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Abstract

This study focuses on one of the crucial issues in today’s world named the agricultural waste
management by considering the sustainability and resilience features. In this regard, this research
proposes a hybrid data-driven decision framework by combining the multiple-attribute decision-
making and machine learning methods. In this way, first of all, the major indicators of the considered
problem are specified and their weights are calculated using a recently developed method called the
stochastic Best-Worst Method (BWM). In the next stage, the potential locations for establishing the
collection centers and recycling centers are evaluated using a machine learning approach. Overall,
this research has contributed to the literature by addressing the sustainable-resilient agricultural
waste management problem using a data-driven model. The results show that land cost, impact on
ecological landscape, pollution prevention and control, and capacity expansion capability are the
most significant indicators for the research problem. Also, the achieved outputs confirm the
effectiveness and robustness of the developed data-driven decision framework. The developed model
is based on a hybrid method combining Data Envelopment Analysis (DEA) and the Gradient
Boosting algorithm, achieving 98% accuracy in evaluating potential locations.
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1. Introduction

Waste management in the agricultural industry is crucial for
promoting sustainability and protecting the environment
(Rezaei Zeynali and Tajally, 2024; Wagqas et al., 2023). As
agricultural production increases to meet the demands of a
growing population, the volume of waste generated, such as
crop residues, packaging materials, and livestock manure,
also rises significantly. Effective waste management
practices help minimize pollution, conserve natural
resources, and reduce greenhouse gas emissions. By
recycling and repurposing agricultural waste through
methods like composting and anaerobic digestion, farmers
can not only enhance soil health and fertility but also generate
renewable energy and valuable by-products (Phiri et al.,
2024; Tavakoli et al., 2023). Furthermore, proper waste
management contributes to economic efficiency by lowering
disposal costs and creating new revenue streams, ultimately
fostering a more resilient and sustainable agricultural sector.
Sustainability refers to the ability to meet present needs
without compromising the ability of future generations to
meet their own needs, encompassing environmental,
economic, and social dimensions (Vaezi et al., 2024). In the
context of agricultural waste management, sustainability is
vital as it encourages practices that minimize waste
generation, enhance resource efficiency, and promote
ecological balance. Effective management of agricultural
waste not only reduces pollution and greenhouse gas
emissions but also conserves natural resources by recycling
organic materials back into the ecosystem (Koul et al., 2022;
Tajally et al., 2025). By adopting sustainable waste
management practices, farmers can improve soil health
through composting, reduce reliance on chemical fertilizers,
and create renewable energy through biogas production.
Ultimately, prioritizing sustainability in agricultural waste
management leads to a healthier environment, increased
productivity, and long-term viability of agricultural systems,
benefiting both current and future generations. Moreover,
one of the important concepts that has attracted the attention
of managers after the COVID-19 pandemic is resilience
which aims to enhance the ability of a system to deal with
disruptions (Javan-Molaei et al., 2024; Namdar et al., 2021).
The resilience concept in agricultural waste management
refers to the ability of agricultural systems to withstand, adapt
to, and recover from disturbances, such as environmental
changes, market fluctuations, or extreme weather events.
Additionally, resilience fosters innovation and adaptability,
enabling farmers to respond to challenges and seize
opportunities for resource recovery and circular economy
initiatives (Sawicka, 2020; Shekhawat et al., 2019).
According to the crucial role of the explained points, the
current article attempts to evaluate the major indicators to
select the best locations for establishing the collection centers
and recycling centers for the waste management network
based on the sustainability and resilience features for the
agricultural sector. To this end, first of all, the major
indicators are identified according the experts and literature.
Then, the importance (weights) of the determined indicators
is measured using the stochastic BWM. In the next step, using
a machine learning method, the potential points to establish
the collection and recycling centers are ranked based on the
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considered indicators. The main objectives of this work are
as follows: (i) incorporating the sustainability and resilience
dimensions into the agricultural waste management problem
and (ii) developing an effective machine learning-based
decision framework for the evaluation of the potential
locations to establish the collection and recycling centers.
Moreover, the current article contributes to the existing
literature by developing a data-driven model to investigate
the resilient and sustainable agricultural waste management
problem under uncertainty.

In the rest of this work, Section 2 presents the literature
review. Section 3 presents the case study and methodology.
Section 4 presents the numerical results. Finally, Section 5
provides the conclusions.

