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Abstract 

In this paper, a multi-product continuous review inventory control problem within the batch arrival queuing approach (MQr/M/1) is modeled 
to find the optimal quantities of the maximum inventory. The objective function is to minimize the total costs of ordering, holding and 
shortage under warehouse space and service level, and expected lost-sales shortage cost constraints from retailer and warehouse 
viewpoints. Since the proposed model is NP-hard, an efficient imperialist competitive algorithm (ICA) is developed to solve the model. 
Moreover, to justify the proposed ICA, a simulated annealing algorithm is utilized, and to determine the best values of algorithm 
parameters that may result in a better solution, a fine-tuning procedure is followed. Finally, the performance of the proposed ICA is 
assessed through some numerical examples. 
Keywords: Continues review Inventory control; Queuing theory; Imperialist Competitive Algorithm; Simulated Annealing.

1. Introduction  

In inventory control problems, determining the ordering 
times and the order quantities of products are the two 
strategic decisions to either minimize total costs or maximize 
total profits. The main policy of the inventory control is that 
when supply and demand are not in the same size and non-
uniform,an inventory is established(Breuerb and Baum, 
2005). In this regard, a number of studies were performed in 
the past decade (Chuang et al., 2004; Vijayan and Kumaran, 
2008; Chang, 2009). 

The objective of inventory management is to balance 
conflicting goals like keeping stock levels down in order to 
have cash available for other purposes and having high stock 
levels for the continuity of the production and for providing a 
high service level to customers (Arda and Hennet, 2006).A 
relevant concept is stochastic modelingwhich is the 
application of probability theory to the description and 
analysis of real world phenomena. One of the most important 
domains in stochastic modeling is the field of queuing 
theory. Many real systems can be reduced to components 
which can be formulated by the concept called queue. A 
queue in a more exact scientific sense consists of a system 
into which there comes a stream of users who demand some 
capacity of the system over a certain time interval before  

 
 
 
 

they leave the system again. Thus, a queuing system can be 
described by a stochasticspecification of the arrival stream 
and of the system demand for every user as well as a 
definition of the service mechanism (Arda and Hennet, 
2006). In this paper, the inventory control problem is 
considered within the queuing frameworkin order to make 
the mathematical model more realistic. The connection 
between the queuing theory and inventory control systems 
and the use of them incombination areinvestigated by several 
researchers in recent years(Bylka, 2005; Kim, 2005; Hill, 
2007).   

Many researchers expanded the inventory models to 
make them more reliable and closer to reality.In this respect, 
ElHafsi (2009)investigated a pure assemble-to-order system 
subject to multiple demand classes where customer orders 
would arrive according to a compound Poisson process. He 
showed that the optimal production policy of each 
component is a state-dependent base-stock policy and the 
optimal inventory allocation policy is a multi-level state-
dependent rationing policy. Xiaoming and Lian(2008) 
considered the cost-effective inventory control of work-in-
process (WIP) and finished products in a two-stage 
distributed manufacturing system. They first used a network 
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of inventory-queue model to evaluate the inventory cost and 
service level achievable for the given inventory control 
policy, and then found a very simple algorithm to find an 
optimal inventory control policy that minimizes the overall 
inventory holding cost and satisfies the given service level 
requirements.  

Azad et al. (2008) presented a complex distribution 
network design problem in the supply chain system which 
included location and inventory decisions. Customers' 
demandswere generated randomly and each distribution 
center maintained a certain amount of safety stock to achieve 
a certain service level for the customers.Since the 
modelwasin a non -linear integer programming mode,the 
researchers proposed a hybrid heuristic tabu search with 
simulated annealing (SA) sharing the same tabu list 
developed for solving the problem.In another study, 
Taleizadeh et al. (2008) investigated a stochastic 
replenishment multi -product inventory model and proposed 
two models for two cases of uniform and exponential time 
distribution between two replenishments. They showed that 
the models were integer -nonlinear programming problems 
and developed a SA algorithm to solve them.  
Alfa et al. (2008)presenteda discrete time GI[x]/G[y]/1 
queuing system. To do so, some general results were 
obtained about the stability condition, stationary distributions 
of the queue lengths and waiting times. In addition, a GI/M/1 
type Markov chain associated with the age process of the 
customers in service was also developed. Hill (2007) also 
investigated continuous-review lost-sales inventory models 
with no fixed order cost and a Poisson demand process. The 
objective of the study, which included a holding cost per unit 
per time unit and a lost sales cost per unit, was to minimize 
the long-run total cost and explore alternative approaches 
which might offer better solutions.  Kiesmuller et al. 
(2006)studies a single node in a supply chain that faced 
stochastic demand. They investigated the waiting time in an 
(R,s,Q) inventory system under compound renewal demand. 
At the end, they provided an approximation for the 
distribution function of the customer waiting time and 
determined the minimal reorder level subject to the 
maximum average waiting time. Dong et al. (2005) 
developed a network of inventory -queue models for the 
performance modeling and analysis of an integrated logistic 
network.Thestudy extended the previous work done on the 
supply network model with base -stock control and service 
requirements. Instead of one-for -one base stock policy, 
batch -ordering policy and lot -sizing problems were 
considered in the study. Moreover, as in practice the 
assumption of incapacitated production often does 
notholdtrue, ܫܩ௑/1/ܩ queuing analysis was used to replace 
the ܯ௑/ܩ/∞ queue based method. In addition, to include 
the lot -sizing issue in the analysis of stores, a fixed -batch 
target -level production authorization mechanism was 
employed to explicitly obtain performance measures of the 
logistic chain queuing model. 

Maiti et al. (2005)proposed a deterministic inventory 
model of a damageable item with variable replenishment rate 
and unit production cost. In the study,the replenishment rate 

and unit production cost were dependent on demand while 
demand and damageability were stock- dependent; the 
dependency could be linear or non-linear. The optimum 
inventory level was evaluated by the profit maximization 
principle through an SA algorithm. Arslan et al. (2001) 
proved the optimal inventory policy structure for both 
continuous and discrete -time M/G/1 and G/M/1 models with 
an alternate source of goods and make -to -order productions. 
They also provided an expression from which inventory 
costs could be calculated for an M/M/1 model although no 
closed -form expression for the optimal policies was possible. 
Gallien et al. (2001) examined the component procurement 
problem in a single-item, make-to-stock assembly system. 
The suppliers were incapacitated and had independent but 
non-identically distributed stochastic delivery lead times. The 
assembly was instantaneous, the product demand followed a 
Poisson process, and the unsatisfied demand was 
backordered. The aim of the studywas to minimize the sum 
of steady state holding and backorder costs over a pre-
specified class of replenishment policies. Combining the 
existing results ofthe queuing theory with the original results 
concerning distributions that are closed under maximization 
and translation,the researchersoffered a simple approximate 
solution for the problem when lead time variances were 
identical.  

