ

 

  
 The parameters of the cost function are: 
 ଴: The cost per unit time due to nonconformitiesܥ •

produced during an in-control state. 
 ଵ: The cost per unit time due to nonconformitiesܥ •

produced during out-of-control states. 

• ߬: The expected time of occurance of an assignable 
cause since the previous sample; it is obtained by: 

߬ ൌ
׬ ݁ିఏ௛ሺ௝ାଵሻ௛

௝௛ ሺݐ െ ݆݄ሻ݀ݐ

׬ ݁ିఏ௛ሺ௝ାଵሻ௛
௝௛ ݐ݀

ൌ
1 െ ሺ1 ൅ ሻ݁ିఏ௛݄ߠ

ሺ1ߠ െ ݁ିఏ௛ሻ        ሺ8ሻ

 
 The expected time to sample and chart one item  :ܧ •

• ଴ܶ:  The expected search time when the chart signals a 

false alarm 
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• ଵܶ: The expected time to discover an assignable cause 

• ଶܶ: The expected time to repair the process 

ଵߛ • ൌ 0 if the process is stopped during the search for a 

cause and 1 if the process is continued while search is 

performed 

ଶߛ • ൌ 0 if the process is stopped during the correction or 

repair and 1 if the process continues while correction or 

repair is performed 

• ܵ: The expected number of samples taken during an in-

control state; it is obtained using 

 ܵ ൌ ௘షഇ೓

ଵି௘షഇ೓     (9) 

 The cost of a false alarm :ܨ •

• ܹ: The cost of locating and repairing a cause 

• ܽ: The fixed cost of taking a sample 

• ܾ: The variable cost of taking each unit of a sample 

In order to estimate the ARLs in the cost function, 
simulation experiments may be employed using the cost 
function parameters of ݊, ݄, ݎ, and ܮ along with an 
assumption on the value of the non-centrality parameter δ. 
Nevertheless, in this paper an approach that was used in 
Linderman (1998) will be employed.  

To find the global solution of models (1) and (2), four 
different powerful search-based algorithms are applied in 
the next Sections. To do this, the main characteristics of 
these algorithms are first discussed in Section 3. Then, the 
solutions along with the weaknesses and strengths of the 
algorithms are given in Section 4.  

3. Description of the Evolutionary Algorithms 

As mentioned in Section 2, the four search-based 
algorithms to solve models (1) and (2) are SA, DE, GA, 
and PSO that are described in subsections 3-1, 3-2, 3-3, 
and 3-4, respectively.  

3.1. Simulated Annealing (SA) 

The SA implementation of this research is based on 
the version that is described in Corana et al. (1987). The 
SA is an iterative process that starts with a given point ݔ଴ 
and generates a sequence of points ݔ଴, ,ଵݔ … , ,௜ݔ … tending 
to the global minimum of the objective function. New 
candidate points are generated around the current point ݔ௜ 
applying random moves along each coordinate direction, 
in turn. The new coordinate values are uniformly 
distributed in intervals centered on the corresponding 
coordinate of ݔ௜. A candidate point ݔᇱ is accepted or 
rejected according to the Metropolis criterion defined as:  

• If ݂߂ ൑ 0, then accept the new point: ݔ௜ ൅ 1 ൌ  ᇱݔ
• Else accept the new point with probability ܲሺ݂߂ሻ ൌ

݁ି௱௙ ்⁄  where ݂߂ ൌ ݂ሺݔᇱሻ െ ݂ሺݔ௜ሻ and ܶ is a 
parameter called temperature. 

The process starts at “high” temperature. A sequence 
of points is then generated until “equilibrium” is 
approached; that is a sequence of point’s ݔ௜ whose 
average value of the cost function achieves a stable value 
as ݅ increases. During this phase, the step vector ࢂ is 
frequently adjusted to better follow the function behavior. 
The best point reached is recorded as ݔ௢௣௧.  