2. Literature Review

Various studies have focused on the issue of selecting
optimal locations for specific facilities, often employing
intuitive approaches and targeting specific domains such as
energy and public stations. For example, Ozdemir and Sahin,
(2018) developed a framework for selecting the optimal
location for a solar power plant using multi-criteria decision-
making methods. Their goal was to evaluate three potential
locations based on various qualitative and quantitative
criteria. In this study, daily and monthly solar radiation were
identified as the most important evaluation criteria and
weighted using the AHP method. The potential locations
were then assessed based on these criteria. Shayani Mehr et
al., (2022) proposed a comprehensive framework for
selecting solar panel technologies. They evaluated potential
sites using a combined BWM-MULTIMOOSRAL approach.
In this study, 20 evaluation criteria were identified and
categorized into electrical, technical, economic, climatic, and
mechanical sustainability. Similarly, Ghodusinejad et al.,
(2022) focused on selecting the optimal location and size for
solar EV charging stations. These stations were designed to
charge electric vehicles, and the study employed a combined
GIS-AHP method to evaluate the locations. An optimization
model was then proposed to solve the multi-objective
problem. The results of this study indicated that the proposed
model could identify suitable locations for EV charging
stations that meet the demand for electric vehicle charging
within a specified access distance. Alkan and Kahraman,
(2022) introduced an advanced method for selecting hospital
locations during pandemics, which was developed based on
the TOPSIS method. They utilized Circular Intuitionistic
Fuzzy Sets (CIFS) in combination with the TOPSIS approach
to solve this problem. Key criteria considered in this study
included the population volume in target areas, ease of access
to transportation routes, and availability of suitable vacant
land. Using the CIF-TOPSIS technique, their proposed
method successfully identified optimal locations while
considering various demand scenarios.

Additionally, Kaya et al., (2022) addressed the issue of
selecting locations for shared electric vehicle stations from a
sustainability perspective. In this study, a multi-criteria
approach based on GIS data was proposed. In the first step,
decision-making indicators were weighted using the Fuzzy
Analytic Hierarchy Process (FAHP), and the required data
were then extracted from GIS maps. In the final stage, the
potential options were evaluated using the ELECTRE
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method. This approach was fully implemented in Istanbul,
and the results demonstrated its high efficiency in identifying
optimal locations for electric vehicle charging stations. In
another study, Zhang and Wei, (2023) proposed a hybrid
method for selecting locations for electric vehicle charging
stations. In this study, four evaluation criteria were
considered, including the distance to high-traffic centers, the
distance to main roads, the distance to the city center, and the
distance to the outskirts. These criteria were analyzed using
Spherical Fuzzy Sets (SFSs), and then weighted and
prioritized using a hybrid decision-making approach
(Combined Compromise Solution-CoCoSo). Sensitivity
analysis and comparisons with existing methods revealed that
the SF-CPT-CoCoSo model offers high accuracy and
efficiency and can effectively be used for identifying optimal
locations. Razeghi et al., (2023) presented a multi-criteria
approach for selecting suitable locations for solar energy in
Iran. The main evaluation criteria in this study included
installation costs, distance to urban centers, and
environmental impacts. These criteria were weighted using
the AHP method, and locations were evaluated using the
VIKOR method. In this study, a wide range of data, including
climatic conditions, distance to sensitive points, and annual
traffic volumes, were examined. By utilizing this data and
analyzing their values over different time intervals, machine
learning algorithms can be employed to evaluate locations
and develop a model capable of analyzing various sites at any
given time. The data-driven hybrid model discussed in this
article can serve as a foundation for diverse case studies.

This topic has attracted attention over the years.
Krishankumar and Ecer, (2024) developed a multi-criteria
framework for selecting locations for electric vehicle
charging stations. In this study, criteria such as serviceability,
environmental impacts, land cost, and traffic density were
identified as the most important factors in selecting optimal
locations. They introduced a multi-stage hierarchical method
that provides high accuracy and efficiency. Similarly, Liang
et al., (2024) evaluated and selected an internal terminal
location using the fuzzy multi-stakeholder best-worst
method. In this study, market volume potential was identified
as the most critical evaluation criterion. Their method utilized
the opinions of various groups to identify optimal points.
However, the methods employed in these two studies rely on
expert intuitive and comparative approaches, making it
impossible to develop a model that can independently
evaluate a location at any moment. Li et al., (2024) proposed
a three-stage framework for selecting the optimal locations
for large-scale solar farms. They used a combined DBSCAN
clustering method and cost-benefit analysis to identify
efficient and cost-effective land parcels. Their findings
suggest that the developed model is highly suitable for use by
organizations and governments. In another study, Alavi et al.,
(2024) developed a model for selecting the optimal location
for hybrid wind systems. They employed the ELECTRE
method, and their findings indicate that the Asadabad
Nahbandan region is the best location for these systems, with
the startup cost of this hybrid system estimated to be nearly
half of the actual expense. Additionally, Di Grazia and Tina,
(2024) proposed a framework for selecting optimal sites for
floating photovoltaic systems. Their approach was based on
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a combined GIS-AHP-TOPSIS method. In this study, four
main criteria were chosen for site evaluation, with cost and
regional energy output identified as the most important
indicators.

