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Abstract

This paper introduces a novel multi-objective evolutionary agorithm based on cat swarm optimization algorithm (EMCSO) and its
application to solve a multi-objective knapsack problem. The multi-objective optimizerstry to find the closest solutions to true Pareto front
(POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm
optimization (CSO), a swarm-based algorithm with ability of exploration and exploitation, to produce offspring solutions and uses the non-
dominated sorting method to find the solutions as close as to POF and crowding distance technique to obtain a uniform distribution among
the non-dominated solutions. Also, the algorithm is allowed to keep the elites of population in reproduction process and use an opposition-
based learning method for population initialization to enhance the convergence speed. The proposed algorithm is tested on standard test
functions (zitzler’ functions: ZDT) and its performance is compared with traditional algorithms and is analyzed based on performance
measures of generational distance (GD), inverted GD, spread, and spacing. The simulation results indicate that the proposed method gets
the quite satisfactory results in comparison with other optimization algorithms for functions of ZDT1 and ZDT2. Moreover, the proposed
algorithm is applied to solve multi-objective knapsack problem.

Keywords: Multi-objective cat swarm optimization; Non-dominated sorting; Crowding distance; Opposition-based learning.

2011) (Mehdizadeh & Kivi, 2014).
Optimization includes finding the best values of some Swarm intelligence algorithms, as one of t’he man
objective function given a defined domainor a set of algorlthms of _me.taheunsncs, imitates the creature’s swarm
constraints, including a variety of different types of behavior on finding food or mating and are able to share

objective functions and different types of domains. If the obtained information between particles of the population.
quantity to be optimized is expressed using only one This paper applies Cat swarm optimization that imitates the
objective, the problem is then referred to as a single- behavior of cats in seeking and tracing mode. This paper

objective problem, while many real-world problems require proposes & multi-objective version of cat swarm
the simultaneous optimization of a number of objective optimization where an opposition-based learning method
functions which may be in conflict with one another; these ~ for population initidization is applied into agorithm to
problems are called multi-objective optimization problems increase the convergence speed. Also, in order to
(MOOP) whose main aim is to find a set of solutions. investigate the performance of the agorithm, simulations
There are many optimization algorithms for solving are done on ZDT test functions and analyzed based on
MOOPs. Some of these agorithms, such as classical multi-objective optimization performance measures. Also,
agorithms, can only find one point as the best solution due to the important role of multi-objective optimization in
while others, such as population-based evolutionary practical optimization problems of industrial engineering
algorithms, find a set of solutions and keep and store the such as allocation of customers to distribution centers

best one. Evolutionary algorithms are desirable to solve (Bagherinegjad & Dehghani, 2016), digital convergent
multi-objective optimization problems because they deal product network (Hassanzadeha, Mahdavib, & Mahdavi-
simultaneously with a set of possible solutions which Amiric, 2014), workflow task scheduling in utility grids

allows finding an entire set of optimal solutionsin asingle (Kahejvand, Hossein, & Zandieh, 2014), and flexible flow-
run of the algorithm, instead of having to perform a series shop scheduling problems (Naderi & Sadeghi, 2012), this
of separate runs as in the case of the classical algorithms. paper applies the proposed algorithm to solve multi-
Most of optimization algorithms are derived from meta- objective knapsack problem. _ _

heuristic concepts that are a higher-level procedure or The rest _of t.he arnqle.lsqrganlzed asfollows: in Seguon 2,
heuristic designed to find, generate, or select a heuristic that multi-objective optimization, Pure Cat swarm optimization,
may provide a sufficiently good solution for an and knapsack problem are introduced; in Section 3, the
optimization problem  (Rahmanian, Ghaderi, & proposed algorithm for solving multi-objective problemsis

expressed. In Section 4, simulation results for standard test
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functions based on four performance metrics are indicated.
Finally, aconclusion isdrawn in the last section.

2. Background Information

2.1. Multi-objective optimization

Let S € R™ and F < S denote n,-dimensional search
space and the feasible space, respectively. With no
congtraints, the feasible space is the same as the search
space. Let x = (x1,%y,...,Xx,,) € S, be referred to as a
decision vector. A single-objective function f,.(x) is

defined asfy: R™ - R. Let
fO) = (i), fa(x), o, frr(x)) € 0 € R™ Dbe an
objective vector containing ny objective function

evaluations; O is referred to as the objective space. The
search space, S, is also referred to as the decision space,
Figure (1) shows these two spaces. Equation (1) defines the
multi-objective optimization for minimization problem:

Minimize fx
Subjectto g, (x) <0 m=12,..,ng4 @
h,(x)=0 n=12,..,n,

x € [xmin: xmax]nx

Here, g,, and h, are respectively the inequality and
equality constraints, while x € [Xpin, Xmax] represents the
boundary constraints. Solutions x* to the multi-objective
optimization problem are in the feasible space, i.e,
dlx* € F. The meaning of an “optimum” has to be
redefined for MOO. In terms of MOO, the main problem is
the presence of conflicting objectives, where improvement
in one objective may cause deterioration in another
objective and the task is to find solutions that balance these
trade-offs. Such a balance is achieved when a solution
cannot improve any objective without degrading one or
more of the other objectives. These solutions are referred to
as non-dominated solutions. The objective, when solving a
MOOP, is to produce a set of good compromises, instead of
a single solution. This set of solutions is referred to as the
non-dominated set, or the Pareto-optimal set. The
corresponding objective vectors in objective space are
referred to as the Pareto front (Engelbrecht., (2002).).