After the thermal equilibration, the temperature ܶ is 
reduced and a new sequence of moves is made starting 
from ݔ௢௣௧ until thermal equilibrium is reached again, and 
so on. The process is stopped at a temperature low enough 
such that no more useful improvement can be expected. 
More details regarding SA are available in Deb (1995) 
and Ingber (1993). 
 The other parameters that are used in this 
algorithm are: 
 The step adjustment parameter that is used to :ܥ •

update the step vector ࢂ 
• ௧ܰ : The temperature step size that is used for 

temperature reduction 
• ௦ܰ: The number of steps before changing step (step 

window) that is used for step variation 
• ܴ௧: The temperature adjustment coefficient that is used 

to update the current temperature  
 

3.2. Differential Evolution (DE) 

DE is a fast and powerful evolution strategy 
optimization method that was developed by Storn and 
Price (1997). It differs significantly from other 
evolutionary algorithms in the sense that the distance and 
direction of information from the current population is 
used to guide the search process. DE has been 
successfully applied to solve optimization problems 
arising in different practical applications. While there are 
several variant strategies of DE, the DE/RAND/1/BIN 
strategy described in Storn and Price (2000) is used in this 
research for comparison purposes. 

DE algorithms consist of three genetic operators: 
mutation, crossover, and selection. The parameters of the 
DE algorithms are the population size (ܲܵ), the crossover 
rate (ܴܥ) and a constant scale factor ܨ that influences the 
diversity of the set of mutant vectors. DE uses the 
differences between the randomly selected vectors 
(individuals) as the source of random variations from a 
third vector (individual), referred to as the target vector. 
Trial solutions are generated by adding weighted 
difference vectors to the target vector. This process is 
referred to as the mutation operator where the target 
vector is mutated. A recombination or crossover step is 
then applied to produce an offspring that is only accepted 
if it improves the fitness of the parent individual. 
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Mutation and crossover operators generate new 
individuals and selection operator determines suitable 
individuals with maximum/minimum fitness values. In 
this way, the population will contain better individuals.  

3.2.1. The Mutation Operator 

 Mutant individuals are generated using Equation (10) 
as follows. 

௜ܺ,௚ାଵ ൌ ௥ܸయ,௚ ൅ ሺܨ ௥ܸభ,௚ െ ௥ܸమ,௚ሻ   (10) 
with randomly chosen indices ݎଵ, ݎଶ, and ݎଷ in the range 
ሾ1, ܲܵሿ. The random indices have to be different from 
each other and from the running index ݅. The scale factor 
 has a constant value in the range ሾ0,2ሿ and controls the ܨ
amplification of the difference vector of randomly chosen 
individuals. 

3.2.2. The Crossover Operator 

The new individuals are generated using the 
following scheme in the crossover procedure: 

௜ܵ,௚ାଵ
௝ ൌ ቊ

௜ܺ,௚ାଵ   ,    ݎ ൏ ݆ ݎ݋ ܴܥ ൌ ݎ

௜ܸ,௚
௝ ݎ   ,           ൒ ܴܥ  ,   ݆ ൌ 1,2, … , ݊ (11) 

Where ݎ denotes a uniform random number in range 
ሾ0,1ሿ, ௜ܵ,௚ାଵ represents trial individuals, ݊ is the vector 
dimension size, and ܴܥ א ሾ0,1ሿ is a user-defined 
probability of reproduction. Thus, each offspring is a 
stochastic linear combination of three randomly chosen 
individuals when ݎ ൏  otherwise the offspring inherits ;ܴܥ
directly from the parent. Even when ܴܥ ൌ 0, at least one 
of the parameters of the offspring will differ from the 
parent's (forced by the condition ݆ ൌ  .(ݎ

3.2.3. The Selection Operator 

In the selection procedure of each target individual 
௜ܸ,௚, the fitness value of the trial individual ௜ܺ,௚ାଵ is 

compared to that of the target individual ௜ܸ,௚. The 
individual with the maximum fitness value is selected for 
the next generation. 