Additionally, Lee and Jeong, (2025) investigated the facility
location problem for senior centers in the context of super-
aging societies. They developed an optimization model using
a genetic algorithm to minimize travel distances for older
adults while considering mobility limitations and the existing
distribution of senior centers. Using open data from Seoul,
including floating population and geographic information,
the study demonstrated that adding 15 new centers reduced
average travel distances by 24%, thereby enhancing
accessibility and quality of life for older adults. Legault and
Frejinger, (2025) proposed a model-free simulation-based
approach for solving choice-based competitive facility
location problems. By reformulating the stochastic
optimization problem into a deterministic maximum
covering model and applying submodular cuts through a
partial Benders decomposition, their method effectively
balanced computational efficiency and accuracy,
outperforming existing heuristics in large-scale instances.
Lyu et al., (2025) integrated Material Flow Analysis (MFA)
with Geographic Information Systems (GIS) to estimate
construction and demolition (C&D) waste generation and
assess suitable disposal facility locations. Using real-estate
and building data at a fine spatial scale in Beijing, the study
revealed that only 3% of land is suitable for new facilities,
yet these locations can significantly improve source
separation and sustainable waste management. Li et al.,
(2025) developed a two-stage robust optimization model for
emergency service facility location—allocation under demand
uncertainty, incorporating sustainability considerations. The
model minimized both preparedness and response costs while
accounting for deprivation and environmental impacts, and
was validated using the COVID-19 case in Wuhan. The
results underscored the value of robust planning in enhancing
resilience and sustainability in emergency service networks.
Table 1 provides a summary of the literature review
conducted on the evaluation and selection of optimal facility
locations.

As shown in the literature, in spite of publishing a
considerable number of papers in the field of the waste
management problem in the agriculture industry, there are
still some significant gaps. For instance, the application of the
data-driven methods to evaluate the potential locations for
establishing the facilities of the waste management network
has been rarely addressed by previous works. Moreover, the
simultaneous consideration of the sustainability and
resilience in assessing the potential locations for opening
collection centers and recycling centers for the agricultural
waste management problem. Hence, to bridge these gaps, the
current article has developed an efficient hybrid data-driven
decision framework to select the best location for the
agricultural waste management network facilities based on
resilience and sustainability dimensions. Indeed, this is the
first application of the combination weighted DEA,
stochastic BWM, and Gradient Boosting in the waste
management problem
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Table 1
Literature review summary

Evaluation criteria

Study Methodology Case study
Sustainability Resilience
Ozdemir and Sahin,

(2018) x AHP Solar Power Plant
Shayan(‘zl(\)gezl;r ctal, BWM-MULTIMOOSRAL  Solar Panel Technology
Ghodusinejad et al., Solar Vehicle Charging

(2022) x GIS-AHP Station

Alkan and Hospital Location
Kahraman, (2022) . CIF-TOPSIS Selection
Kaya et al., (2022) x GIS — FAHP - ELECTRE  Lieetric Vehicle Charging
Station
Zhang and Wei, Electric Vehicle Charging
(2023) x SF-CPT-CoCoSo Station
Razeghi et al., (2023) x AHP — VIKOR Suitable Locations for
Solar Energy
Krishankumar and Electric Vehicle Charging
Ecer, (2024) AHP —GIS Station
Liang et al., (2024) FBWM Indoor Terminal Location
Li et al., (2024) x DBSCAN Large-Scale Solar Farm
Location
. Optimal Location for
Alavi et al., (2024) X ELECTRE Wind Hybrid Systems
. . . Optimal Location for
Di Grazia and Tina, X GIS-AHP-TOPSIS Floating Photovoltaic
(2024)
Systems
. . Senior centers, Seoul
Lee and Jeong (2025) X Genetic Algorithm (South Korea)
Legault and Frejinger Simulation-based model- Competmve facility
X location (benchmark
(2025) free approach .
instances)
Material Flow Analysis + C&D waste facilities,
Lyuetal. (2025) x GIS Beijing (China)
Emergency service
Li et al. (2025) x x ng‘ifﬁ‘;;‘(’i““ facilities, Wuhan
P (COVID-19)
Optimal Location for
This study X X SBWM - WDEA - ML Pistachio Waste
Recycling Points