2.1.1 Definitions

Domination: A decision vector, x;, dominates a decision
vector, X, (denoted by x; < Xy), if and only if x, is not
worse than x, in all objectives:

i.e., V k=1,..,n: filx) < fio(xp)
And, x, isstrictly better than x, in at least one objective:

i.e., 3 k=1,..,n: fi(x) < fi(xp)

Similarly, an objective vector, f;, dominates another
objective vector, f,, if 1 is not worse than f, in all objective
values, and f; is better than f, in at least one of the objective
values. Objective vector dominanceis denoted by f; < fo.
Solution x; is better than solution X, if X; < X, which
happenswhen f; < f,.
Pareto-optimal: A decision vector, x* € F, is Pareto-
optimal if there does not exist a decision vector,
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x # x* € r tha
Ak : fi(x) < fil(x")

Objective vector, f*(x), is Pareto-optimal if x is Pareto
optimal (Deb, 2002).

dominates it. That is,

"Decision Variable Space"

"Objective Function Space"

Fig. 1. Variable space and objective space
(Coéllo, et a, 2007)

Pareto-optimal set: The set of all Pareto-optimal decision
vectors form the Pareto-optimal set, P*, that is:

"={x" €EF|Ax €EF: 1< x"}
The Pareto-optimal set, therefore, contains the set of
solutions, or baanced trade-offs, for the MOP. The
corresponding objective vectors are referred to as the
Pareto-optimal front.

Pareto-optimal front: Given objective vector, f(x), and
Pareto-optimal solution set, P*, the Pareto-optimal
front PF* S Oisdefined asfollows:

Fr={f = (1), (f(x), ---.(fk_(x*)) | ¢ €P}
The Pareto front, therefore, contains all the objective
vectors corresponding to decision vectors that are not

dominated by any other decision vector (Engelbrecht.,
(2002).).

2.1.2 Classification of Multi-Objective Algorithms

(Déb, 2002) and (Codllo, et al, 2007) introduced two main
classifications of multi-objective optimization agorithms.
Deb categorized the multi-objective optimizers to classica
and evolutionary algorithms including elitist and non-€litist
multi-objective  evolutionary  agorithms.  Classical
algorithms, such as weighted sum method (Zadeh, 1963)
and goal programming (Charnes, 1997), can only find one
point as the best solution, while an evolutionary algorithm
is able to deal with population of points and keeps the best
solutions. Elitist algorithms apply €lite-preserving operator
to give opportunity to elites of population to be directly
carried over to the next generation, while non-elitist
algorithms do not.

The second classification is based on Coello study. Here,
MOO algorithms are categorized to aggregative functions,
population-based and Pareto-based. Algorithms in the first
category use the techniques of combination or summation
of objective functions to transform a MOP to a single-
objective problem. Weighted sum method is one the
common algorithm in this group. Population-based
algorithms, such as Vector Evaluated Genetic Algorithm
(Scheffer, 1985) without using domination concept in
selection process, apply an evolutionary agorithm to make
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offspring solutions. Pareto-based agorithms not only use
evolutionary process in making offspring, but also apply
domination concept to selection process. In this paper,
multi-objective algorithms are classified in three classes:
classical, evolutionary, and swam-based algorithms.
Classical Methods

Due to the structure of the classical methods, only one
Pareto-optimal solution can be expected to be found in one
simulation run. Although these agorithms are easy in
implementation, they require some problem knowledge
such as suitable weights. Weighted Sum Method (WSM) is
one of the easiest algorithms in this category. This
algorithm combines a set of objectives with a single
objective by pre-multiplying each objective with a user-
supplied weight. It is clear that weights are the
representative of the importance ratio of each objective. A
MOOP can be converted to a single optimization problem
asfollows:

Minimize F(x)= YM_ w,,fn(x)
Subjectto g;(x) 20 ji=12,...,] o)
he(x) = 0 k=12, ... K

xi(l) < X < Xi(u)
where wy, is the weight of the m-th objective function.
How to select the relative weight for each objective is the
most important issue in this method. Also, setting an
appropriate weight vector depends on the scaling of each
objective function and may take different orders of
magnitude. Therefore, it is mandatory to prepare normal
objectives.
Evolutionary Algorithms
Evolutionary agorithms mimic natural principles to
congtitute search and optimization procedures. Fitness
assignment, selection, and reproduction are three main parts
of these algorithms (Weise, 2009). Genetic algorithm is the
most interesting algorithm in optimization problems
(Goldberg, 1989). This agorithm uses crossover and
mutation operators to generate new population for next
iteration. Selection is an important part of an evolutionary
algorithm and can be done by many techniques such as
tournament, random or deterministic methods. Many
single-optimization algorithms are modified to be used in
multi-objective optimization problems, such as genetic
algorithm and differential evolution (Storn & Price, 1997).
Scheffer (1985) proposed the first multi-objective
algorithm based on genetic algorithm called ‘Vector
Evaluated Genetic Algorithm’. This agorithm divides the
population a every generation into M (number of
objectives) equal subpopulations randomly and each of the
M objective functions is used to evaluate some membersin
population.
Multi-objective genetic algorithm (MOGA) (Fleming &
Fonseca, 1993) assigns a rank to each individual based on
the number of individuals dominating it. This algorithm
uses a fitness sharing technique to distinguish between
solutions, and then fitness of the solutions in the same niche
will be reduced.
Elitist non-dominated sorting genetic algorithm (NSGA?2)
is one of the most powerful algorithms proposed by Deb
that uses a non-dominated sorting method for choosing
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points close to optimal solutions and applies the crowding
distance technique in order to achieve a uniform
distribution among the obtained Pareto front (Deb, 2002).
Swarm-based Algorithms

Swarm intelligence algorithms are inspired by swarm life
of creatures and simulate the behavior of animalsin finding
food and mating. These algorithms are based on population
and try to solve the problems by using cognitive and social
knowledge. Particles in swarm have a role the same as
individuals in population and not only act like them, but
aso are able to share information between together to
obtain knowledge. Particle swarm optimization (Kennedy &
Eberhart, 1995)- (Shi & Eberhart, 1998), ant colony
optimization (Dorigo & Gambardella, 1997)- (Chu &
Roddick, 2004), and bee colony optimization (karaboga,
2005) are the examples of swarm intelligence.
Multi-objective particle swarm optimization (Coello, 2004)
uses an external archive to store non-dominated solutions
and randomly selects a particle in a cell with fewer
members as a leader of other particles, and MOCSO
(Pradhan & Panda, 2012) was developed by using cat
swarm optimization agorithm where the Pareto ranking
scheme is incorporated and the non-dominated solutions
obtained by the cats are stored in the external archive.
These are the two samples of multi-objective optimizers.

2.2. Multi-objective knapsack problem

Suppose that we have a set of items whose vaues and
weights are known and a bag with a limited capacity. To
fill out the bag with the items in away that their total value
is the highest possible without exceeding the bag’ s capacity
is known as the knapsack problem.

In a single knapsack problem, there is a fitness function as
goa and a constraint to limit the solutions to the problem as
follows:

St:

Max 3)

WiX; =

where w,v,mx are weight, value, permitted vaue, and
selected value of the i-th item, respectively, and W is the
total acceptable weight. This problem isknown asasingle-
constrained problem and can be easily changed to a multi-
objective minimum problem by investigating the constraint
as a new function. So, the multi-objective knapsack
problem is defined as follows:

Z vi(m; —x;) ,

OSxiSmi

Min ©))
Zwixi
Or, it can be defined as follows:
Zvi(mi—xi), OSxiSmi
)

Min
X wix;
max | ——
w

- 1,0)

Many real-life problems can be formulated such as the
knapsack problem or one of its variants; for example,
loading problems, project selection problems, capital
budgeting problems, and cutting stock problems. Moreover,
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it can be found as a sub-problem in several models, such as
the partition and design of electronic circuits and the choice
of aflight crew. There are several approaches that can be
used to solve this kind of problems. These approaches are
classified as exact methods (Luila, 2008) and approximated
methods or meta-heuristics (Ghosh, 2004). The solutions
obtained by the exact methods are exact solutions, while
those obtained by the metaheuristics are approximate
solutions. Due to the lack of computational resources and
the problem sizes, the exact methods have limited
application, i.e., they become ineffective, in particular in
instances of great dimension. While heuristic methods,
though they do not provide exact solutions, have been used
as reliable alternatives, they have proven themselves as
being efficient when dealing with big-sized instances, since
they achieve “good” approximate solutions while using
reasonable computational resources; that is what would be
practically impossible to achieve through the exact
methods.