Since the proposed model is a non-linear integer 
mathematical programming and then is overly Np-hard, 
utilizing meta-heuristic algorithms to solve itis one of the 
best ways. In this respect, many meta-heuristic algorithms 
such as genetic algorithm, simulated annealing (Pasandideh 
et al., 2011), particle swarm optimization (Poli, 2007; 
Hajipour and Pasandideh, 2012), Tabu search (Zarrinpoor 
and Seifbarghy, 2011)are proposed. Nowadays, it is quite 
common to develop new meta-heuristic algorithms and apply 
them to various optimization problems. As an example, 
Taleizadeh et al. (2011) proposed a multiproduct inventory 
control problem in which the periods between the two 
replenishments of the products wereconsidered independent 
random variables, and increasing and decreasing functions 
were assumed to model the dynamic demands of each 
product. Furthermore, the quantities of the orders 
wereregardedas integer-type, space and budget were 
constraints, the service-level was a chance-constraint, and the 
partial back-ordering policy was taken into account for the 
shortages. Besides, the costs of the problem were holding, 
purchasing, and shortage. Having considered all these 
conditions, the researchers presented a harmony search 
algorithm (introduced by Geem, 2001) to solve the model.  

Recently, a new meta-heuristic algorithm named 
imperialist competitive algorithm (ICA) was developed by 
Atashpaz-Gargari and Lucas (2007). The proposers of the 
algorithm drew inspiration from the socio-political evolution 
of human. The suitability of this algorithm is demonstrated in 
some problems such as flow shop scheduling (Behnamian 
and Zandieh 2011), Game theory (Rajabioun et al., 2008), 
integrated product mix-outsourcing problem (Nazari-
Shirkouhi et al. 2010), K-means data clustering (Niknam et 

Mohammad Alaghebandha et al./ A Continuous Review Inventory Control Model...

12



 
 

al., 2011), hub covering location problem (Mohammadi et 
al., 2011), and so on.  

Using the ICA, the main contributions of this study are 
(1) presenting a new mathematical model in the area of 
continues review inventory control within the queuing 
framework under limited warehouse spaces, number of 
shortage, service level, and cost of expected shortageand (2) 
proposing a parameter-tuned ICA algorithm to solve the 
model.In this paper, we presentthe ICA to solve the proposed 
multi-product continues review inventory control model 
within the batch arrival queuing approach. Moreover, the 
validity of the proposed ICA is demonstrated via one of the 
common algorithms,namely the SA.  

The rest of this paper is organized as follows: In section 
2, the problem is defined and then the parameters, indices, 
and decision variables are introduced to formulate the 
corresponding mathematical model. Section 3 presents both 
proposed meta-heuristic algorithms including ICA and SA to 
solve the model. In section 4, the process of calibrating the 
algorithms by the Taguchi method is illustrated. Section 5 

presents the analysis of the outputs of the algorithms by some 
numerical examples statistically and graphically. Finally, the 
conclusion and some suggestions for further research are 
provided in section 6. 

2. The Proposed Mathematical Model 

2.1. Problem definition  

In this section, first,the continuous review inventory 
control problem is defined and then our proposed 
mathematical model is illustrated in details. The goal is to 
determine the optimal quantities of the maximum inventory 
with minimizing the total cost of the inventory system. In 
order to clarify the problem, we schematically showthe 
elements of the system including warehouse, retailer, 
external supplier, and customer with batch arrivals in Figure 
1.

 

λ
Q r

 

Fig. 1. A system in MQ୰/M/1 

In our system, customers give their orders to the retailer 
and then the corresponding retailer orders the customers' 
demands to the warehouse in a stochastic time interval. Thus, 
we consider the retailers’ orders as stochastic variables. Since 
the customers' demands are stochastic, there is a harden 
inventory control and accordingly the safety stock are in the 
warehouse. It should be pointed out that the warehouse 
demand is considered within T intervals and Qr quantity.  
To make the model more realistic, in this research we 
discussthe continuous review inventory control problem 
within the queuing framework. As products arrive to the 
retailer as batch arrivals, MQ୰/M/1 queuing system is used 
in the study. In this queuing, the time between products 
arrivals and service time have exponential distributions, and 
one retailer is a server. When the service time ofa previous 
customer is not finished, the service time is longer than the 
arrival time of the next demand.Therefore, we encounter the 
formation of a queue. In order to formulate the proposed 
mathematical model, we make the following assumptions: 
o The retailer faces Poisson demand. 
o The warehouse faces a stochastic demand. 
o Unsatisfied demands by the retailer are as lost sales. 
o Shortage is not allowed in the warehouse. 
o Shortage is allowed at the retailer. 
o There is no lot -splitting in the warehouse. 

o The transportation time for an order to arrive at the 
retailer from the warehouse is an exponential 
distribution. 

o The warehouse orders to an external supplier with 
infinite capacity. 

o The retailer's service times for customer j are 
independent and exponential random variables. 

o The lead time for an order to arrive at the warehouse is 
constant. 
In the following subsection, the mathematical model is 

illustrated in details. 

