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Abstract  

This study focuses on one of the crucial issues in today’s world named the agricultural waste 

management by considering the sustainability and resilience features. In this regard, this research 

proposes a hybrid data-driven decision framework by combining the multiple-attribute decision-

making and machine learning methods. In this way, first of all, the major indicators of the considered 

problem are specified and their weights are calculated using a recently developed method called the 

stochastic Best-Worst Method (BWM). In the next stage, the potential locations for establishing the 

collection centers and recycling centers are evaluated using a machine learning approach. Overall, 

this research has contributed to the literature by addressing the sustainable-resilient agricultural 

waste management problem using a data-driven model. The results show that land cost, impact on 

ecological landscape, pollution prevention and control, and capacity expansion capability are the 

most significant indicators for the research problem. Also, the achieved outputs confirm the 

effectiveness and robustness of the developed data-driven decision framework. The developed model 

is based on a hybrid method combining Data Envelopment Analysis (DEA) and the Gradient 

Boosting algorithm, achieving 98% accuracy in evaluating potential locations.  
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1. Introduction 

Waste management in the agricultural industry is crucial for 

promoting sustainability and protecting the environment 

(Rezaei Zeynali and Tajally, 2024; Waqas et al., 2023). As 

agricultural production increases to meet the demands of a 

growing population, the volume of waste generated, such as 

crop residues, packaging materials, and livestock manure, 

also rises significantly. Effective waste management 

practices help minimize pollution, conserve natural 

resources, and reduce greenhouse gas emissions. By 

recycling and repurposing agricultural waste through 

methods like composting and anaerobic digestion, farmers 

can not only enhance soil health and fertility but also generate 

renewable energy and valuable by-products (Phiri et al., 

2024; Tavakoli et al., 2023). Furthermore, proper waste 

management contributes to economic efficiency by lowering 

disposal costs and creating new revenue streams, ultimately 

fostering a more resilient and sustainable agricultural sector. 

     Sustainability refers to the ability to meet present needs 

without compromising the ability of future generations to 

meet their own needs, encompassing environmental, 

economic, and social dimensions (Vaezi et al., 2024). In the 

context of agricultural waste management, sustainability is 

vital as it encourages practices that minimize waste 

generation, enhance resource efficiency, and promote 

ecological balance. Effective management of agricultural 

waste not only reduces pollution and greenhouse gas 

emissions but also conserves natural resources by recycling 

organic materials back into the ecosystem (Koul et al., 2022; 

Tajally et al., 2025). By adopting sustainable waste 

management practices, farmers can improve soil health 

through composting, reduce reliance on chemical fertilizers, 

and create renewable energy through biogas production. 

Ultimately, prioritizing sustainability in agricultural waste 

management leads to a healthier environment, increased 

productivity, and long-term viability of agricultural systems, 

benefiting both current and future generations. Moreover, 

one of the important concepts that has attracted the attention 

of managers after the COVID-19 pandemic is resilience 

which aims to enhance the ability of a system to deal with 

disruptions (Javan-Molaei et al., 2024; Namdar et al., 2021). 

The resilience concept in agricultural waste management 

refers to the ability of agricultural systems to withstand, adapt 

to, and recover from disturbances, such as environmental 

changes, market fluctuations, or extreme weather events. 

Additionally, resilience fosters innovation and adaptability, 

enabling farmers to respond to challenges and seize 

opportunities for resource recovery and circular economy 

initiatives (Sawicka, 2020; Shekhawat et al., 2019).  

According to the crucial role of the explained points, the 

current article attempts to evaluate the major indicators to 

select the best locations for establishing the collection centers 

and recycling centers for the waste management network 

based on the sustainability and resilience features for the 

agricultural sector. To this end, first of all, the major 

indicators are identified according the experts and literature. 

Then, the importance (weights) of the determined indicators 

is measured using the stochastic BWM. In the next step, using 

a machine learning method, the potential points to establish 

the collection and recycling centers are ranked based on the 

considered indicators. The main objectives of this work are 

as follows: (i) incorporating the sustainability and resilience 

dimensions into the agricultural waste management problem 

and (ii) developing an effective machine learning-based 

decision framework for the evaluation of the potential 

locations to establish the collection and recycling centers. 

Moreover, the current article contributes to the existing 

literature by developing a data-driven model to investigate 

the resilient and sustainable agricultural waste management 

problem under uncertainty. 

     In the rest of this work, Section 2 presents the literature 

review. Section 3 presents the case study and methodology. 

Section 4 presents the numerical results. Finally, Section 5 

provides the conclusions. 

2. Literature Review 

Various studies have focused on the issue of selecting 

optimal locations for specific facilities, often employing 

intuitive approaches and targeting specific domains such as 

energy and public stations. For example, Ozdemir and Sahin, 

(2018) developed a framework for selecting the optimal 

location for a solar power plant using multi-criteria decision-

making methods. Their goal was to evaluate three potential 

locations based on various qualitative and quantitative 

criteria. In this study, daily and monthly solar radiation were 

identified as the most important evaluation criteria and 

weighted using the AHP method. The potential locations 

were then assessed based on these criteria. Shayani Mehr et 

al., (2022) proposed a comprehensive framework for 

selecting solar panel technologies. They evaluated potential 

sites using a combined BWM-MULTIMOOSRAL approach. 