3.3. Genetic Algorithm (GA) 

A solution vector in a GA is similar to a chromosome 
that is composed of different genes, where each gene 
represents a variable of the GA. For models (1) and (2) a 
chromosome of the GA of this research is composed of 
four different genes as ݊, ݄,  .shown in Figure (1) ܮ and ,ݎ

It should be mentioned that in the crossover operation 
of the GA, the chromosomes that are imported to this step 
are paired and in each pair, two corresponding genes are 
replaced with each other with probability of fifty percents. 
Figure (2) shows an example of the crossover operation. 
Furthermore, every gene of a chromosome that enters the 
mutation stage is mutated in the size of ݀ obtained by 
multiplying three main coefficients; (i) the range of the 
gene whose generation is performed (the ranges for 
݊, ݄,  are 30,10,1, and 50, respectively); (ii) a ܮ and ,ݎ
random number with the standard normal distribution; 
and (iii) a constant number 0.01. Moreover, the evaluation 
function is the Lorenzen-Vance cost function. Note that 
since the gene-generation of the chromosomes is taken 
place in feasible ranges, the constraints on the variables 
that are related to the ranges are automatically satisfied. 

Chromosome #1  Chromosome #2 

 ܮ ݎ ݄ ݊  ܮ ݎ ݄ ݊

12 1.34 0.43 5.06  7 6.09 0.98 8.24 

Fig. 1. Examples of two chromosomes in the GA 

Parent #1  Parent # 2 

 ܮ ݎ ݄ ݊  ܮ ݎ ݄ ݊

12 1.34 0.43 5.06  7 6.09 0.98 8.24 

 
RN#1 RN#2 RN#3 RN#4 
0.12 0.63 0.89 0.39 

 
Children #1  Children #2 

 ܮ ݎ ݄ ݊  ܮ ݎ ݄ ݊

7 1.34 0.43 8.24  12 6.09 0.98 5.06 
Fig. 2. An example of the GA crossover operation 

3.4. Particle Swarm Optimization (PSO) 

PSO is a population-based stochastic optimization 
approach that was first developed by Kennedy and 

Eberhart (1995). The underlying idea of the heuristic 
arises from social behavior of bird-flocking or fish-
schooling (Kennedy & Eberhart 2001, Kennedy et al. 
2001, Omran 2005). In a PSO algorithm, swarm or 

Genes 1 and 4 are replaced with each other and the others remain 
unchanged because RN# 1 and 4 are less than 0.5 

Random number generation for each gene 
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candidate solutions, referred to as particles, are flown 
around in a D-dimensional search space. Each particle 
being attracted towards the best position visited by itself 
(i.e. its own experience) and the position of the best 
particle in its neighborhood (i.e. the experience of 
neighboring particles). Each particle has a position vector 
 encoding a candidate solution to the problem and a (ሾሿ݌)
velocity vector ݒሾሿ. Additionally, every particle contains a 
small memory that stores its own best position seen so far 
 obtained (ሾሿݐݏܾ݁݃) and a global best position (ሾሿݐݏܾ݁݌)
through communication with its neighbor particles.  

In the initialization step, the position of each particle 
is chosen randomly. Velocities can be initialized 
randomly or set to 0. This algorithm executes iteratively 
and its "continuous" version uses a real-valued 
multidimensional space as belief space. In an iteration, the 
positions of all particles are evaluated as problem 
solutions. If a solution is better than any other solution 
found so far, then the position is stored in the ݐݏܾ݁݌ሾሿ 
vector and the best position among all positions is stored 
in the ܾ݃݁ݐݏሾሿ vector next. The flight velocity and 
position of each particle in the next iteration is obtained 
using: 
௜ݒ ൌ ݓ ൈ ௜ݒ ൅ ൫ܿଵ ൈ ሺሻ݀݊ܽݎ ൈ ሺݐݏܾ݁݌ሾሿ௜ െ ௜ሻ൯݌

൅ ൫ܿଶ ൈ ሺሻ݀݊ܽݎ ൈ ሺܾ݃݁ݐݏሾሿ െ  ௜ሻ൯݌
௜݌ ൌ ௜݌ ൅  ௜     (12)ݒ

where ݓ is the inertia weight (Shi and Eberhart 1998a, 
1998b), ݀݊ܽݎሺሻ is a uniform random number on ሾ0,1ሿ, ܿଵ 
and ܿଶ are constants called cognitive learning rate and 
social learning rate, respectively (usually ܿଵ ൌ ܿଶ). The 
first part of Equation (12) represents the inertia of the 
pervious velocity; the second part is the "cognition" part, 
which represents the private thinking by itself; and the 
third part is the "social" part, which represents the 
cooperation among the particles. Velocity updates can 
also be clamped through a user-defined maximum 
velocity ௠ܸ௔௫, which would prevent them from exploding. 
As cycle iterates the ܾ݃݁ݐݏሾሿ-solution converges to the 
global solution where the stopping criterion is met.  