3. Case study and Methodology

In this section, the case study is first explained, and based on
it, the evaluation criteria for selecting optimal locations for
waste management facility siting are described. Additionally,
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the algorithms and methods used in this study for data
analysis are examined, and based on them, the hybrid
approach employed in this study is precisely explained with
a flowchart.
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3.1. Case study and indicators

Damghan County, one of the most important hubs for
pistachio production in Iran, has been selected as the case
study for this research due to the vastness and high
productivity of its pistachio orchards. According to available
data, Damghan has 16,900 hectares of pistachio orchards, of
which approximately 15,000 hectares are productive and bear
fruit. In recent years, pistachio production in this region has
significantly increased, with a record yield of 32 tons of
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The region’s vast agricultural lands, proximity to waste
production centers, and existing capacities make it an ideal
candidate for this study.

The selection of optimal locations for establishing waste
management facilities in such a region is of critical
importance. These facilities can not only help reduce
environmental pollution caused by waste accumulation but
also convert this waste into valuable products, such as
compost and animal feed, thereby creating added economic

Fig. 1. Case study map

pistachios per hectare in one of its orchards in 2024.
Furthermore, it is predicted that over 45,000 tons of
pistachios will be harvested in Damghan this year,
representing a 25% increase compared to the previous year.
Given the high volume of pistachio production and the
subsequent generation of considerable pistachio green hull
waste, the efficient management of this waste has become a
necessity. This research aims to identify optimal locations for
establishing facilities to manage pistachio green hull waste in
Damghan County.
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value for farmers and the region. Consequently, this research
can provide scientific and practical solutions for optimizing
waste management in one of Iran’s most prominent
agricultural hubs. In summary, the structure of potential
points for establishing waste collection and recycling
facilities is illustrated in Figure 1.

Finally, based on the literature and experts, the considered
indicators have been listed in in Table 2.

Table 2
The considered indicators
Criteria Reference
Land Cost (C1) Experts +(Kumar et al., 2020; Sagnak et al., 2021)
Tax (C2) Experts +(Ayvaz et al., 2015; Kumar et al., 2020)
Work Safety (C3) Experts +(Ayvaz et al., 2015; Kumar et al., 2020)
Society Benefits (C4) Experts +(Kheybari et al., 2019; Kumar et al., 2020)

Impact on ecological landscape (C5)
Pollution Prevention and Control (C6)
Capacity expansion capability (C7)
Smart infrastructure (C8)
Natural conditions (C9)

Experts +(Guo and Zhao, 2015; He et al., 2017)
Experts +(Kumar and Dixit, 2019; Rostami et al., 2023; Sagnak et al., 2021)
Experts +(Agrebi and Abed, 2021; Nong, 2022)
Experts +(Nessari et al., 2024; Xu et al., 2015)
Experts +(Chou et al., 2008; He et al., 2017)

3.2. Stochastic BWM
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The BWM is one of the most popular approaches in the
decision-making research area. In general, this method has
several advantages compared to similar methods such as
reducing the computational burden and increasing the
reliability of the outputs. Recently, a new variant of this
method has been proposed by Nayeri et al. (2023), called the
stochastic BWM, to deal with the stochastic uncertain
environment. The steps of this method are as follows:

(i) Determining the least desirable (worst) and most

desirable (best) indicators.

Minz P.&,

S
|wsBs - aBjS.Wsj5| <&
|ws]-s — Qjys- WSWS| <&
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3.3. Weighted DEA

The primary objective of this study is to develop a data-
driven model for evaluating potential locations for the
establishment of agricultural waste collection and recycling
facilities. In this regard, the existing dataset is unlabeled, and
for the development of a machine learning model, the dataset
must first be labeled. To achieve this, the Weighted Data
Envelopment Analysis (WDEA) method has been utilized. In
this method, the weights of the data are applied using the
Stochastic BWM method as inputs, making the evaluation
scenario-based. Moreover, specific weights are assigned to
each input and output variable. By executing this stage, the
dataset becomes labeled. The steps of the WDEA method are
summarized as follows (Kim et al., 2023).