2.2. The mathematical model formulation 

To formulate the proposed model, firstlyits notations, 
parameters, and decision variables are defined, and then 
the non-linear mixed integer programming model is 
presented. 
j The index of products; j=1,...,n 
n The number of products 
hwj The holding cost rate in the warehouse for 
 product j 
Awj The fixed cost of ordering related to the 
 warehouse for product j 
Twj The time interval between two   
 consecutive orders of the warehouse for product j 
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Qwj The order quantity of the warehouse for product j 
hrj The holding cost rate at the retailer for product j 
Arj The fixed cost of ordering related to the retailer 
 for product j 
Trj The time interval between two consecutive 
 orders of the retailer for product j 
φj The arrival rate of the customer for product j 
µj The service rate of the server for product j 
ρj The productivity coefficient of product j 
Iҧj The average inventory level at the retailer 
 between (0,T) during the lost sales period for 
 product j which is equivalent to the queue length 
 for product j 
 j The fixed shortage cost of product jߨ
Lj The length of lead time of product j is assumed 
 to be constant 
F The available warehouse space for the retailer in 
 all products 
fj The space occupied by each unit of product j 
G The number of allowed shortage 
Pj The service level for product j 
S The expected allowable shortage cost in lost 
 sales state 
Γj The maximum inventory in the warehouse for 
 product j 
SSj The safety stock for product j 
Qrj The stockpile amount random variable in the 
 batch arrival queuing system for product j which 
 is equivalent to the order quantity of the retailer 
 for product j 
mj 

The coefficient of the retailer’s order quantity 
 into the warehouse 
E[Qrj] The average stockpile amount of product j 
y1j The random demand in period T for product j
 which acts as Poisson distribution y1j~݌݌(1ߣj) 

y2j The random demand in period L for product j
 which acts as Poisson distribution y2j~݌݌(2ߣj) 

yj=(y1+y2)j The random demand in period L+T for 
  product j which acts as Poisson  
  distribution with parameter  
 2jߣ+1jߣ=jߣ  

Rj The maximum inventory position after order for 
 product j 
P(yj) The demand probability density function 

bത(Rj) The average shortage for product j 
ECHr The expected holding cost per time unit at the 
 retailer in the steady state 
ECLr The expected shortage cost per time unit at the 
retailer in the steady state in lost sales state 
ETCr The expected total cost per time unit at the 
 retailer in the steady state 
ETCw The expected total cost per time unit at the 

warehouse in the steady state 

ETCB The expected total system (retailer and 
 warehouse) cost per time unit in the steady state 
k1(R,T)The expected total cost per time unit at the 
 retailer in the steady state in the (R,T) system 
 
It should be mentioned that the demand in the (R,T) 
system in the period L+T is as 
DrL+T~(1)           (2ߣ+1ߣ)݌݌ 

Lr+Tr~ Erlang(2, λ)      (2) 

In order to formulate the mathematical model, firstthe 
main parameters of the proposed model should be 
determined. The expected total cost per time unit at the 
retailer which includes the ordering, holding and shortage 
costs in the (R,T) system is as follows(Vijayan and 
Kumaran, 2008): 
k1(R,T)= ଵ

T୰
A ൅ hIҧ ൅ ஠

T୰
bത(R)       (3)                   

Since T has an exponential distribution under the 

assessment system, we use ଵ
EሾT୰ሿ

 instead of ଵ
T୰

 to 

determine bത(Rj) in Eq. (4).  

bത(Rj) =∑ Pሺyjሻ. ሺyj െ Rjሻ∞
୷୨ୀR୨                                                 (4) 

Where P(yj) are as   

P(yj)=P(N(L+T)=n)=ି݁ߣఒ௡(n+
ଵ
஛
)     (5)  

Now, we can calculate b(R )j  as follows: 

bത(Rj) =∑ j݁ିఒ୨୷୨ሺyjߣ ൅ 1
ఒ୨

ሻ. ሺyj െ Rjሻ∞
୷୨ୀR୨                             (6)              

With regard to this subject and the periodic order system 
as the inventory order policy, the average number of 
customers in the system for a long time can be considered to 
calculate the average inventory in the periodic order 
inventory system. Therefore, the average number of 
customers in the system for a long time in theMQ୰/M/
1system is (Pirayesh and Haji, 2007): 

ܫ ҧjൌ
஡୨

ଵି஡୨
+

஡୨ሺ
EቂQ౨ౠ

మ ቃషభ

EሾQ౨ౠሿ ሻ

ଶሺଵି஡୨ሻ
+bത (Rj)     (7) 

whereρj =஦୨EሾQ୰୨ሿ
µ୨

.It should be pointed out that in steady 
state,φjEሾQrjሿ ൏  jshould be observed. Since the batchߤ
size is a random variable withthe Poisson distribution per 
T time,E[Qrj] and E[Q୰୨

ଶ ]are respectively obtained from 
Eq. (8) and Eq. (9) as follows: 

E[Qrj]= ∑ ∑ ሺRj െ 1ሻ ൈ ௘షഊభೕఒଵ௝Q౨ౠ

Q୰୨!
ஶ
Q୰୨ୀR୨ିଵ

R୨
௜ୀ଴      (8) 

E[Q୰୨
ଶ ]= ∑ ∑ ሺRj െ 1ሻଶ ൈ ௘షഊభೕఒଵ௝Q౨ౠ

Q୰୨!
ஶ
Q୰୨ୀR୨ିଵ

R୨
௜ୀ଴   (9) 
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In this paper, we proposethe continues review inventory 
control with considering the queue framework at the retailer. 
To do so, the MQ୰/M/1queuing systemis considered to 
determine the optimum Rj. The objective function is 
minimizing the expected total cost of the inventory system 
including holding, ordering,and shortage costs at the retailer 
as well as the holding and ordering costs in the warehouse. 
In order to solve the model, the order arrival at the 
warehouse and the order delivery into the retailer should be 
same.Thus,Qwj and Twj arecalculated as (mj-1)Qrj and 
mjE[Trj], respectively (Pirayesh and Haji, 2007). Since no 
shortage is allowed in the warehouse, the safety stock is 
determined as follows (Sherbrooke, 2004):  
SSj=Γj+μjL+T                                                                 
(10) 

Thenaccording toEq. (5) andEq. (10), the corresponding 
safety stock is determined by Eq. (11). Following that, the 
expected total cost per time unit in the warehouse in the 
steady state is the sum of ordering and holding costs which is 
formulated as Eq. (12). 

SSj=
ି௟௡ഊೕ

మ
ఒ௝

െ  (11)                                                               ݆ߣ

TCwj=
A౭ౠ

୫୨T୰୨
൅ h୵୨ሺ

ି௟௡ഊೕ
మ

ఒ௝
െ ݆ߣ ൅

ሺ௠ೕషଵሻொೝೕ

ଶ
)                     (12) 

Finally, the proposed non-linear mixed integer 
programming model is formulated to determine the 
inventory position up to R. Then the concepts of objective 
function and the constraints are explained.   