2.3. Pure cat swarm optimization

Cat swarm optimization (CSO) is an optimization algorithm
in the field of swarm intelligence. The CSO agorithm
models the behavior of cats into two modes: ‘Seeking
mode’ and ‘Tracing mode'. Swarm is made of initia
population composed of particles to search in the solution
space. For example, we can simulate birds, ants, and bees
and create Particle swarm optimization, Ant colony
optimization, and Bee colony optimization, respectively.
Here, in CSO, we use cats as particles for solving the
problems (Chu, et al, 2006). In CSO, every cat has its own
position composed of D dimensions, velocities for each
dimension, a fitness vaue, which represents the
accommodation of the cat to the fitness function, and aflag
to identify whether the cat is in seeking mode or tracing
mode. The final solution would be the best position of one
of the cats. The CSO keeps the best solution until it reaches
the end of the iterations (Santosa & Ningrum, 2009).
Although CSO is introduced for solving single
optimization, but recently is used in many applications such
as clustering (Yongguo et a., 2012) and system
identification (Orouskhani et al., 2013)-(Pandaet a., 2011).
Cat swarm optimization algorithm has two modes in order
to solve the problems described below.

2.3.1. Seeking mode

For modeling the behavior of cats in resting time and being
alert, we use the seeking mode. This mode is a time for
thinking and deciding about next move. This mode has four
main parameters which are mentioned as follows: seeking
memory pool (SMP), seeking range of the selected
dimension (SRD), counts of dimension to change (CDC),
and self-position consideration (SPC). The process of
seeking mode is described as follows:

Stepl: Make j copies of the present position of caty, where
j = SMP. If the value of SPC is true, let j = (SMP-1), then
retain the present position as one of the candidates.

110

Step2: For each copy, according to CDC, randomly plus or
minus SRD percent the present values and replace the old
ones.

Step3: Calculate fitness values (FS) of all candidate points.

Stepd:  If all FS are not exactly equal, calculate the
selecting probability of each candidate point by equation
(6); otherwise, set al the selecting probabilities of each
candidate pointto ‘1.

Step5: Randomly pick a point to move to from the
candidate points and replace the position of cat k.

_ |FS; = FSy|

e ©)
' l:Smax - l::Smin

If the goal of the fitness function is to find the minimum
solution, FS, = FSy.; otherwise, FS, = FSqin.

2.3.2. Tracing Mode

Tracing mode is the second mode of algorithm. In this
mode, cats desire to trace targets and foods. The process of
tracing mode can be described as follows:

Stepl: Update the velocities for every dimension according
to equation (7).

Step2: Check if the velocities are in the range of maximum
velocity. In case the new velocity is over-range, it is set
equal to the limit.

)

Vicd = Vika + 161 (Xpesta — Xka)

Step 3: Update the position of caty according to Eq (8).

Xkd = Xkd + Vika ®
Xka is the position of caty , Xpesq IS the position of the cat,
who has the best fithess value, c; is an acceleration
coefficient for extending the velocity of the cat to move in
the solution space and is usualy equal to 2.05, and r; is a
random value uniformly generated in the range of [0,1].

2.3.3. Core Description of CSO

In order to combine the two modes into the algorithm, a
mixture ratio (MR) is defined. This parameter decides how
many cats will move into seeking and tracing. CSO is
summarized below: (Orouskhani et al., 2011).

First, ‘N’ cats are created, and then positions, velocities,
and flags of each cat should be initialized. (*) Fitness value
of each cat will be evaluated according to the fithess
function, and the best cat is stored into memory. In the next
step, according to cat’'s flag, each cat will move to the
seeking mode or tracing mode processes. After finishing
the related process, re-pick the number of cats and set them
into seeking mode or tracing mode according to MR
parameter. At the end, check the termination condition; if
satisfied, terminate the program, and otherwise go to (*).

3.EMCSO: The Proposed Algorithm

Although there exists a multi-objective CSO, but no
strategy is used for diversity issue that makes the algorithm
unable to distinguish between solutions with the same rank
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and diversity among them to be ignored. Also, this
algorithm did not apply to standard test functions while
using standard benchmarks to compare different algorithms
is obligatory. In order to solve MOOPs and find the Pareto
optimal front, pure CSO needs some changes on seeking
and tracing modes to satisfy the quality and diversity of
solutions. Moreover, opposition-based learning method is
applied to algorithm to speed up the convergence rate.