In this study, 20 evaluation criteria were identified and 

categorized into electrical, technical, economic, climatic, and 

mechanical sustainability. Similarly, Ghodusinejad et al., 

(2022) focused on selecting the optimal location and size for 

solar EV charging stations. These stations were designed to 

charge electric vehicles, and the study employed a combined 

GIS-AHP method to evaluate the locations. An optimization 

model was then proposed to solve the multi-objective 

problem. The results of this study indicated that the proposed 

model could identify suitable locations for EV charging 

stations that meet the demand for electric vehicle charging 

within a specified access distance. Alkan and Kahraman, 

(2022) introduced an advanced method for selecting hospital 

locations during pandemics, which was developed based on 

the TOPSIS method. They utilized Circular Intuitionistic 

Fuzzy Sets (CIFS) in combination with the TOPSIS approach 

to solve this problem. Key criteria considered in this study 

included the population volume in target areas, ease of access 

to transportation routes, and availability of suitable vacant 

land. Using the CIF-TOPSIS technique, their proposed 

method successfully identified optimal locations while 

considering various demand scenarios. 

Additionally, Kaya et al., (2022) addressed the issue of 

selecting locations for shared electric vehicle stations from a 

sustainability perspective. In this study, a multi-criteria 

approach based on GIS data was proposed. In the first step, 

decision-making indicators were weighted using the Fuzzy 

Analytic Hierarchy Process (FAHP), and the required data 

were then extracted from GIS maps. In the final stage, the 

potential options were evaluated using the ELECTRE 
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method. This approach was fully implemented in Istanbul, 

and the results demonstrated its high efficiency in identifying 

optimal locations for electric vehicle charging stations. In 

another study, Zhang and Wei, (2023) proposed a hybrid 

method for selecting locations for electric vehicle charging 

stations. In this study, four evaluation criteria were 

considered, including the distance to high-traffic centers, the 

distance to main roads, the distance to the city center, and the 

distance to the outskirts. These criteria were analyzed using 

Spherical Fuzzy Sets (SFSs), and then weighted and 

prioritized using a hybrid decision-making approach 

(Combined Compromise Solution-CoCoSo). Sensitivity 

analysis and comparisons with existing methods revealed that 

the SF-CPT-CoCoSo model offers high accuracy and 

efficiency and can effectively be used for identifying optimal 

locations. Razeghi et al., (2023) presented a multi-criteria 

approach for selecting suitable locations for solar energy in 

Iran. The main evaluation criteria in this study included 

installation costs, distance to urban centers, and 

environmental impacts. These criteria were weighted using 

the AHP method, and locations were evaluated using the 

VIKOR method. In this study, a wide range of data, including 

climatic conditions, distance to sensitive points, and annual 

traffic volumes, were examined. By utilizing this data and 

analyzing their values over different time intervals, machine 

learning algorithms can be employed to evaluate locations 

and develop a model capable of analyzing various sites at any 

given time. The data-driven hybrid model discussed in this 

article can serve as a foundation for diverse case studies.  

This topic has attracted attention over the years. 

Krishankumar and Ecer, (2024) developed a multi-criteria 

framework for selecting locations for electric vehicle 

charging stations. In this study, criteria such as serviceability, 

environmental impacts, land cost, and traffic density were 

identified as the most important factors in selecting optimal 

locations. They introduced a multi-stage hierarchical method 

that provides high accuracy and efficiency. Similarly, Liang 

et al., (2024) evaluated and selected an internal terminal 

location using the fuzzy multi-stakeholder best-worst 

method. In this study, market volume potential was identified 

as the most critical evaluation criterion. Their method utilized 

the opinions of various groups to identify optimal points. 

However, the methods employed in these two studies rely on 

expert intuitive and comparative approaches, making it 

impossible to develop a model that can independently 

evaluate a location at any moment. Li et al., (2024) proposed 

a three-stage framework for selecting the optimal locations 

for large-scale solar farms. They used a combined DBSCAN 

clustering method and cost-benefit analysis to identify 

efficient and cost-effective land parcels. Their findings 

suggest that the developed model is highly suitable for use by 

organizations and governments. In another study, Alavi et al., 

(2024) developed a model for selecting the optimal location 

for hybrid wind systems. They employed the ELECTRE 

method, and their findings indicate that the Asadabad 

Nahbandan region is the best location for these systems, with 

the startup cost of this hybrid system estimated to be nearly 

half of the actual expense. Additionally, Di Grazia and Tina, 

(2024) proposed a framework for selecting optimal sites for 

floating photovoltaic systems. Their approach was based on 

a combined GIS-AHP-TOPSIS method. In this study, four 

main criteria were chosen for site evaluation, with cost and 

regional energy output identified as the most important 

indicators. 

Additionally, Lee and Jeong, (2025) investigated the facility 

location problem for senior centers in the context of super-

aging societies. They developed an optimization model using 

a genetic algorithm to minimize travel distances for older 

adults while considering mobility limitations and the existing 

distribution of senior centers. Using open data from Seoul, 

including floating population and geographic information, 

the study demonstrated that adding 15 new centers reduced 

average travel distances by 24%, thereby enhancing 

accessibility and quality of life for older adults. Legault and 

Frejinger, (2025) proposed a model-free simulation-based 

approach for solving choice-based competitive facility 

location problems. By reformulating the stochastic 

optimization problem into a deterministic maximum 

covering model and applying submodular cuts through a 

partial Benders decomposition, their method effectively 

balanced computational efficiency and accuracy, 

outperforming existing heuristics in large-scale instances. 