TCB=∑ ቆ ଵ
EሾT୨ሿ

A୨ ൅ h୨Iҧ୨ ൅
πౠ

EሾT୨ሿ
bത൫R୨൯ቇ௡

௝ୀଵ  

       +∑ A౭ౠ

୫୨EሾT୨ሿ
൅ h୵୨ሺ

ି௟௡ഊೕ
మ

ఒ௝
െ ݆ߣ ൅

ሺ௠ೕషଵሻொೝೕ

ଶ
ሻ௡

௝ୀଵ           (13) 
Subject to: 
∑ bത൫R୨൯௡

௝ୀଵ ൑  (14)                                                            ܩ
∑ ୨݁ିఒౠ୷ౠߣ

Rౠ
୷ౠୀ଴ (y୨ ൅ ଵ

ఒ௝
ሻ ൒ P୨                                          (15) 

∑ π୨
௡
௝ୀଵ ൈ ∑ ∞୨݁ିఒౠ୷ౠߣ

୷ౠୀRౠ (y୨ ൅ ଵ
ఒ௝

ሻሺy୨ െ R୨ሻሻ ൑ ܵ         (16) 
୨ܳ୨୰ߣ ൏ ୨ܶ୰ 

                                                                    
(17) 

R୨ ൒ 0 
Qrj and mj are as positive integer                                 (18) 

The objective (13) above minimizes the inventory 
system cost which is divided into two parts: retailers and 
warehouse. From the retailer viewpoint, the total cost of 
ordering, holding and shortage is minimized while the 
ordering and holding costs are considered to be 
minimized in the warehouse. The constraint (14) ensures 
the maximum number for the shortage. Moreover, the 
constraint (15) is a kind of service level which indicates 
the ability to meet the customers' demand by the available 
inventory. In fact, it shows a key factor in computing 
reliability in the supply chain. The constraint (16) ensures 
the maximum cost for encountering with the shortage, and 
the constraint (17) shows the stability of the considered 
queuing system. Finally, the constraint (18) considers the 
range of decision variables.  

3. Proposed Meta-Heuristic Algorithms 

Nowadays, the use of meta-heuristic algorithms as a 
common and efficient way to solve mathematical 
programming models is justified. In this regard, a 
parameter-tuned imperialist competitive algorithm (ICA) 
is proposed in the present paper. Following this, to 
demonstrate the performance of the proposed algorithm, 
an efficient random search algorithm called simulated 
annealing (SA) is employed which is described in details 
in the following subsections.  

3.1. The imperialist competitive algorithm 

As a strong optimization strategy, the ICA is inspired 
by the socio-political evolution of human being. Like 
other population-based meta-heuristic algorithms, the 
initialization phase is the first step to generate population 
as countries in the world. Among these, the best countries 
in the population are selected to be imperialists and the 
rest form the colonies of these imperialist. Then all 
colonies should be evaluated based on their power (the 
fitness value) and then divided among the imperialists. 
After dividing all colonies, the colonies start moving 
towards their relevant imperialist country.It should be 
noted that the total power of an empire depends on both 
the power of the imperialist country and the power of its 
colonies. Then the imperialistic competition begins 
among all the empires. The empires which do not win the 
competition will be out of the competition. Gradually, the 
imperialistic competition results in an increase in the 
power of powerful empires and a decrease in the power of 
weaker ones. Finally, all the countries will be converted to 
a state including just one empire in the world and all the 
other countries are the colonies of that empire (Atashpaz-
Gargari and Lucas, 2007). Having described the idea 
behind the ICA, now in order to clarify the trend of our 
proposed ICA, we schematically plot the flowchart of the 
algorithms in Figure2. 
In the following subsections, the steps of the proposed 
ICA are described in details.  
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Fig. 2. Flow chart of the proposed ICA 

3.1.1. Generating initial countries 
 
In this subsection, an array of decision variable values is 
formed to determine the optimal values in the search area. 
In the ICA, the number of countries (Nୡ୭୳୬୲୰୷), 
imperialists (N୧୫୮), and colonies (Nୡ୭୪) should be 
determined. The relationship between these algorithm 
parameters is Nୡ୭୳୬୲୰୷ ൌ N୧୫୮ ൅ Nୡ୭୪. 

In the ICA optimization, the aforementioned array is 
called 'country'. A country is an 1 ൈ ܰ array which is 
defined as: 

 
Fig. 3. A country structure 

Where pN is the normalized power of imperialist N which 
is defined as Eq. (19). In fact, the normalized power of an 
imperialist is determined by the proportion of colonies it 
possesses. Besides, to form initial empires, all colonies 
should be assigned to the imperialists based on their 
power. The normalized cost of an imperialist is, therefore, 
computed as Eq. (20). 

 

p୲ ൌ ቤ C౪

∑ C౪
N౟ౣ౦
೟సభ

ቤ ; ݐ ൌ 1,2, … , N୧୫୮                                 (19) 

C୲=a୲ െ max௜ሼa୧ሽ                                                         (20) 

where a୲ is the cost of the tth imperialist and C୲ is its 
normalized cost. Obviously, the colonies will be randomly 
chosen the size of Nୡ୭୪ ൈ p୲, and then will be assigned to 
the imperialists. To clarify the process of initialization 
phase, we show it schematically in Figure4. 

 
Fig. 4. A scheme of initialized empires and colonies (Atashpaz-

Gargariand Lucas, 2007) 

3.1.2. Movement of the colonies 

After initializing the countries and selecting the empires, 
the imperialist countries attempt to enhance the number of 
their colonies by moving all the colonies toward the 
imperialists. This process is carried out by generating a 
random variable (x) which acts as the uniform distribution 
X~ܷ݂݊݅݉ݎ݋ሺ0, ߚ ൈ ݀ሻ; ߚ ൐ 1 (Atashpaz-Gargari and 
Lucas, 2007) where the parameter d indicates the distance 
between a colony and an imperialist. To explore 
variations around an imperialist, the concept of the 
deviation of a path (θ)which acts as the uniform 
distribution ߠ~ܷሺെߛ,  ,ሻ (Atashpaz-Gargariand Lucasߛ
2007) is necessary. In this concept, the parameter γ is 
defined as the deviation from the original direction. 