Changes on Seeking Mode

First, according to values of SRD, CDC, and SMP,
positions of al cats in this mode are updated. In this mode,
cats have two additional parameters: rank and crowding
distance. Rank is the number of loss in competition process
and crowding distance is used to demonstrate the density.
So, a competition based on domination is performed among
the cats; for each cat, the number of cats dominating it is
assigned as rank. Then, cats are sorted: less rank, higher
priority. Calculating the crowding distance metric for each
cat is the second important task in this mode. Higher
crowding distance value indicates that cat may be located in
less density. Crowding distance calculation is shown in
figure (2). For example, for an optimization problem with
two objectives, the value of crowding distance for cat; is
calculated asfollows:

i+1 i—1 i+1 i-1
d 1 _ |f1l _f1l | 2 _ |le _le |
i = flmax_flmin ’ i - fzmax_fzmin

©)

Cr wding distan :e for cat; = di* + d°

Fig. 2. The crowding distance calculation (Deb, 2002)

The last step in this mode is to select the best cats. Here,
algorithm sorts the solutions (consisting of parents and
offspring: cats and their copies) based on non-dominated
solutions (solutions with less rank) and higher crowding
distance. It is necessary to indicate that the main selection
operator is rank of each cat, and crowding distance is the
second criterion and should be applied for cats with the
same rank.
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Changes on Tracing Mode

Here, cats try to move towards food to find it. So, this mode
is called moving mode, and due to using the position of the
best cat in velocity equation, the most important issue is
how to select the leader (the best cat). In this algorithm, ten
percent of the best cats are stored in an external archive and
the leader of al catsisrandomly selected from the archive.

e  Elitism in algorithm

Some of the multi-objective optimization algorithms use an
elite-preserving operator to favor the elites of a population
by giving them an opportunity to be directly carried over to
the next generation. Here, EMCSO adlows the elites of
population (ten percent of population size) in each epoch to
participate and compete in selection process to generate the
next popul ation.

Using opposition-based learning (OBL)

Generally speaking, cat swarm optimization starts with
initial population and tries to improve them towards some
optimal solutions. In the absence of a priori information
about the solutions, random guesses are usually used. The
computation time, among others, is related to the distance
of these initial guesses from the optimal solution. We can
improve our chance of starting with a closer (fitter) solution
by simultaneously checking the opposite solution. By doing
this, guess or opposite guess can be chosen as an initial
solution.

Definitions:

Opposite Number: Let x € [a,b] be a real number. The
opposite number X is defined as follows.

X=a+b—x

Opposite Point: Let P = (x4, x5, ..., xp) be a point in a D-
dimensional space, wherel xy,x,,..,xp ER,andx; €
[ai,bi] Vi € {1,2, ,D}

Opposite point P = (¥,, %, ..., X,) is completely defined
by its components: X; = a; + b; — x;.

Now, by employing the opposite point definition, the
opposition-based optimization can be defined as follows.

Opposition-Based Optimization: Let P = (x4, x5, ..., Xp) be
apoint in D-dimensional space. Assumethat ‘F' isafitness
function which is used to measure the candidate’s fitness.
According to the definition of the opposite point, P =
(%4, %y, ..., Xp) is the opposite of P = (x4, x5, ..., Xp). Now,
if F(P) > F(P), then point P can be replaced with P ;
otherwise, we continue with P. Hence, the point and its
opposite point are evaluated simultaneously in order to
continue with the fitter one. So, OBL is applied in
population initialization section of the proposed algorithm
to enhance the speed of the convergence. Figure (3) shows
the flowchart of the proposed agorithm.
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Initialize the Population
and evaluate all cats
using opposition-based
learming

l

Sort based-on non-
dominated solutions and

crowding distance and
select the number of
nPoP

i

Distribute the cats in -
r Seeking and Tracing mode l

T E—

Select randomly a leader
cat from elites of
population and update

Update cats in seeking
mizde and find non-
dominated salutions and

positions and welicities in calculate the crowding
tracing mode distance
Combine the cats in Sort based-an non-
tracing, seeking mode dominated solutions and
and 10 percent of the

elites of previous
population in an archive

Find non-dominated

solutions and calculate
crowding distance

Sort and select nPoP as
approximated POF

e orowding distance and
select the the number of
seeking cats

Do until maximum iteration

Fig. 3. Flowchart of EMCSO
4 . Experiments and Simulation Results

This section investigates the benchmarks, performance
measures, and simulations of the ZDT functions.

4.1 .Multi-objective optimization problems

4.1.1. Benchmarks

‘DT1: This problem has a convex Pareto-optimal front
wheren=30andx; € [0,1]. Thetrue POFisf, =1—./f
and is shown in Figure 4. (Deb, 2002)

i) = x,
falx,g) = g(x) x (1 - g{b) (10)
g(x)=1+n_1x X

i=2

ZDT2: This problem has a non-convex Pareto-optimal front
where n = 30 andx; € [0,1]. The true POF isf, =1 —
f,%and is shown in Figure 5. (Deb, 2002)

fi(x) = x

_ A (11)
Fe.9) = 9 % (1~ (5s)?)