Lyu et al., (2025) integrated Material Flow Analysis (MFA) 

with Geographic Information Systems (GIS) to estimate 

construction and demolition (C&D) waste generation and 

assess suitable disposal facility locations. Using real-estate 

and building data at a fine spatial scale in Beijing, the study 

revealed that only 3% of land is suitable for new facilities, 

yet these locations can significantly improve source 

separation and sustainable waste management. Li et al., 

(2025) developed a two-stage robust optimization model for 

emergency service facility location–allocation under demand 

uncertainty, incorporating sustainability considerations. The 

model minimized both preparedness and response costs while 

accounting for deprivation and environmental impacts, and 

was validated using the COVID-19 case in Wuhan. The 

results underscored the value of robust planning in enhancing 

resilience and sustainability in emergency service networks. 

Table 1 provides a summary of the literature review 

conducted on the evaluation and selection of optimal facility 

locations. 

 As shown in the literature, in spite of publishing a 

considerable number of papers in the field of the waste 

management problem in the agriculture industry, there are 

still some significant gaps. For instance, the application of the 

data-driven methods to evaluate the potential locations for 

establishing the facilities of the waste management network 

has been rarely addressed by previous works. Moreover, the 

simultaneous consideration of the sustainability and 

resilience in assessing the potential locations for opening 

collection centers and recycling centers for the agricultural 

waste management problem. Hence, to bridge these gaps, the 

current article has developed an efficient hybrid data-driven 

decision framework to select the best location for the 

agricultural waste management network facilities based on 

resilience and sustainability dimensions. Indeed, this is the 

first application of the combination weighted DEA, 

stochastic BWM, and Gradient Boosting in the waste 

management problem
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Table 1 

 Literature review summary 

Study 
Evaluation criteria 

Methodology Case study 
Sustainability Resilience 

Ozdemir and Sahin, 

(2018) 
×  AHP Solar Power Plant 

Shayani Mehr et al., 

(2022) 
  BWM-MULTIMOOSRAL Solar Panel Technology 

Ghodusinejad et al., 

(2022) 
×  GIS-AHP 

Solar Vehicle Charging 

Station 

Alkan and 

Kahraman, (2022) 
×  CIF-TOPSIS 

Hospital Location 

Selection 

Kaya et al., (2022) ×  GIS – FAHP – ELECTRE 
Electric Vehicle Charging 

Station 

Zhang and Wei, 

(2023) 
 × SF-CPT-CoCoSo 

Electric Vehicle Charging 

Station 

Razeghi et al., (2023)  × AHP – VIKOR 
Suitable Locations for 

Solar Energy 

Krishankumar and 

Ecer, (2024) 
  AHP – GIS 

Electric Vehicle Charging 

Station 

Liang et al., (2024)   FBWM Indoor Terminal Location 

Li et al., (2024) ×  DBSCAN 
Large-Scale Solar Farm 

Location 

Alavi et al., (2024) ×  ELECTRE 
Optimal Location for 

Wind Hybrid Systems 

Di Grazia and Tina, 

(2024) 
×  GIS-AHP-TOPSIS 

Optimal Location for 

Floating Photovoltaic 

Systems 

Lee and Jeong (2025) ×  Genetic Algorithm  
Senior centers, Seoul 

(South Korea) 

Legault and Frejinger 

(2025) 
 × 

Simulation-based model-

free approach 

Competitive facility 

location (benchmark 

instances) 

Lyu et al. (2025) ×  
Material Flow Analysis + 

GIS 

C&D waste facilities, 

Beijing (China) 

Li et al. (2025) × × 
Two-stage Robust 

Optimization  

Emergency service 

facilities, Wuhan 

(COVID-19) 

This study × × SBWM – WDEA – ML 

Optimal Location for 

Pistachio Waste 

Recycling Points 

 

3. Case study and Methodology 

 In this section, the case study is first explained, and based on 

it, the evaluation criteria for selecting optimal locations for 

waste management facility siting are described. Additionally, 

the algorithms and methods used in this study for data 

analysis are examined, and based on them, the hybrid 

approach employed in this study is precisely explained with 

a flowchart. 
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3.1. Case study and indicators 

Damghan County, one of the most important hubs for 

pistachio production in Iran, has been selected as the case 

study for this research due to the vastness and high 

productivity of its pistachio orchards. According to available 

data, Damghan has 16,900 hectares of pistachio orchards, of 

which approximately 15,000 hectares are productive and bear 

fruit. In recent years, pistachio production in this region has 

significantly increased, with a record yield of 32 tons of 

pistachios per hectare in one of its orchards in 2024. 

Furthermore, it is predicted that over 45,000 tons of 

pistachios will be harvested in Damghan this year, 

representing a 25% increase compared to the previous year. 

Given the high volume of pistachio production and the 

subsequent generation of considerable pistachio green hull 

waste, the efficient management of this waste has become a 

necessity. This research aims to identify optimal locations for 

establishing facilities to manage pistachio green hull waste in 

Damghan County.