Step 1: Identifying variables
In this step, the input and output variables used for
evaluating the efficiency of Decision-Making Units (DMUs)
are identified. The variables are divided into two categories:
inputs (resource consumption) and outputs (results achieved).
Additionally, pre-determined scenario-based weights for
each variable are introduced to the model.

Step 2: Constructing the dataset for evaluating
locations

Data related to the values of input and output variables for
each DMU is collected. This data includes the values
corresponding to the location evaluation indicators. The final
dataset contains the values of all variables for each DMU.

Step 3: Solving the WDEA model based on BCC
The Weighted DEA model based on BCC is executed using
the specified input and output data and weights. The BCC
model is chosen due to its variable returns to scale, ensuring
that the differences in scale among units are considered in
efficiency evaluation. For each DMU, the efficiency is
calculated by solving a linear programming problem. The
efficiency score in this evaluation ranges between 0 and 1.

Step 4: Assigning efficiency labels to locations
Based on the calculated efficiency scores, each location is
labeled according to the following criteria:

e Efficient (Selected): Efficiency score between 0.9
and 1.
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(i1) Forming the comparison vectors based on 1-9 numbers.
In this regard, ag;; represents the Best-to-Other
comparison under scenario s. Moreover, a;,s denotes the
Other-to-Worst comparison under scenario s.

(iii) Solving Model (1) to achieve the weighs. In this model,
P, shows the probability of occurrences of scenario s. &is
the consistency ration under scenario s, ws;s represents the
weight of indicator j under scenario s, and w; is the weight
of indicator j.

vj,s
Vj,s

Vs )

vj
Vj,s

e Reserved: Efficiency score between 0.7 and 0.9.
o Inefficient (Rejected): Efficiency score less than
0.7.
Based on these steps, the dataset becomes labeled.

3.4. Gradient boosting algorithm

Gradient Boosting is a powerful and flexible method for
solving classification and regression problems. This
algorithm builds a strong model by sequentially combining a
set of weak models (typically decision trees). At each step,
the errors of the previous model are reduced to enhance the
final model's accuracy (Liu et al., 2024; Nessari et al., 2024).
The steps of this algorithm are summarized as follows
(Callens et al., 2020):
Step 1: Data Preparation
In this step, the required data, including 9 features (Land
Cost, Tax, Capacity Expansion Capability, Smart
Infrastructure, Natural Conditions, Work Safety, Society
Benefits, Impact on Ecological Landscape, and Pollution
Prevention and Control), were collected and preprocessed.
The data were obtained from reliable sources, and missing
values were either removed or replaced using appropriate
methods to ensure data quality. Additionally, the data were
normalized or standardized to ensure uniform feature scaling.
Finally, the data were divided into two parts: training and
testing sets, with a portion of the training data also allocated
for validation.
Step 2: Defining the Gradient Boosting Model

The Gradient Boosting algorithm was used for classifying the
points. The model was designed based on shallow decision
trees and optimized sequentially to reduce the residual errors
from the previous stages. The main parameters of the model
included the number of trees (n_estimators), the learning rate
(learning rate), the maximum depth of the trees
(max_depth), and the percentage of samples used in each step
(subsample). The model was implemented using the
XGBoost library, which provides advanced tools for
executing Gradient Boosting algorithms. Initial parameter
settings were based on experience and adjusted for
optimization.
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Step 3: Model Training
The Gradient Boosting model was trained using the training
data. At each step, the model learned from the residual errors
of the previous step, improving incrementally. Validation
data were used to monitor the model's performance
throughout the training process, preventing overfitting. By
the end of this stage, the model was sufficiently trained, and
metrics such as validation error and prediction accuracy were
evaluated based on the validation data.

Step 4: Evaluation and Classification of Results
After training, the model was evaluated on the test data. The
predictions were compared to the actual labels, and metrics
such as accuracy and F1-Score were calculated to measure
the model's performance. Based on the predicted
probabilities, final labels were assigned to the points. The
labels included three categories: Selected, Rejected, and
Reserved.

The advantages of this method include its interpretability and
its suitability for implementation on the target dataset.