In the original algorithm, particles' velocities on each 
dimension are restricted to a maximum velocity maxV (a 
user-defined parameter). If the sum of accelerations on a 
dimension causes the velocity exceed ௠ܸ௔௫, then the 
velocity on that dimension is limited to ௠ܸ௔௫.  This 
mechanism prevents the phenomenon of "swarm 
explosion." In practical applications, there is also a 
position constriction, where the search space is bounded 
such that the particles' positions in each dimension are 
constrained inside the bounds. 

4. Performance Comparisons 

In this section, the performances of the four 
algorithms in finding the optimum solution of the 
economic and economic-statistical models of the 
MEWMA control chart given in models (1) and (2) are 

discussed. To do this, the numerical example given in 
Linderman and Love (2000) is used and the capabilities of 
the algorithms in finding the optimal solutions for four 
different values of the non-centrality parameter, δ, are 
observed. The parameters of the Lorenzen-Vance function 
in this example are 1 ⁄ߠ ൌ ܧ ,100 ൌ 0.05, ଴ܶ ൌ 0.0, 

ଵܶ ൌ 2.0, ଶܶ ൌ ଵߛ ,2.0 ൌ ଶߛ ൌ 1, ଴ܥ ൌ ଵܥ ,10.0 ൌ 100.0, 
ܨ ൌ 50.0, ܹ ൌ 25.0, ܽ ൌ 0.5, and ܾ ൌ 0.1. Furthermore, 
for performance appraisal of the economic-statistical 
model two constraints of ܮܴܣ଴ ൒ 200 and ܮܴܣଵ ൑ 10 
are added to the constraints of the economic model. 
Linderman and Love (2000) employed the Hooke and 
Jeeve’s method and presented the results that are used in 
this research to evaluate the power of the four algorithms 
in finding the optimal solutions. The program coding of 
the algorithms were performed in Java environment and 
the codes were run on a 1.86 Giga Hz personal computer 
with 1-gigabyte ram. Furthermore, each algorithm was 
run 10 times and the average result was recorded. 

The evaluation processes of the algorithms for models 
(2) and (1) are discussed in Subsections 4-1 and 4-2, 
respectively. To compare the efficiencies of the 
algorithms four indicators are used as follows.  
1) The quality of the best solution obtained by an 

algorithm: This metric measures the solution qualities 
for four different non-centrality parameter values.  

2) The convergence path of the search from an initial 
solution until the stopping criterion; this criterion is  
also measured for different ߜs.  

3) The computer processing time of the algorithms to 
reach the known optimum target value: For this 
indicator the results obtained by Linderman and Love 
(2000) are used as the optimum target value and the 
time to reach this target is measured. In situations in 
which an algorithm does not achieve the target the 
total processing time of the algorithm is recorded. 

4) The average values of all solutions obtained by 
algorithms: The scatter of solutions that are found in 
an iteration of the algorithm is measured using this 
metric. The less the average of the results obtained by 
an algorithm the better the capability of that algorithm 
is. This metric is also measured for all ߜs. 

Knowing that parameter values of an algorithm 
influence both the solution quality and the processing 
time of reaching the optimum solution, in order to 
determine the best combination of the parameters of an 
algorithm, a large number of configurations were first 
executed. Furthermore, for all algorithms, the initial 
setting of the parameters was obtained using the 
commonly recommended set of the previous works 
(Kennedy & Eberhart 1995, Linderman 1998, Storn & 
Price 2000, Shi & Eberhart 1998b). Then, the parameter 
values were changed one by one and the results were 
considered for the solution quality and speed. 