  

 
Fig. 1. Case study map 

 

The region’s vast agricultural lands, proximity to waste 

production centers, and existing capacities make it an ideal 

candidate for this study. 

The selection of optimal locations for establishing waste 

management facilities in such a region is of critical 

importance. These facilities can not only help reduce 

environmental pollution caused by waste accumulation but 

also convert this waste into valuable products, such as 

compost and animal feed, thereby creating added economic 

value for farmers and the region. Consequently, this research 

can provide scientific and practical solutions for optimizing 

waste management in one of Iran’s most prominent 

agricultural hubs. In summary, the structure of potential 

points for establishing waste collection and recycling 

facilities is illustrated in Figure 1. 

Finally, based on the literature and experts, the considered 

indicators have been listed in in Table 2. 

 

Table 2 

 The considered indicators  

Criteria Reference 

Land Cost (C1) Experts +(Kumar et al., 2020; Sagnak et al., 2021)  

Tax (C2) Experts +(Ayvaz et al., 2015; Kumar et al., 2020)  

Work Safety (C3) Experts +(Ayvaz et al., 2015; Kumar et al., 2020)  

Society Benefits (C4) Experts +(Kheybari et al., 2019; Kumar et al., 2020)  

Impact on ecological landscape (C5) Experts +(Guo and Zhao, 2015; He et al., 2017)  

Pollution Prevention and Control (C6) Experts +(Kumar and Dixit, 2019; Rostami et al., 2023; Sagnak et al., 2021)  

Capacity expansion capability (C7) Experts +(Agrebi and Abed, 2021; Nong, 2022)  

Smart infrastructure (C8) Experts +(Nessari et al., 2024; Xu et al., 2015)  

Natural conditions (C9) Experts +(Chou et al., 2008; He et al., 2017)  

 

3.2. Stochastic BWM 
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The BWM is one of the most popular approaches in the 

decision-making research area. In general, this method has 

several advantages compared to similar methods such as 

reducing the computational burden and increasing the 

reliability of the outputs. Recently, a new variant of this 

method has been proposed by Nayeri et al. (2023), called the 

stochastic BWM, to deal with the stochastic uncertain 

environment. The steps of this method are as follows: 

(i) Determining the least desirable (worst) and most 

desirable (best) indicators. 

(ii) Forming the comparison vectors based on 1-9 numbers. 

In this regard, 𝑎𝐵𝑗𝑠 represents the Best-to-Other 

comparison under scenario 𝑠. Moreover, 𝑎𝑗𝑊𝑠 denotes the 

Other-to-Worst comparison under scenario 𝑠. 

(iii) Solving Model (1) to achieve the weighs. In this model, 

𝑃𝑠 shows the probability of occurrences of scenario 𝑠. 𝜉𝑠is 

the consistency ration under scenario 𝑠, 𝑤𝑠𝑗𝑠 represents the 

weight of indicator 𝑗 under scenario 𝑠, and 𝑤𝑗  is the weight 

of indicator 𝑗. 

𝑀𝑖𝑛∑𝑃𝑠. 𝜉𝑠
𝑠

  

(1) 

|𝑤𝑠𝐵𝑠 − 𝑎𝐵𝑗𝑠 . 𝑤𝑠𝑗𝑠| ≤ 𝜉𝑠 ∀𝑗, 𝑠 

|𝑤𝑠𝑗𝑠 − 𝑎𝑗𝑊𝑠 . 𝑤𝑠𝑊𝑠| ≤ 𝜉𝑠 ∀𝑗, 𝑠  

∑𝑤𝑠𝑗𝑠
𝑗

= 1 ∀𝑠 

𝑤𝑗 =∑𝑃𝑠 . 𝑤𝑠𝑗𝑠
𝑠

 ∀𝑗 

𝑤𝑠𝑗𝑠 , 𝑤𝑗 ≥ 0 ∀𝑗, 𝑠 

      

3.3. Weighted DEA 

The primary objective of this study is to develop a data-

driven model for evaluating potential locations for the 

establishment of agricultural waste collection and recycling 

facilities. In this regard, the existing dataset is unlabeled, and 

for the development of a machine learning model, the dataset 

must first be labeled. To achieve this, the Weighted Data 

Envelopment Analysis (WDEA) method has been utilized. In 

this method, the weights of the data are applied using the 

Stochastic BWM method as inputs, making the evaluation 

scenario-based. Moreover, specific weights are assigned to 

each input and output variable. By executing this stage, the 

dataset becomes labeled. The steps of the WDEA method are 

summarized as follows (Kim et al., 2023). 

     Step 1: Identifying variables   
 In this step, the input and output variables used for 

evaluating the efficiency of Decision-Making Units (DMUs) 

are identified. The variables are divided into two categories: 

inputs (resource consumption) and outputs (results achieved). 

Additionally, pre-determined scenario-based weights for 

each variable are introduced to the model. 

     Step 2: Constructing the dataset for evaluating 

locations   
     Data related to the values of input and output variables for 

each DMU is collected. This data includes the values 

corresponding to the location evaluation indicators. The final 

dataset contains the values of all variables for each DMU. 