ZDT3: This function has a Pareto-optimal front
disconnected consisting of several noncontiguous convex
parts where n = 30 and x; € [0,1]. The true POF is

fo =1—./f — fi xsin( Onf;) and is shown in Figure 6.
(Deb, 2002)
filx) = x

_ _ fi . fi . 12
folx,g) = g(x) x <1 ORI x sm(107rf1)> (12)

gl)y=1+ ? Xin

n—1
L

ZDT4: This problem contains 21° local Pareto-optimal
fronts where n = 10, x; € [0,1], and x5, .., x,, € [-5,5].
The true POF is f, = 1 —/f; and is shown in Figure 7.
(Deb, 2002)

filx) = x%

(13)
Fa(x.9) = () X (1 - g&)

9O =1+10x (=1 + ) x2 = 10 X cos(4rf,)

i=2
ZDT6: This function causes two difficulties for agorithms
due to the non-uniformity of the search space: (i) the
solutions are non-uniformly distributed aong the global
POF; (ii) the solutions are the least dense close to the POF
and most dense away from the POF, where n = 10 and
x; € [0,1]. The true POF is f, = 1 — f;* and is shown in
Figure 8. (Deb, 2002)

fi(x) = 1 — exp(—4x;) X sin®(6mx,)

_ fi
fa(x,9) = g(x) X (1n— ) (14)
gx)=1+9x [7(21':92 Xi)]o'zs
1 =
1) iF3 i ﬂ: LT ] i

Fig. 4. The true POF of ZDT1 (Coello et a, 2007)

e 08 f
gu.t-
az b
a8
1 L 't L 't 'l
L1 oz o on L] 0
Funciion 1

Fig. 5. The true POF of ZDT2 (Coello et al, 2007)
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Fig. 6. The true POF of ZDT3 (Coello et al, 2007)

4.1.2. Performance measure

There are many performance metrics to quantify the
performance of optimization agorithms in MOOPs. The
main aim of a Multi-objective agorithm is to find the
Pareto front closed to true Pareto front. There are two types
of performance metrics: metrics evaluating closeness to the
Pareto-optimal  front and metrics evauating diversity
among non-dominated solutions. The first metric computes
a measure of the closeness of set Q of N solutions from a
known set of the Pareto-optimal set P*; the second metric
finds the diversity among the obtained non-dominated
solutions. This paper uses generational distance and
inverted GD to evaluate the performance of the algorithm
for closeness and spacing and spread to measure the
diversity of solutions along the obtained Pareto front.

10 -

Funetion

LENS

03 e

ol -

[ L] o8 =" 18
Funalion 1

Fig. 7. The true POF of ZDT4 (Coello et a, 2007)

18
T8
T8
L
§M-
azl

ok

02 03 o4 05 08 OF o aF 18 14
Funedian 1

Fig. 8. The true POF of ZDT6 (Coello et d, 2007)
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Generational distance (GD): This measure finds an
average distance of the solutions of Q from P as follows:
(Veldhuizen, 1999)

2 apyy/p
el

For p=2, parameter d; is the Euclidean distance between

solutionsi in Q and the nearest member of P'.

Inverted GD (IGD): This measure is inverted of GD and
finds an average distance P* from solutions of Q as follows:
(Veldhuizen, 1999)

@2 ay/P
el
where d; is the Euclidean distance between the non-
dominated individual of Q and the nearest individual of P

Spacing: This metric is used to measure the distribution of
the obtained Pareto optimal front. If the value is zero, the
obtained Pareto optimal front is uniform distribution in the
object space. Spacing of the POF is calculated as follows:
(Schott, 1995)

Spacing =

GD = (15)

IGD = (16)

1
lel-1

Yol @—-dp?

where d is the average value of di, and K is the number of
object function.

Spread: This measures the diversity of solutions in
obtained POF and can be obtained as follows: (Deb, 2002)

(17)

k
d; = min{z |fin(a) = fin(a;)
a;, a; Eng,l i,j=12,..,10Q|

= dm®+ legll |d;i—d|
o1 dm®+lld

A= (18)
where d; can be any distance measure between neighboring
solutions, and < is the mean value of these distance
measures. Parameter d,° is the distance between the
extreme solutions of P and Q corresponding to m-th
objective function. Distances for calculating the spread
metric is showed in figure (9).

Extreme
salution .

£

. Extrema
8% _colutien

£

Fig. 9. Distances from the extreme solutions (Deb, 2002)