It is worthy to mention that while moving toward 
an imperialist, a colony may reach a position with lower 
costs in comparison with the imperialists. In such cases, 
the imperialist moves to the position of that colony and 
vice versa. In the ICA, this process is called 'exchanging 
positions of the imperialist and a colony'.  

3.1.3. Empires power evaluation 
 

In this step, the total power of each empire is 
calculated as the sum of the imperialist cost and the 
average of colonies cost as follows: 

TP୲ ൌ  ሺimperialist୲ሻݐݏ݋ܥ

 ൅ሾ݀݊ܽݎሺሻ ൈ ݉݁ܽ݊ሼݐݏ݋ܥሺ݂ܿ݋ ݏ݁݅݊݋݈݋ empire୲ሻሽሿ    (21) 
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Where TP୲ is the total cost of the tth empire.  

3.1.4. Imperialists competition 

In this phase, all empires attempt to take possession of 
more colonies and control them. This imperialistic 
competition gradually brings about a reduction in the 
power of weaker empires and an increase in the power of 
more powerful ones by choosing a number (usually one) 
of the weakest colonies of the weakest empires and 
allowing the empires to compete for having the chosen 
colonies (Atashpaz-Gargari and Lucas, 2007). In order to 
start the competition, we first calculate the probability of 
each empire's success to determine colonies instead of its 
total power as follows: 

NTP୲=TP୲ െ max௜ሼTP୧ሽ                                                  (22) 

where TP୲ and NTP୲ are the total cost and the 
normalized total cost of the tth empire, respectively. Then 
the possession probability of each empire is computed as 
Eq. (23). According to this equation, we form the vector P 
(P=[ ୮ܲଵ, ୮ܲଶ, … , ୮ܲN౟ౣ౦]) to divide the colonies among the 
empires. 

ܲp୲ ൌ ቤ NTP౪

∑ NTP౟
N౟ౣ౦
೔సభ

ቤ                                                         (23) 

Following this, the vector (R) is generated the size of P 
based on the following policy.  

R=[rଵ, rଶ, … , rN౟ౣ౦];rଵ, rଶ, … , rN౟ౣ౦~ܷ݂݊݅݉ݎ݋ሺ0,1ሻ   (24) 
Next, the vector D will be calculated simply by 
subtracting R from P in Eq. (25). 
D=P-R 
,ଵܦ]= ,ଶܦ … ,  [N౟ౣ౦ܦ
=[P୮ଵ െ rଵ, P୮ଶ െ rଶ, … , P୮N౟ౣ౦ െ rN౟ౣ౦]                      (25) 

Then the colonies are assigned to the empires 
based on the vector D. The empires with higher Ds are 
more powerful. Finally, the powerless empires will be out 
of the imperialistic competition and their colonies will be 
divided among the remaining empires.  

At the end, when all the empires except the most 
powerful ones collapse and all the colonies are under the 
control of certain empires, the algorithm will be stopped. 

3.2. The proposed parameter-tunic SA 

Simulated annealing (SA) is a well-known local search 
meta-heuristic introduced by Kirkpatrick et al. (1983). 
This algorithm is based on the process of physical 
annealing in which a crystalline solid is heated and then 
allowed to cool very slowly (L) until it has its most 
regular crystal lattice configuration possible. The SA 
establishes the connection between this type of 
thermodynamic behavior and the search for global 
minima for discrete optimization problems. In the main 

loop of SA, a single solution (s) is generated and after 
evaluating it, the neighborhood structure is executed to 
determine a new solution. Then according to the objective 
function value of both obtained solutions, the better 
solution is selected although with regard to the SA’s 
probability function, the worst solution may also be 
chosen (Glover and Kochenberger, 2003).The pseudo-
code of the proposed SA is depicted in Figure 5.  

Initializethe SA control parameters (T0, L)  
Generate an initial solution, 0s  

Set T=T଴, S=S଴, and ܵכ=S଴ 

Evaluate f(S଴) 
    While the stop criterion is not reached do: 

Set n=1 

               While n<L do: 
Generate solution S୬ as the                

neighborhood solution of S଴ 

              Calculate V= f(S୬)- f(S); 

                If  V൑ 0 
S=S୬ 
Else 

     Generate a random number,  
                                                rא ሺ0,1ሻ 

                                                If (r൑ ݌ ൌ ݁ିೇ
೅) 

              S=S୬ 

     End 
End 

                                           If f(S)< f(ܵכ) 
 S୬=כܵ
End 

End 
Reduce the temperature T  
    End 

Fig. 5.The pseudo-code of the proposed SA  

It is worth mentioning that the solution representation and 
evaluation in the SA are similar to those of the proposed 
ICA. Moreover, the neighborhood structure is carried out 
by the swap strategy (Haupt and Haupt, 2004). 

4. Meta-heuristics Calibration 

In this section, we focus on tuning the input 
parameters of both proposed algorithms. Since all meta-
heuristic algorithms heavily depend on their parameters, a 
Taguchi method is used to enhance the performance of 
both ICA and SA. The Taguchi categorizes the objective 
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functions into three groups: (I) smaller-the-better type, 
(II) larger-the-better type, and (III) nominal-is-the-best 
type. As almost all the objective functions in the 
inventory control problem are classified as the smaller-
the-better type, the corresponding S/N ratio (SNR) is as 
follows(Peace, 1993): 
SNR= -10 logሺ݊݋݅ݐܿ݊ݑ݂ ݁ݒ݅ݐ݆ܾܿ݁݋ሻଶ                         (26) 
In order to apply the Taguchi method, firstly the levels of 
all the parameters should be determined (Tables 1 and 
2).It should be noted that according to the sensitivity of 
the factor to the problem size, we determine the best value 
of them separately.   
Table 1 
Parameters levels of the proposed ICA for different problems 

Factor Symbol Problem Level 
(1) 

Level 
(2) 

Level 
(3) 

Beta A All 
Problems 1 1.25 1.5 

Sigma B All 
Problems 0.05 0.3 0.6 

Lambda C All 
Problems 0.2 0.3 0.6 

MaxScapeAngle D All 
Problems 8 12 16 

(Npop, Nimp) 
 E 

Problem 1  
(20,2) 