     Step 3: Solving the WDEA model based on BCC   
 The Weighted DEA model based on BCC is executed using 

the specified input and output data and weights. The BCC 

model is chosen due to its variable returns to scale, ensuring 

that the differences in scale among units are considered in 

efficiency evaluation. For each DMU, the efficiency is 

calculated by solving a linear programming problem. The 

efficiency score in this evaluation ranges between 0 and 1. 

     Step 4: Assigning efficiency labels to locations   
Based on the calculated efficiency scores, each location is 

labeled according to the following criteria: 

 Efficient (Selected): Efficiency score between 0.9 

and 1. 

 Reserved: Efficiency score between 0.7 and 0.9. 

 Inefficient (Rejected): Efficiency score less than 

0.7. 

     Based on these steps, the dataset becomes labeled.   

 

3.4. Gradient boosting algorithm 

Gradient Boosting is a powerful and flexible method for 

solving classification and regression problems. This 

algorithm builds a strong model by sequentially combining a 

set of weak models (typically decision trees). At each step, 

the errors of the previous model are reduced to enhance the 

final model's accuracy (Liu et al., 2024; Nessari et al., 2024). 

The steps of this algorithm are summarized as follows 

(Callens et al., 2020): 

     Step 1: Data Preparation   
In this step, the required data, including 9 features (Land 

Cost, Tax, Capacity Expansion Capability, Smart 

Infrastructure, Natural Conditions, Work Safety, Society 

Benefits, Impact on Ecological Landscape, and Pollution 

Prevention and Control), were collected and preprocessed. 

The data were obtained from reliable sources, and missing 

values were either removed or replaced using appropriate 

methods to ensure data quality. Additionally, the data were 

normalized or standardized to ensure uniform feature scaling. 

Finally, the data were divided into two parts: training and 

testing sets, with a portion of the training data also allocated 

for validation. 

     Step 2: Defining the Gradient Boosting Model   
The Gradient Boosting algorithm was used for classifying the 

points. The model was designed based on shallow decision 

trees and optimized sequentially to reduce the residual errors 

from the previous stages. The main parameters of the model 

included the number of trees (n_estimators), the learning rate 

(learning_rate), the maximum depth of the trees 

(max_depth), and the percentage of samples used in each step 

(subsample). The model was implemented using the 

XGBoost library, which provides advanced tools for 

executing Gradient Boosting algorithms. Initial parameter 

settings were based on experience and adjusted for 

optimization. 
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     Step 3: Model Training   
The Gradient Boosting model was trained using the training 

data. At each step, the model learned from the residual errors 

of the previous step, improving incrementally. Validation 

data were used to monitor the model's performance 

throughout the training process, preventing overfitting. By 

the end of this stage, the model was sufficiently trained, and 

metrics such as validation error and prediction accuracy were 

evaluated based on the validation data. 

     Step 4: Evaluation and Classification of Results   
After training, the model was evaluated on the test data. The 

predictions were compared to the actual labels, and metrics 

such as accuracy and F1-Score were calculated to measure 

the model's performance. Based on the predicted 

probabilities, final labels were assigned to the points. The 

labels included three categories: Selected, Rejected, and 

Reserved. 

The advantages of this method include its interpretability and 

its suitability for implementation on the target dataset.  

 

3.5. Hybrid mythology 

This study consists of several stages. In the first stage, the 

evaluation criteria for potential locations for facility siting are 

identified and weighted using the stochastic BWM method. 

Then, the dataset is labeled using the Weighted DEA method, 

enabling the development of an algorithm for evaluating new 

locations based on the labeled dataset. After creating the 

labeled dataset, the Gradient Boosting algorithm is employed 

to assess each new potential location in accordance with the 

rules identified from the data. Overall, the main steps of the 

research are illustrated in Figure 2. 

 
Fig. 2. Hybrid methodology flowchart 

 

4. Numerical Results 

4.1. The weights of indicators 

 In this section, we calculate the indicators’ weights using the 

stochastic BWM approach. For this purpose, we have defined 

three scenarios as pessimistic, most likely, and pessimistic 

scenarios so that their occurrence probabilities are 

respectively equal to 0.25, 0.5, and 0.25. Also, to forming the 

pairwise comparison matrix, the relevant questionnaires were 

dispatched among three groups of experts and the average of 

reached vectors for best and worst indicators has been shown 

in Tables 3 and 4. Also, Table 5 presents the obtained 

weights. According to the achieved results, Land cost, Impact 

on ecological landscape, Pollution Prevention and Control, 

and Capacity expansion capability have been specified as the 

best indicators

 

Table 3 

 Comparison vector between the best indicator and other ones 

Expert 

  

  

  

C1 C2 C3 C4 C5 

s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3 

1 

C1 

1 1 1 2 2 2 2 3 2 2 3 2 2 1 2 

2 1 1 1 2 2 2 2 2 2 2 3 2 2 2 2 

3 1 1 1 2 2 2 2 2 2 2 2 2 2 1 2 

Average 1.00 1.00 1.00 2.00 2.00 2.00 2.00 2.33 2.00 2.00 2.67 2.00 2.00 1.33 2.00 

Expert 

  

  C6 C7 C8 C9 

  s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3 

1 

C1 

2 1 2 2 2 2 3 3 3 2 2 2 

2 2 2 2 2 1 2 3 3 3 2 2 2 

3 2 1 2 2 1 2 3 3 3 2 2 2 

Average 2.00 1.33 2.00 2.00 1.33 2.00 3.00 3.00 3.00 2.00 2.00 2.00 
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                                                            Table 4 