4.1.3. Simulation results

Simulation results of the proposed agorithm on ZDT
functions and compared with traditional methods based on
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measures of generational distance, inverted generationa
distance, spread, and spacing are indicated in Tables 1-4,
respectively. It is notable that the best value in each
benchmark is indicated in bold. Table 1 shows the results
based on GD measure, and indicates that the proposed
algorithm has the value of 0.00087 and 0.00035 for
functions of ZDT1 and ZDT2 and gets the best
performance for these two benchmarks while its rank for
ZDT3-5isforth, third, and second, respectively. Simulation
results based on measure of IGD are indicated in Table 2
where the proposed method gets the best performance for
ZDT1 and ZDT2 again. Results of calculating the diversity
of the algorithms are shown in Tables 3 and 4. These tables
indicates that the proposed algorithm does not have a good
performance for measure of spread, while it achieves the
best performance based on spacing metric for all functions
with regard to other algorithms. Also, approximated POFs
of ZDT functions by the proposed algorithm are shown in
Figure 11. It is remarkable that the results shown in Tables
1-4 are obtained from (Hu & Yen, 2013)- (Ali et al., 2012)-
(Abdi et a., 2012)- (Abbasian & Nezamabadipour, 2012).
Moreover, in order to compare the proposed multi-
objective CSO with former MOCSO, a comparison is done
based on three performance metrics for a test function
which is introduced in (Xue & Sanderson, 2003), and the
results are indicated in Table 5. Obtained results show that
the proposed algorithm has the best performance for the
measures of GD and Spacing.

4.2 . Multi-objective knapsack simulation

In this section, the proposed algorithm is applied to solve
the multi-objective  knapsack problem. Here, the
characteristics of the knapsack are as follows: it has 10
itemsbetween [0,20],10 < w < 20, W4, = 1800, 20 <v <
00, and 10 < m < 20.

Figure 10 shows the POF of multi-objective knapsack
problem when the goal is to maximize the selected value,
while the weight is needed to minimize. It shows that for
the maximum acceptable weight (1800), the maximum
selected value is 4521, while the maximum value (10000)
is selected when the weight reaches 6013.

)
=]
=]
=]

minimize the Weight
5
[=)
Q

-

2000

4000

0 6000 8000
Maximize the Value

Fig. 10. Simulation of multi-objective knapsack problem:
Maximum value VS Minimum weight

10000 12000

E?)?Lf);rison between the proposed algorithm and traditional methods by measure of GD (1% row: Mean, second row: Std
Functions NSGA2 SPEA PAES | MODE ADEA DEMO | MDEA MOBBO/DE EMCSO
0.0334 0.0017 | 0.0820 0.0058 0.0027 0.0011 0.0009 0.0021 0.00084
bt 0.0047 1E-6 0.0086 0 0.0003 0.0001 5E-6 0.0001 5.23E-9
0.0723 0.0013 | 0.1262 | 0.0055 0.0022 0.0007 | 0.0006 0.00083 0.00055
“bT2 0.0316 0 0.0368 0 0.0002 0.0000 0 0.00005 2.36E-9
0.1145 0.0475 | 0.0238 0.0215 0.0027 0.0012 0.0011 0.0105 0.00282
“bTs 0.0049 42E5 | 47E5 1E-5 0 0.0001 | 9.1E5 0.0015 111E-7
0.5130 7.3402 | 0.8548 0.6389 0.1001 0.0410 0.0489 0.3653 0.22977
ZpTa 0.1184 6.5725 | 0.5272 0.5002 0.4462 0.0639 0.5363 0.2566 0.09601
0.2965 0.2211 | 0.0854 | 0.0262 0.0006 0.0006 0.0004 0.0034 0.00059
“DTe 0.0131 0.0004 | 0.0066 | 0.0008 6E-5 2E-5 5.5E-5 0.0022 3.64E-9
Table 2
Comparison between the proposed algorithm and traditional methods by measure of IGD (1% row: Mean, second row: Std)
. pPA Ag Cd Cluster Pd
Functions NSGA2 | SPEA2 | MOED/D EMCSO
MPSO MPSO MPSO MPSO MPSO
4.013E-3 | 1.18E-1 | 4.24E-3 | 1.25E-2 | 557E-1 | 5.05E-1 | 4.14E-3 | 4.03E-3 8.17E-4
ZbTt 6.28E-5 | 8.03E-2 | 258E-4 | 1.78E-3 | 1.95E-1 | 7.36E-2 | 1.77E-8 | 5.58E-5 3.11E-10
4.09E0-3 | 1.07E-2 | 428E-3 | 1.78E-2 | 6.87E-2 | 7.57E-1 | 410E-3 | 3.84E-3 1.88E-3
Zb12 481E-5 | 7.47E-3 | 1.13E-4 | 5.09E-3 | 4.38E-2 | 143E-1 | 2.65E-8 | 4.34E-5 1.21E-8
3.323E-3 | 3.60E-1 | 3.06E-3 | 1.04E-1 | 3.05E-1 | 357E-1 | 3.16E-3 | 8.42E-3 2.49E-2
ZbT3 9.95E-5 | 9.84E-2 | 7.13E-5 | 7.05E-2 | 1.003E-1 | 3.95E-2 0 7.01E-3 6.77E-8
7.97E-3 5.79 591 3.98 4.03 252E+1 | 249E+1 | 4.86E-3 0.21451
ZbT4 1.470E-3 2.98 451 261 1.65 7.214 7.25E-5 | 8.41E-4 0.0650
3.406E03 | 4.68E-1 | 2.98E-3 | 4.39E-1 2.46 1.65 5.32E-3 | 3.99E-3 9.55E-3
ZbTé 2.287E-4 | 7.67E-1 | 1.54E-4 | 2.36E-2 | 8.16E-1 | 9.80E-1 | 2.65E-8 | 6.01E-5 6.70E-10
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Tabgjﬁwparison between the proposed algorithm and traditional methods by measure of Spread (1% row: Mean, second row: Std)
Functions | NSGA2 SPEA PAES PDEA ADEA MDEA MODEA MOBBO/DE | EMCSO
0.3903 0.7845 | 1.2297 0.2985 0.3828 0.2837 0.3332 0.58541 0.6142
bt 0.0018 | 0.0044 | 0.0007 0.0007 0.0014 | 0.0029 0.0009 0.0401 0.0008
0.4307 | 0.7551 | 1.1659 0.3179 0.3457 | 0.4504 0.3219 0.57439 0.6063
zbT2 0.0047 | 0.0045 | 0.0076 0.0013 0.0039 | 0.0042 0.0004 0.0686 0.0021
0.7385 | 0.6729 | 0.7899 0.6238 0.5257 | 0.2993 0.7303 0.75083 0.5631
“bT3 0.0197 | 0.0035 | 0.0016 | 0.0002 0.0430 | 0.0233 0.0000 0.0551 0.00008
0.7026 | 0.7984 | 0.8704 0.84085 0.43630 | 0.40638 0.37268 0.68631 0.6085
zbT4 0.0646 | 0.0146 | 0.1013 0.0357 0.1100 | 0.0623 0.0034 0.0563 0.0384
0.66802 | 0.84938 | 1.1530 0.47307 0.36110 | 0.30524 0.30259 0.75057 0.5500
ZbTe 0.0099 | 0.0027 | 0.0039 0.0217 0.0361 | 0.0194 0.00007 0.1083 0.0010
Table4
Comparison between the proposed algorithm and traditional methods by measure of Spacing (1% row: Mean)
Functions SPEA2 NSGA2 TVMOPSO | MOGSA NF-MOGSA EMCSO
ZDT1 0.0156 0.0007 0.0041 0.0076 0.0005 0.000115
ZDT2 0.0167 0.0001 0.0026 0.0033 0.0007 0.000100
ZDT3 0.0059 0.0002 0.0094 0.0136 0.0015 0.000129
ZDT6 0.0132 0.0003 0.0023 0.0081 0.0007 0.0000994
Table5
Comparison of the proposed algorithm with traditional methods and former MOCSO for test function (1¥ row: Mean)
Measure NSGA2 MOPSO MOCSO EMCSO
GD 0.0265 0.001 0.0007692 0.00072284
Spacing 0.009 0.0089 0.009 0.00011664
Spread 0.6594 0.72 0.6077 0.6495