 
(30,2)  (70,3) 

Problem 2  
(30,3) 

 
(40,3)  (80,4) 

Problem 3  
(40,4) 

 
(50,4)  (90,5) 

Problem 4  
(50,5) 

 
(60,5)  (100,5) 

MaxITICA F 

Problem 1 20 40 60 
Problem 2 30 50 70 
Problem 3 40 60 80 
Problem 4 50 70 90 

 

Table 2 
Parameters levels of the proposed SA for different problems 

Factor Symbol Problem No. Level 
(1) 

Level 
(2) 

Level 
(3) 

Level 
(4) 

T0 A All Problems 800 1200 1600 2000 

MaxITSA B 

Problem 1 50 90 130 170 
Problem 2 60 100 140 180 
Problem 3 70 110 150 190 
Problem 4 80 120 160 200 

 

The Taguchi designs for the SA and ICA are 2
16L (4 ) and

6
27L (3 ) , respectively. Tables 3 and 4 report the SNRs 

and the mean ratiosofthe four experimental problems 
based on the ICA and SA. 

With regard to the outputs of the MINITAB software, the 
optimal values of the ICA and SA parameters can be 
determined according to the maximum SNR and 
minimum MEAN rules (Figures6 and 7). To do so, we 
provide all the optimal values in Table 4. It should be 
mentioned that here this process is reported for problem 
number 1.  

 
 
 
 
 
 
 
 
 

 

 
Fig. 6.The SNR and Mean ratio for the ICA in problem No. 1 
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Table 3 
The SNR and mean ratio of all the experimental problems based on the SA (Orthogonal array) 

Run 
No. 

Factors Problem 1 Problem 2 Problem 3 Problem 4 

A B SNR MEAN SNR MEAN SNR MEAN SNR MEAN 

1 1 1 -40.0435 100.502 -50.3534 329.361 -53.7236 485.488 -56.1992 645.593 
2 1 2 -40.0502 100.58 -50.3824 330.462 -53.6442 481.07 -56.0835 637.052 
3 1 3 -40.045 100.52 -50.3824 330.462 -54.559 534.501 -56.272 651.029 
4 1 4 -40.0499 100.576 -50.5155 335.562 -53.6167 479.55 -57.2445 728.16 
5 2 1 -40.0443 100.512 -50.52 335.738 -54.1503 509.934 -56.741 687.144 
6 2 2 -40.0502 100.579 -50.4274 332.178 -53.6216 479.82 -54.2179 513.921 
7 2 3 -40.0435 100.502 -50.5726 337.778 -54.1578 510.377 -55.3658 586.53 
8 2 4 -40.051 100.589 -50.3462 329.087 -53.7434 486.597 -57.2372 727.548 
9 3 1 -40.0501 100.578 -50.3824 330.462 -55.2822 580.912 -56.245 649.01 
10 3 2 -40.0499 100.576 -50.5155 335.562 -55.0859 567.929 -56.1407 641.261 
11 3 3 -40.0582 100.672 -50.5695 337.657 -53.8134 490.536 -57.1154 717.413 
12 3 4 -40.05 100.577 -50.4795 334.174 -55.3952 588.521 -57.1293 718.561 
13 4 1 -40.0453 100.523 -50.5733 337.803 -53.8429 492.202 -55.2164 576.53 
14 4 2 -40.0519 100.599 -50.5478 336.815 -55.0859 567.929 -56.9951 707.548 
15 4 3 -40.0458 100.529 -50.52 335.738 -53.8234 491.098 -56.8897 699.01 
16 4 4 -40.0481 100.556 -50.5729 337.788 -55.3197 583.427 -56.4075 661.261 

 
Table 4 
The SNR and mean ratio of all the experimental problems based on the ICA (Orthogonal array) 

Run 
No. 

Factors Problem1 Problem2 Problem3 Problem4 
A B C D E F SNR MEAN SNR MEAN SNR MEAN SNR MEAN 

1 1 1 1 1 1 1 -40.0087 100.101 -50.4499 333.04 -53.6188 479.669 -54.2838 517.833 
2 1 1 1 1 2 2 -40.0686 100.793 -50.4553 333.248 -53.6238 479.944 -54.2768 517.417 
3 1 1 1 1 3 3 -40.0152 100.175 -50.464 333.58 -53.6142 479.414 -54.2103 513.472 
4 1 2 2 2 1 1 -40.0647 100.747 -50.4628 333.534 -53.662 482.06 -54.2719 517.123 
5 1 2 2 2 2 2 -40.0319 100.368 -50.4868 334.457 -53.6246 479.986 -54.2215 514.133 
6 1 2 2 2 3 3 -40.0765 100.885 -50.4882 334.511 -53.4091 468.224 -54.2305 514.663 
7 1 3 3 3 1 1 -39.9963 99.957 -50.4888 334.536 -53.2164 457.951 -54.2391 515.173 
8 1 3 3 3 2 2 -40.0188 100.216 -50.4525 333.137 -53.4907 472.645 -54.2143 513.708 
9 1 3 3 3 3 3 -40.0288 100.332 -50.4595 333.407 -53.2283 458.579 -54.2777 517.472 
10 2 1 2 3 1 2 -40.0116 100.134 -50.475 334.003 -53.2541 459.942 -54.2808 517.656 
11 2 1 2 3 2 3 -40.1159 101.344 -50.4685 333.755 -53.2839 461.527 -54.256 516.176 
12 2 1 2 3 3 1 -40.1243 101.441 -50.502 335.041 -53.2214 458.214 -54.3276 520.451 
13 2 2 3 1 1 2 -40.0026 100.03 -50.5044 335.134 -53.3616 465.669 -54.3061 519.167 
14 2 2 3 1 2 3 -40.1032 101.196 -50.4966 334.835 -53.4696 471.497 -54.5159 531.857 
15 2 2 3 1 3 1 -40.0214 100.247 -50.5419 336.587 -53.2389 459.141 -54.572 535.306 
16 2 3 1 2 1 2 -40.0834 100.964 -50.5026 335.067 -53.308 462.806 -54.5435 533.548 
17 2 3 1 2 2 3 -40.082 100.949 -50.5312 336.17 -53.2705 460.816 -54.2533 516.017 
18 2 3 1 2 3 1 -40.128 101.484 -50.5224 335.831 -53.374 466.34 -54.7691 547.591 
19 3 1 3 2 1 3 -40.0242 100.279 -50.4679 333.73 -53.4505 470.46 -54.4 524.81 
20 3 1 3 2 2 1 -40.1193 101.382 -50.5343 336.291 -53.4854 472.358 -54.305 519.097 
21 3 1 3 2 3 2 -40.0456 100.526 -50.4795 334.177 -53.3351 464.254 -54.2028 513.026 
22 3 2 1 3 1 3 -40.1011 101.171 -50.4768 334.073 -53.3622 465.705 -54.3366 520.994 
23 3 2 1 3 2 1 -40.0136 100.156 -50.4595 333.406 -53.4433 470.072 -54.3331 520.782 
24 3 2 1 3 3 2 -40.093 101.076 -50.4796 334.182 -53.415 468.542 -54.2076 513.312 
25 3 3 2 1 1 3 -40.1049 101.215 -50.4645 333.598 -53.3269 463.814 -54.2433 515.422 
26 3 3 2 1 2 1 -40.0188 100.216 -50.4517 333.107 -53.2982 462.286 -54.1879 512.145 
27 3 3 2 1 3 2 -40.0266 100.307 -50.4661 333.661 -53.3221 463.558 -54.254 516.057 
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Fig. 7.The SNR and Mean ratio for the SA in problem No. 1 