                                                            Comparison vector between the worst indicator  

                                                            and other ones 
  C8   

Expert 
1 2 3 Average 

Criteria 

C1 

3 3 3 3.00 

3 3 3 3.00 

3 3 3 3.00 

C2 

2 2 2 2.00 

2 2 2 2.00 

2 2 2 2.00 

C3 

2 3 2 2.33 

3 3 3 3.00 

2 3 2 2.33 

C4 

2 2 2 2.00 

2 2 2 2.00 

2 2 2 2.00 

C5 

2 3 3 2.67 

2 3 2 2.33 

3 3 3 3.00 

C6 

3 3 3 3.00 

2 2 2 2.00 

2 3 2 2.33 

C7 

2 3 2 2.33 

2 2 2 2.00 

3 3 3 3.00 

C8 

1 1 1 1.00 

1 1 1 1.00 

1 1 1 1.00 

C9 

2 2 1 1.67 

3 3 3 3.00 

2 2 2 2.00 
 

             Table 5 

             Indicators’ weights 

Indicator Weight 

Land Cost (C1) 0.1776451 

Tax (C2) 0.1080945 

Work Safety (C3) 0.1005574 

Society Benefits (C4) 0.09474053 

Impact on ecological landscape (C5) 0.1263352 

Pollution Prevention and Control (C6) 0.1190829 

Capacity expansion capability (C7) 0.1190829 

Smart infrastructure (C8) 0.04636708 

Natural conditions (C9) 0.1080945 

4.2. Assessing the potential locations 

In this section, the proposed hybrid data-driven model for 

evaluating and selecting potential locations is developed. In 

the first step, the dataset is labeled using the WDEA method. 

It is important to note that the dataset used for developing the 

data-driven model is initially unlabeled. The efficiency labels 

for the dataset are first calculated using the WDEA method, 

and the labeled dataset is then fed into the Gradient Boosting 

algorithm. 

To develop the WDEA model, input and output variables 

must be selected from the location evaluation indicators, 

which are summarized as follows: 

Input Variables: 

 Land Cost (C1)   

 Tax (C2)   

 Capacity Expansion Capability (C7)   

 Smart Infrastructure (C8)   

 Natural Conditions (C9)   

Output Variables: 

 Work Safety (C3)   

 Society Benefits (C4)   

 Impact on Ecological Landscape (C5)   

 Pollution Prevention and Control (C6)   

 In the WDEA model, the weight of each input and output 

variable is provided as an input parameter to the model. This 

approach ensures that the evaluation of locations is based on 

the importance of each specific criterion. The dataset used 

consists of a total of 300 records, with an average of 10 

records representing each specific time interval. The WDEA 

model is executed 30 times, and the efficiency labels for the 

300 records are determined. Sample values for one evaluation 

using the WDEA model are presented in Table 6. 
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                       Table 6.  

                       Sample dataset value for running WDEA 

DMU (C1) (C2) (C3) (C4) (C5) (C6) (C7) (C8) (C9) 

1 309506.9 1 3 1 9 41 5 1 2 
2 318206.9 0 4 7 10 91 4 6 4 
3 325617.4 1 9 9 6 51 1 4 7 
4 331895.1 0 2 1 8 33 1 1 3 
5 337718.1 0 8 6 5 71 2 9 5 
6 342400.5 0 5 4 1 54 1 6 9 
7 382726.6 0 8 10 5 59 4 2 4 
8 383164.6 1 4 3 2 50 3 8 4 
9 390198.8 0 4 10 3 46 4 6 6 

10 391669.1 1 2 8 6 28 3 8 5 
    

 

By executing the WDEA model, the efficiency of each option 

has been determined, as shown in Table 7, which presents the 

efficiency values along with their respective labels. As 

explained in Section 3.3, options with an efficiency score 

greater than 0.9 are labeled as Selected, those with a score 

between 0.7 and 0.9 are labeled as Reserved, and those with 

a score below 0.7 are labeled as Rejected.  

Table 7 

 The efficiency value and label are sample data. 

DMU Efficiency Label 

1 0.378 Rejected 

2 0.505 Rejected 

3 0.936 Selected 

4 0.172 Rejected 

5 0.460 Rejected 

6 0.332 Rejected 

7 0.780 Reserved 

8 0.704 Reserved 

9 0.840 Reserved 

10 0.976 Selected 

     Based on the evaluation sample provided using the 

WDEA method, the entire dataset has been labeled. One of 

the initial steps in developing data-driven models is 

examining the correlation coefficient. The correlation 

coefficient is a numerical measure that indicates the strength 

and direction of a linear relationship between two variables. 

This value lies within the range [-1, 1]. A positive correlation 

coefficient (>0) indicates that as one variable increases, the 

other variable also increases, while a negative correlation 

coefficient (<0) indicates an inverse relationship. A value 

close to 1 or -1 represents a strong correlation, while a value 

near zero indicates no linear relationship between the 

variables. For instance, a coefficient of 0.8 shows a strong 

positive relationship, whereas 0.2 indicates a weak 

correlation. Based on the correlation matrix and heatmap 

presented in Figure 3, the relationships between most features 

in the dataset are weak to moderate, with correlation values 

rarely approaching 1 or -1. This suggests that the variables 

act significantly independently, and there is no severe 

multicollinearity in this dataset. Therefore, no issues are 

expected in developing the prediction or classification model, 

and all features can be utilized in modeling. However, the 

relative relationships between some variables may contribute 

to a better interpretation of the model’s results. 