The population size is the most important 
parameter of the evolutionary algorithms and different 
population sizes would result in different optimal 
parameter settings. However, to fairly compare the results 
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of the algorithms, the population size was set 100 for all. 
Furthermore, all algorithms stop after 500 generations. 
The parameter values adopted for each of the four EA 
algorithms are given in Tables (1) to (4). 
Table 1 
 The PSO Parameters 

Population 
size 

Maximum 
velocity 1c  2c  Momentum Neighborhood

Size 
Termination 

criteria 
100 1 2 2 0.5 20 500 

 

Table 2 
The GA Parameters 
Population 

size 
Crossover 

Rate 
Mutation 

rate 
Selection 

rate 
Elitism Termination 

criteria 

100 0.95 0.85 0.5 Yes 500 
 
Table 3 
 The DE Parameters 

Population 
size 

CR  F  Strategy 
 

Elitism Termination 
criteria 

100 0.95 0.85 E/RAND/1/BIN Yes 500 
 

The results of the comparison study on the economic 
and economic-statistical designs of the MEWMA control 
charts are given in Subsections 4-1 and 4-2, respectively. 
Table 4 
 The SA Parameters 
Population 

size 
Starting 

temperature 
 SN   C  tN  tR  Termination 

criteria 

100 5 20 2 100 0.85 500 

4.1. A Comparative Study for the Economic Design 

In this subsection, the performances of the four 
algorithms in solving the economic design model (2) are 
measured using the metrics given in subsection 4. Figures 
(3) to (6) show the quality of the best solution found in 
the different iterations of the four algorithms for different 
non-centrality parameter values. The results indicate that 
while GA outperforms the other algorithms, DE performs 
second to the best. Then, PSO and SA come to the picture 
next. Moreover, the PSO and DE have very close 
performances. 

Another criterion to evaluate the algorithms is the 
progress (convergence path) of each algorithm in 
achieving the best solution. Figures (7) to (14) show the 
results of this criterion obtained by the algorithms. In 
Figures (7) to (10), δ=1.0 and in Figures (11) to (14) 
δ=3.0. From the figures, it can be seen that GA, PSO, DE 
and SA are ranked first to fourth. While in Figure (14) 
and (18), GA reaches a steady-state condition very 
quickly, for the SA algorithm, the steady-state condition 
cannot be seen in Figures (7) and (11) until the stopping 
criterion is taken place. 

 
 
 

 
 

 

 

 

 

 

 

 
Fig. 3. The quality of the best solution found by each algorithm; δ=3.0                    Fig. 4. The quality of the best solution found by each algorithm; δ=2.0               

 

 

 

 

 

 

 
 

 

Fig. 5. The quality of the best solution found by each algorithm; δ=1.0                  Fig. 6. The quality of the best solution found by each algorithm; δ=0.5     
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Fig. 7. The convergence path of the SA algorithm to reach the best                         Fig. 8. The convergence path of the DE algorithm to reach the best 
solution; δ=1.0                                                                                                                     solution; δ=1.0 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The convergence path of the PSO algorithm to reach the best                 Fig. 10. The convergence path of the GA algorithm to reach the best solution;  
solution; δ=1.0                                                                                          δ=1.0 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

Fig. 11. The convergence path of the SA algorithm to reach the best                 Fig. 12. The convergence of the DE algorithm to reach the best solution;  
solution; δ=3.0       δ=3.0 
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Fig. 13. The convergence path of the PSO algorithm to reach the best   Fig. 14. The convergence path of the GA algorithm to reach the best solution; 

δ=3.0                                                                                                                                solution; δ=3.0 
  

The results of the two other major criteria for 
performance appraisal of the economic design model are 
shown in Tables (5) and (6) based on different non-
centrality parameter values. While the non-centrality 
parameter values of Table (5) are δ=0.5 and δ=1.0, these 
values in Table (6) are δ=2.0 and δ=3.0. In these tables, 
the best solutions found by each algorithm along with the 
solution obtained by the Hooke and Jeeve’s method 
(H&J) are given. On the one hand, in cases the best-found 
solutions is more than H&J result, the total computer 
execution time of the corresponding algorithm is shown. 
On the other hand, the time to reach the H&J solution is 
recorded as well. 