Table 5 
Optimal values of the meta-heuristic parameters 

Solving 
Methodologies Factor 

Optimal Value 

Problem 1 Problem 2 Problem 3 Problem 4

ICA 

Beta 1 1 1.25 1 
Sigma 0.6 0.05 0.6 0.05 
Lambda 0.6 0.3 0.6 0.3 
MaxScapeAn
gle 8 16 16 16 

(Npop, Nimp) (20,2) (30,3) (90,5) (60, 5) 
MaxITICA 40 50 80 70 

SA T0 800 800 800 1200 
MaxITICA 50 60 150 120 

5. Results and Comparisons 

In this section, we first provide our four numerical 
examples in Table 6. Then to demonstrate the 
performance of the proposed algorithms, we analyze the 
results statistically and graphically. For each numerical 
example, 10 independent runs are performed by the 
proposed ICA and SA to decrease the uncertainty of 
generated runs. The reported value is based on the 
algorithms outputs in these 10 runs provided in Table 7. 
The first column of Table 7 indicates the problem number 
(according to the number of products) and the 2th-7th 
columns show the number of runs for the RPD, MIN, and 
TIME criteria. The experimental tests of this study were 
carried out on a personal computer with a Pentium 
processor (1.86 GHz) and one GB RAM, and the 
algorithms were coded by MATLAB (Version 7.10.0.499, 
R2010a). 

The algorithms outputs are compared with each other 
in the following terms: 
(I) Relative percentage deviation (RPD): This 

criterion is well-developed for measuring the 
efficiency of mathematical programming models. 
The RPD is obtained as Eq. (27): 

RPD=[(MINୱ୲ୟ୥ୣ െ MIN୲୭୲ୟ୪)/ MIN୲୭୲ୟ୪]ൈ 100% 
      

  (27) 
where MINୱ୲ୟ୥ୣ and MIN୲୭୲ୟ୪ are the best cost of the 
algorithm in each stage and the best cost that it has had up 

to now, respectively. Obviously, the algorithms with the 
lowest RPD are the best.  
(II) Best cost (MIN): The algorithms with better 

objective functions are the best ones. 
(III) Computational time (TIME): The computational 

time of running the algorithm to reach the best 
solutions. 

The outputs of all the criteria for each problem are 
reported in Table 8.In order to compare the algorithms, 
we run a T-paired statistical analysis at the 95% 
confidence level. Finally, to determine the best solving 
methodologies, based on the role of accepting 0H
hypotheses, the value of test statistic must be in the 
acceptance region , 1[ , ]ntα −− +∞ or P value− > α . The 
statistical analysis and comparisons are done by 
MINITAB and summarized in Table 9. According to the 
Table 19, the proposed ICA significantly works better 
than the SA in terms of the RPD and MIN criteria. Yet, 
proposed SA shows a better performance based on the 
Time criterion. To clarify these results, graphical 
comparisons are illustrated in Figs.8 and 9. 

6. Conclusion and Suggestions for Future Research 

In this study, a multi-product continues review 
inventory control problem within the batch arrival 
queuing approach (MQr/M/1) was formulated to determine 
the optimal quantities of maximum inventory. The 
objective function was to minimize the summation of 
ordering, holding and shortage costs under the warehouse 
space, service level, and the expected lost-sales shortage 
cost constraints from the retailer and warehouse 
viewpoints. Since the proposed model is Np-Hard, an 
efficient imperialist competitive algorithm (ICA) was 
proposed to solve it. To justify the proposed ICA, a 
simulated annealing algorithm (SA) was used to 
demonstrate the applicability of the proposed ICA. 
Moreover, a parameter tuning procedure was followed to 
find the best outputs of the algorithm. The results showed 
that the proposed ICA significantly works better than the 
SA in terms of the RPD and MIN criteria while the 
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proposed SA shows a better performance based on the 
Time criterion. In further studies, the multi-objective 
version of the model may be developed. Moreover, 

Pareto-based meta-heuristic algorithms such as NSGA-II 
or MOPSO can be used to solve multi-objective 
mathematical models.  

     

 Table 6 
     General Data of the numerical examples 

jμ  jϕ  S  
jP  G  F  

jπ  jf  [ ]jTE  jA  jh  2 jλ  1 jλ  
Number  

of products 
Problem 

No. 