 
 

Fig. 3. Heatmap diagram of feature correlation coefficient 
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The Gradient Boosting algorithm has been used to evaluate 

and label the points. This algorithm was selected as an 

appropriate approach for our problem due to its high 

flexibility and advanced learning capabilities in identifying 

complex patterns. The primary goal of this algorithm is to 

predict the labels of points based on input features while 

minimizing prediction errors. In this study, the Gradient 

Boosting model was trained using input data such as Land 

Cost, Capacity Expansion Capability, Smart Infrastructure, 

and other features. After training, the model successfully 

labeled the points into three categories: Selected (Efficient), 

Reserved, and Rejected (Inefficient). 

Figure 4 illustrates a part of the output of the Gradient 

Boosting algorithm. The decision tree shown represents one 

of the trees in the Gradient Boosting model, which functions 

as a weak learner. In the Gradient Boosting model, hundreds 

or even thousands of small trees are combined sequentially to 

build a strong model. Each decision tree is responsible for 

learning a portion of the residual errors from the previous 

trees and ultimately reduces the overall error of the model. 

The internal nodes of these trees are based on conditions 

related to the feature values, dividing the data into two 

branches. Each branch represents a decision made by the 

model that applies to a specific subset of the data. The leaf 

nodes provide the final output of the tree, which helps the 

model correct inaccurate predictions.  

Individually, this tree does not perform strongly and only 

compensates for a small part of the model's errors. However, 

in combination with other trees, it plays a critical role in 

improving the model's overall performance. Visualizing 

decision trees is particularly important for analyzing and 

interpreting the model. This visualization demonstrates how 

features contribute to the model's decision-making process 

and identifies which features have a greater impact. For 

instance, features that appear more frequently in the internal 

nodes are likely more important to the model. Such 

visualizations can aid in better understanding the model's 

performance, identifying patterns in the data, and making the 

model's analysis clearer to audiences. 

 
Fig. 4. Part of the gradient boosting algorithm 

Based on the developed Gradient Boosting model, the 

capability to independently evaluate each point exists. This 

model can estimate the appropriate label for any point using 

the values of input features (such as land cost, natural 

conditions, work safety, etc.). In other words, by providing 

specific values for the defined features, the model 

automatically and accurately assigns the point's label to one 

of the three categories: Selected (Efficient), Reserved, or 

Rejected (Inefficient). This flexible feature of the model 

allows it to perform quick and accurate evaluations under 

various conditions and for multiple points, making it a 

practical tool for operational decision-making. In this 

context, based on the developed model, the selected points in 

the present study, which include waste collection and 

recycling facilities, are illustrated in Figure 5. 

 
Fig. 5. Points selected using data-driven model 

 

4.3. Effectiveness of the employed stochastic BWM 
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To examine the performance of the employed stochastic 

BWM, this section aims to compare its outputs with one of 

the well-known traditional methods named fuzzy AHP. In 

this way, Figure 6 depicts the weights achieved by the applied 

stochastic BWM and the fuzzy AHP.  

 
Fig. 6. Comparing the outputs of the stochastic BWM and the fuzzy AHP 

 

The results shows that weights of the majority of indicators 

are close to each other that confirm the validity of the 

employed method. However, based on the achieve results, the 

value of the consistency ratio for the stochastic BWM is equal 

to 0.03854385 while it is equal to 0.057398 for the fuzzy 

AHP that confirm the efficiency and reliability of the 

employed stochastic BWM.  

4.4. Effectiveness of the machine learning method  

To evaluate the performance and accuracy of the data-driven 

model, specifically the Gradient Boosting algorithm, two 

approaches are employed: the Confusion Matrix and 

evaluation metrics such as Accuracy, Precision, Recall, and 

F1-Score. The Confusion Matrix is a visual and analytical 

tool for assessing the performance of classification models. It 

demonstrates how the model's predictions align with the 

actual labels. The matrix is divided into four main 

components: True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN). These components 

provide insights into the number of correct and incorrect 

predictions. The rows of the matrix represent the true labels, 

while the columns indicate the predicted labels. 

Figure 7 illustrates the Confusion Matrix. This matrix reflects 

the highly accurate performance of the model. Specifically, 

out of 31 points with the true label Rejected, the model 

correctly predicted all cases. Additionally, out of 17 points 

with the true label Reserved, the model successfully 

identified 16 cases, misclassifying only 1 point into the 

Selected category. Furthermore, for the 12 points with the 

true label Selected, the model correctly predicted all cases 

without any errors.  
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Fig. 7. Algorithm evaluation confusion matrix 

These results indicate that the model exhibits a very high 

level of accuracy in distinguishing and classifying points, 

with minimal errors. This highlights the model's efficiency 

and reliability in performing classification tasks. Support 

Vector Machine (SVM) and Artificial Neural Network 

(ANN) algorithms were also executed on the dataset, and 

their accuracy and performance evaluation results are 

presented in Table 8. The findings indicate that the 

performance of the Gradient Boosting algorithm surpasses all 

other algorithms. 