 
Table 5 
 Processing time and average result comparisons; δ=0.5 and 1.0 

A
lg

or
ith

m
  δ=0.5  δ=1.0 

 
Best 
Sol. 

Average 
Sol. 

H&J 
Sol. 

Processing 
Time (s) 

 
Best 
Sol. 

Average 
 Sol.  

H&J 
Sol. 

Processing 
Time (s) 

GA  17.66 18.08 17.80 67.78  16.65 17.16 16.72 244.56 

DE  17.70 18.61 17.80 423.19  16.65 18.07 16.72 474.16 

SA  17.83 29.02 17.80 898.39  16.78 24.34 16.72 899.94 

PSO  17.74 18.25 17.80 138.52  16.70 17.74 16.72 350.97 

 
Table 6 
 Processing time and average result comparisons; δ=2.0 and 3.0 

A
lg

or
ith

m
 

 δ=2.0  δ=3.0 

 
Best  
Sol. 

Average 
Sol. 

H&J 
Sol. 

Processing 
Time (s) 

 
Best  
Sol.

Average 
Sol. 

H&J 
Solution 

Processing 
Time (s) 

GA  15.94 16.22 15.96 324.66  15.65 16.52 15.65 843.61 

DE  15.97 20.12 15.96 899.72  15.66 17.57 15.65 896.94 

SA  16.03 20.15 15.96 898.80  15.72 20.30 15.65 902.11 

PSO 16.00 17.24 15.96 895.86  15.65 15.93 15.65 210.28 

 

Based on both the processing time and the average 
solution criteria, the results in Tables (5) and (6) show 
that GA has the best performances. Then, PSO, DE, and 
SA are ranked second to fourth, respectively. However, 
while the best and worst global solutions are obtained by 
GA and SA, respectively, the global solutions that were 
found by DE were less than PSO in three cases. 

In the next subsection, a similar comparison study is 
made for the economic-statistical design model in (1). 

4.2. A Comparative Study for the Economic-statistical 
Design 

In this section, the four previously described criteria 
are used for performance assessment of the algorithms 
used to solve the economic-statistical model. To do this, 
the same numerical example of Section 4 is employed. 
Moreover, in order to handle the two augmented 
constraints of the extended economical-statistical model, 
the static penalty approach of Hoffmeister and Sprave 
(1996) that was successfully used in some real-world 
problems (Schutz and Sprave 1996) is employed to 
convert the constrained problem into an unconstrained 
one. Based on this approach, a solution falling outside the 
bounded region is penalized with a high penalty. The 
penalty forces the solution to adjust itself in a way that 
after a few generations/iterations it may fall into the 
bounded solution space. Mathematically speaking, the 
penalty function that is applied in this research is: 
ሻݔሺݏݏ݁݊ݐ݂݅
ൌ ݂ሺݔሻ േ ඥܪሺܮܴܣ଴ െ ௅ሻଶܮܴܣ ൅ ଵܮܴܣሺܪ െ  ௎ሻଶܮܴܣ
where ܪ is the Heaviside function ܪ: Ը ՜ ሼ0,1ሽ defined 

as ܪሺݕሻ ൌ ൜1   ; ݕ    ൐ 0
0   ; ݕ    ൑ 0.  

Similar to the analysis of subsection 4-1, for 
different values of the non-centrality parameter Figures 
(15) to (18) show the quality of the solutions obtained by 
the evolutionary algorithms under study in different 
iterations. The results show that while PSO has the best 
performance in finding the global optimum, DE and SA 
have roughly similar performances, and the performance 
of GA is the worst. 
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Fig. 15. The quality of the best solution found by each algorithm; δ=0.5  

 
Fig. 16. The quality of the best solution found by each algorithm; δ=1.0 

 
Fig. 17. The quality of the best solution found by each algorithm; δ=2.0  

 
Fig. 18. The quality of the best solution found by each algorithm; δ=3.0 

Figures (19) to (22) show the convergence paths of the 
algorithms in reaching the optimal solutions for non-
centrality parameter value of 1.0. Furthermore, Figures 
(23) to (26) show the path for δ=3.0. As it can be seen 
from the figures, PSO, GA, DE, and SA are ranked first to 
fourth. 