* Algorithms indicated in Tables 1-5 are referred as: NSGA2 (Deb et al, 2002), SPEA (Zitzler, 1999), PAES (Knowles & Corne, 1999), MOBBO/DE (Abdi
et a, 2012), DEMO (Robic & Filipi, 2005), TVMOPSO (Tripathi et a, 2007), MOGSA (Hassanzadeh, 2010), NF-MOGSA (Abbasian & Nezamabadipour,
2012), MODE (Xue & Sanderson, 2003), ADEA (Qian & Li, 2008), MDEA (Ali et a, 2009), PAMPSO, AgMPSO, CdMPSO, ClusterMPSO, PAMPSO (Hu
& Yen, 2013), SPEA2 (Zitzler et al, 2001), MOED/D (Zhang & Li, 2007), PDEA (Madavan, 2003), MODEA (Ali et al, 2012), MOPSO (Coello, 2004)
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Fig. 11. Obtained POF by the proposed algorithm. a: ZDT1, b: ZDT2, ¢:ZDT3, d:ZDT4, eZDT6
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5. Conclusion

This paper proposes a novel multi-objective optimization
algorithm. The proposed algorithm uses cat swarm for
making offspring solutions and applies the non-dominated
sorting method and crowding distance technique to satisfy
closeness to the true Pareto front and diversity of the
solutions. Also, an elite-preserving operator is incorporated
to keep the elites of population to participate in the next
generation and an opposition search-based technique is
applied to increase the rate of the convergence. The
simulation is done on ZDT test functions and analyzed
based on closeness and diversity-based performance
measures. Moreover, the proposed method is applied to
solve a multi-objective knapsack problem. Simulation
results show that the proposed algorithm in comparison
with traditional methods has better performance for
functions of ZDT1 and ZDT2. Adapting the parameters of
the proposed method in order to move from exploration to
exploitation, global to local, and using the obtained
knowledge of particles by expert systems, such as fuzzy
approaches, can be investigated in future studies.
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