[70] [5] 1000 [0.95] 10 10000 [0.2] [2] [0.2] [20] [3] [4] [1] 1 1 
[60 
110 
70] 

[5 10 
3] 

1000 [0.95 
0.92 
0.9] 

10 10000 [0.2 0.3 
0.1] 

[2 3 
4] 

[0.2  
0.1  
0.3] 

[20 19 
10] 

[3  
4  
7] 

[4  
5  
6] 

[1  
2  
3] 

3 2 

[60 
110 70  

50 
100] 

[5 10  
3 
9  
5] 

1000 [0.95 
0.92 

0.9 0.9 
0.98] 

10 10000 [0.2 0.3 
0.1 
0.01 
0.9] 

[2 3  
4  

5 1] 

[0.2  
0.1  
0.3 
0.2 
0.5] 

[20 19 
10 15 
22] 

[3  
4  
7  
4  
9] 

[4  
5  
6  
4  
7] 

[1 
2  
3  
2  
5] 

5 3 

[70 40  
59  
82  
78  
29  
48  
77  

81 94] 

[5  
3  
5  
4 
 8  
6  
10 
 3 
 9 

21] 

1000 [0.95 
0.9 
0.97 
0.98 
0.93 
0.92 
0.98 
0.95 
0.96 
0.94] 

10 10000 [0.2 0.4 
0.2  
0.7  
0.4 
0.6 
0.7 
0.9  

0.3 0.5] 

[2 5  
3  
8  
4  
3 
9 
5 

3 5] 

[0.2 
 0.1 
 0.3 
 0.8  
0.4  
0.6  
0.2  
0.55 
 0.9  

0.34] 

[20 10 
32 12 
30 49 
19 30 
46 33] 

[3 
 5  
7 
 2 
 9 
 5  
1  
8 
 5  

10] 

[4 
 2  
4 
 1 
 7 
 5 
 8 
 4 
 6  
5] 

[1 
 4 
 7 
 2 
 4 
 8 
 9 
 5 
 3 
 6] 

10 4 

 

Table 7 
 The runs of the algorithms for the experimental problems 

PROBLEM RUN 
SA ICA 

MIN TIME RPD MIN TIME RPD 

PROBLEM 1 

1  100.5018 3.88538 0.005451 100.1007 3.7639 0.001439 
2 100.58 2.70084 0.006234 100.7925  3.8686 0.00836 
3 100.52 4.100994 0.005633 100.1749 3.8799 0.002181 
4 100.5756 3.843987 0.00619 100.7473 4.0251 0.007907 
5 100.6724 3.764688 0.007158 100.3678 3.864 0.004111 
6 100.5792 3.868943 0.006226 100.8849 3.9842 0.009284 
7 100.5228 3.392587 0.005661 99.9569 3.5898 0 
8 100.5992 3.941883 0.006426 100.2162 3.9873 0.002594 
9 100.5792 3.234731 0.006226 100.3322 4.1085 0.003755 
10 100.5756 4.093915 0.00619 100.1341 3.8119 0.001773 

PROBLEM 2 

1 329.3608 9.448316 0.000831 333.0395 12.4694 0.01201 
2 330.4621 10.079401 0.004178 333.2477 12.0967 0.012642 
3 330.4621 11.586842 0.004178 332.5804 11.7437 0.010615 
4 335.5623 10.748621 0.019676 333.5344 13.4689 0.013513 
5 335.7384 9.704158 0.020211 334.4569 11.7792 0.016317 
6 332.178 12.96601 0.009392 334.5109 11.5188 0.016481 
7 337.7783 9.277427 0.026409 333.5355 14.6966 0.013517 
8 332.1372 8.785978 0.009268 329.0873 11.4481 0 
9 330.4621 10.361679 0.004178 333.4066 12.5192 0.013125 
10 335.5623 8.947472 0.019676 334.0034 11.281 0.014939 

PROBLEM 3 

1 485.4884 15.388689 0.060131 479.6686 59.0444 0.047423 
2 481.0699 14.43013 0.050483 479.944 59.8008 0.048024 
3 534.5014 13.184825 0.047163 479.4143 58.7419 0.046867 
4 479.5495 17.251074 0.047163 482.0603 59.2687 0.052645 
5 509.9339 14.250209 0.113511 479.986 58.7312 0.048116 
6 479.8196 16.065968 0.047752 468.2243 58.2641 0.022433 
7 510.3765 16.857634 0.114478 457.9513 58.6309 0 
8 486.5971 15.529153 0.062552 472.6452 60.1365 0.032086 
9 690.9118 14.302164 0.508701 458.5785 59.4095 0.00137 
10 567.929 14.717272 0.240152 459.9417 58.9115 0.004346 

PROBLEM 4 

1 645.5933 32.80812 0.260569 516.0169 132.2879 0.007561 
2 637.052 32.404455 0.243891 547.5914 133.394 0.069213 
3 651.0287 28.685864 0.271182 524.8103  133.861 0.024731 
4 728.1598 29.415257 0.421786 519.0967  132.1272 0.013575 
5 687.144 32.942456 0.341699 513.0264  132.2369 0.001722 
6 513.9213 25.881626 0.003469 520.9935  132.5622 0.017278 
7 586.5304 30.183525 0.145244 520.7815  131.098 0.016864 
8 727.548 33.225511 0.420591 513.3121  133.8993 0.00228 
9 649.0097 33.528925 0.267239 515.422  132.1485 0.0064 
10 641.2611 31.371941 0.25211 512.1445  131.165 0 
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Table 8 
Computational results of the SA and ICA for all the problems 

Algorithms Criterion Problem1 Problem2 Problem3 Problem4 

SA 
RPD 

0.00614 0.01179 0.12920 0.262778 
ICA 0.00414 0.01231 0.03033 0.015962 

SA 
MIN  

100.571 332.97 522.618 646.72 

ICA 100.371 333.14 471.841 520.32 

SA 
TIME 

3.682 10.190 15.197 31.044 

ICA 3.888 12.302 59.094 132.478 
 

Table 9 
Statistical analyses of all the criteria 

Result P-value Test Statistic Criterion 

SA ICAD 0; RPD RPD≥ >  0.884 0.05>  0.05,9T value 1.49 t 1.833− = < =  RPD 

SA ICAD 0;MIN MIN≥ >  0.883 0.05>  0.05,9T value 1.48 t 1.833− = < =  Min  

SA ICAD 0;TIME TIME< <  0.109 0.05>  0.05,9T value 1.55 t 1.833− = − < =  TIME 

 
 
 

 

   
Fig. 8. Graphical comparisons of the SA and ICA based on all the criteria for all the problems 
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Fig. 9. The box plot of all the criteria with significant differences 
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