 
Fig. 19. The convergence path of the SA algorithm to reach the best 

solution; δ=1.0 
 

 
Fig. 20. The convergence path of the DE algorithm to reach the best 

solution; δ=1.0  
 

 
Fig. 21. The convergence path of the PSO algorithm to reach the best 

solution; δ=1.0 
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Fig. 22. The convergence path of the GA algorithm to reach the best 

solution; δ=1.0  

 
Fig. 23. The convergence path of the SA algorithm to reach the best 

solution; δ=3.0 

 
Fig. 24. The convergence path of the DE algorithm to reach the best 

solution; δ=3.0 

 
Fig. 25. The convergence path of the PSO algorithm to reach the best 

solution; δ=3.0 

 
Fig. 26. The convergence path of the GA algorithm to reach the best 

solution; δ=3.0 
  

Tables (7) and (8) show the average solutions obtained 
by the algorithms for different non-centrality parameter 
values. Based on this criterion, while PSO performs the 
best, GA comes the second to the best, and in almost all 
of the cases, the SA has the better average solutions than 
the ones obtained by DE. Moreover, while GA has the 
least processing time when δ=0.5 and δ=2.0, DE performs 
the best in case of δ=1.0 and δ=3.0. 

 
 
Table 7 
 Processing time and average result comparisons; δ=0.5 and 1.0  

A
lg

or
ith

m
 δ=0.5   δ=1.0  

Best 
Sol. 

Avg.  
Sol.  

H&J 
Sol. 

Processing 
Time (s) 

 Best  
Sol. 

Avg. 
Sol.  

H&J 
Sol. 

Processing 
Time (s) 

GA 17.91 20.06 17.91 796.81  17.02 22.68 16.77 900.95 

DE 18.03 31.71 17.91 896.59  16.85 22.75 16.77 891.24 

SA 18.16 27.17 17.91 897.53  16.79 23.41 16.77 897.19 

PSO 17.94 18.66 17.91 898.23  16.76 17.47 16.77 899.67 

 
 
Table 8 
 Processing time and average result comparisons; δ=2.0 and 3.0 

A
lg

or
ith

m
  δ=2.0  δ=3.0 

 
Best  
Sol. 

Avg. 
Sol.  

H&J 
Sol. 

Processing 
Time (s) 

 
Best 
Sol.  

Avg. 
Sol.  

H&J 
Sol. 

Processing 
Time (s) 

GA  15.96 16.92 15.97 624.31  15.86 17.69 15.65 892.97 

DE  16.03 21.69 15.97 883.92  15.72 20.46 15.65 890.88 

SA  16.10 21.50 15.97 897.11  15.70 19.56 15.65 895.05 

PSO 15.99 17.18 15.97 894.59  15.65 17.51 15.65 893.19 
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5. Conclusion and Recommendations for Future 
Research 

In this paper, the economic and economic-statistical 
models for designing a MEWMA control chart were 
initially described. Then, four well-known evolutionary 
algorithms were presented to solve the complex non-
linear models. Next, a comparative analysis based on four 
criteria was used to carry out performance appraisal of the 
algorithms for different non-centrality parameter values of 
the chart. The results of the comparison study showed 
that: 
• For the economic design, the GA performed best 

based on all four criteria. PSO was the second based 
on the convergence path, processing time and 
average solution obtained. Meanwhile, DE had the 
second solution quality. Moreover, SA was the worst 
algorithm based on all criteria. 

• For the economic-statistical design, the PSO ranked 
first based on all criteria except for the processing 
time on which GA performed the best. Moreover, 
GA was the second to the best for the convergence 
path and average solution criteria. The DE and SA 
had similar performances for the solution quality and 
processing time criteria. Furthermore, while DE and 
SE were the third and fourth algorithms based on the 
convergence path of the optimal solution, for the 
average solution criterion the order was converse. 

In order to reduce the complexity of the model, only 
one type of an assignable cause for shifting the mean 
vector was considered in this research. As a future 
research, more than one assignable cause are 
recommended to be considered. Furthermore, the models 
that involve deviations of the covariance matrix in which 
unequal sample sizes are used in the cost function may be 
developed in future research.  
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