                                        Table 8 

                                       Accuracy of the implemented algorithm. 

Algorithm Accuracy Precision Recall F1-Score 

Gradient Boosting 0.98 0.94 0.94 0.96 

SVM 0.86 0.85 0.86 0.86 

ANN 0.91 0.92 0.91 0.92 

 

4.5. Managerial insights 

This study provides comprehensive managerial insights for 

optimizing agricultural waste management, particularly 

within the context of sustainability and resilience in 

developing agricultural regions such as Iran. The proposed 

hybrid data-driven framework—integrating the Stochastic 

Best-Worst Method (SBWM), Weighted Data Envelopment 

Analysis (WDEA), and Gradient Boosting algorithm—offers 

a scientifically grounded and practically applicable structure 

for selecting optimal locations for agricultural waste 

collection and recycling facilities. By combining multi-

criteria decision-making with advanced machine learning, 

the model bridges the gap between theoretical evaluation and 

real-world implementation, enabling policymakers and 

managers to make informed, evidence-based decisions. 

A major managerial implication of this research lies in its 

capability to handle uncertainty in data and decision 

environments. Through the SBWM component, the model 

accounts for the variability in experts’ opinions and dynamic 

environmental factors, ensuring that decisions remain robust 

under different economic or ecological scenarios. This 

feature is especially relevant in Iran, where agricultural waste 

generation fluctuates due to seasonal variations, water 

scarcity, and market instability. The model’s robustness thus 

provides a reliable foundation for long-term infrastructure 

planning and resource allocation in rural and semi-arid 

regions. 

The integration of Gradient Boosting significantly enhances 

the predictive and classification power of the model. By 

accurately categorizing candidate sites into efficient, 

reserved, and rejected clusters, it allows decision-makers to 

prioritize high-potential locations. This precision-driven 

approach helps in optimizing investments, minimizing waste 

transportation costs, and reducing environmental 

degradation. Managers can utilize these insights to develop a 

tiered implementation plan that aligns with both national 

sustainability strategies and local operational capacities. 

The empirical application of this model to Damghan 

County—a central hub for pistachio cultivation and 

processing in Iran—further demonstrates its contextual 

relevance and practical significance. Damghan’s agricultural 

economy produces a large volume of pistachio green hull 

waste each year, much of which remains underutilized and 

contributes to soil and water contamination. The 

implementation of the proposed model in this setting not only 

identified suitable locations for new waste treatment facilities 

but also revealed how optimizing facility networks can 

reduce average waste transportation distances, lower 

greenhouse gas emissions, and increase recycling efficiency. 

This practical linkage illustrates how data-driven 

optimization directly supports sustainable agricultural 

transformation in Iran’s semi-arid ecosystems. 

Moreover, the managerial implications extend beyond local 

operations. By promoting the conversion of agricultural 

waste into valuable by-products such as compost and animal 

feed, the framework encourages a circular economy mindset 

within Iran’s agricultural sector. Policymakers can adopt 

these insights to design incentive systems for farmers and 

cooperatives, fostering a shift from reactive waste disposal to 

proactive resource recovery. The model’s data-centric 

structure also provides a scalable template for other Iranian 

provinces—such as Kerman, Yazd, and Fars—where similar 

crops and environmental challenges exist, ensuring 

consistency in national-level sustainability strategies. 

From a broader managerial perspective, the integration of 

machine learning into agricultural waste management 

decisions represents a pivotal step toward digital and 

intelligent governance. The proposed model not only 

enhances operational efficiency and environmental 

responsibility but also supports the alignment of agricultural 

planning with Iran’s sustainable development goals. 

Managers and planners can use this framework to build 

resilient waste management systems that adapt to climate 

change, improve resource circularity, and contribute to the 

long-term socio-economic stability of rural communities. 

In summary, by explicitly contextualizing the results within 

the Iranian agricultural sector and demonstrating their 

tangible benefits in Damghan County, this study strengthens 

the practical and policy-oriented relevance of its findings. 

The approach provides a roadmap for decision-makers to 

integrate data analytics, sustainability principles, and 

resilience thinking into the strategic design of agricultural 

waste management systems. 

5. Conclusion 

Owing to the undeniable importance of the waste 

management problem in the agricultural sector, the current 

article has addressed the agricultural waste management 

problem considering two important aspects namely 

sustainability and resilience. To this end, this work has 

developed a machine learning-based model to evaluate the 

potential points to establish the collection and recycling 

centers for handling the agricultural waste. In this way, at the 
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outset, the major indicators were specified and their weights 

were computed employing the stochastic BWM. Then, the 

potential points for establishing the facilities were assessed 

using the machine learning approach. Based on the achieved 

results, land cost, impact on ecological landscape, pollution 

prevention and control, and capacity expansion capability 

have been determined the most important ones. Also, the 

findings indicate that the machine learning model, with an 

accuracy of 98%, effectively evaluates the points, thereby 

selecting the optimal location with high flexibility and 

agility. Moreover, the obtained outputs demonstrated the 

reliability and effectiveness of the developed data-driven 

method. Furthermore, future studies can consider other 

crucial aspects such as agility and digitalization. Also, future 

works can investigate the research problem under mixed 

uncertainty (e.g., fuzzy-scenario) to deal with a high level of 

uncertainty. 
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