3.5. Hybrid mythology

This study consists of several stages. In the first stage, the
evaluation criteria for potential locations for facility siting are
identified and weighted using the stochastic BWM method.
Then, the dataset is labeled using the Weighted DEA method,
enabling the development of an algorithm for evaluating new
locations based on the labeled dataset. After creating the
labeled dataset, the Gradient Boosting algorithm is employed
to assess each new potential location in accordance with the
rules identified from the data. Overall, the main steps of the
research are illustrated in Figure 2.

Identifying and weighting
evaluation indicators

Data labeling

Development of a data-
driven model for evaluating
potential points

O Identifying Indicators O Creating a Dataset Without
O Designing a Weighting Data Labels Potential Points
Questionnaire » O Designing a Weighted Data
O Collecting Indicator Weighting Envelopment Analysis Model
Data U Evaluating Dataset Points
O Weighting Indicators with with WDEA
SBWM O Creating a Dataset with Labels

=

Data preprocessing and clean
dataset creation

Gradient boosting algorithm
development

Validation of the developed
algorithm

Potential point evaluation

Fig. 2. Hybrid methodology flowchart

4. Numerical Results
4.1. The weights of indicators

In this section, we calculate the indicators’ weights using the
stochastic BWM approach. For this purpose, we have defined
three scenarios as pessimistic, most likely, and pessimistic
scenarios so that their occurrence probabilities are
respectively equal to 0.25, 0.5, and 0.25. Also, to forming the

Table 3
Comparison vector between the best indicator and other ones

pairwise comparison matrix, the relevant questionnaires were
dispatched among three groups of experts and the average of
reached vectors for best and worst indicators has been shown
in Tables 3 and 4. Also, Table 5 presents the obtained
weights. According to the achieved results, Land cost, Impact
on ecological landscape, Pollution Prevention and Control,
and Capacity expansion capability have been specified as the
best indicators

Expert C1 C2 C3 C4 C5
sl s2 s3 sl s2 s3 sl s2 s3 sl s2 s3 sl s2 s3
1 1 1 1 2 2 2 2 3 2 2 3 2 2 1 2
2 1 1 1 2 2 2 2 2 2 2 3 2 2 2 2
3 |G 11 2712 2 | 2 2 2121212 2
Average 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.33 | 2.00 | 2.00 | 2.67 | 2.00 | 2.00 | 1.33 | 2.00
Expert C6 C7 C8 C9
sl s2 s3 sl s2 s3 sl s2 s3 sl s2 s3
1 2 1 2 2 2 2 3 3 3 2 2 2
2 2 2 2 2 1 2 3 3 3 2 2 2
3 (S 21 22121333 2]2]:2
Average 2.00 | 1.33 | 2.00 | 2.00 | 1.33 | 2.00 | 3.00 | 3.00 | 3.00 | 2.00 | 2.00 | 2.00
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Table 4

Comparison vector between the worst indicator

and other ones

C8

Expert
Criteria

Average

C1

3.00
3.00
3.00

Cc2

2.00
2.00
2.00

C3

2.33
3.00
2.33

C4

2.00
2.00
2.00

C5

2.67
2.33
3.00

C6

3.00
2.00
2.33

C7

2.33
2.00
3.00

C8

1.00
1.00
1.00

C9

N WNEFPRFRPRPOWONDNDNNOWWPNDNINNDDNDINDWONDNNDNDWWW| -

NWNERPRPRPWNWWNWWWWNNRNWWWNNDRNDWWW DN

1.67
3.00
2.00

NWRPFPRFPRPRWONDNDNNOWNDWNNDRNDNONDNNDDNDWWW| W

Table 5
Indicators’ weights

Indicator

Weight

Land Cost (C1)
Tax (C2)
Work Safety (C3)
Society Benefits (C4)

Impact on ecological landscape (C5)
Pollution Prevention and Control (C6)
Capacity expansion capability (C7)
Smart infrastructure (C8)
Natural conditions (C9)

0.1776451
0.1080945
0.1005574
0.09474053
0.1263352
0.1190829
0.1190829
0.04636708
0.1080945

4.2. Assessing the potential locations

In this section, the proposed hybrid data-driven model for
evaluating and selecting potential locations is developed. In
the first step, the dataset is labeled using the WDEA method.
It is important to note that the dataset used for developing the
data-driven model is initially unlabeled. The efficiency labels
for the dataset are first calculated using the WDEA method,
and the labeled dataset is then fed into the Gradient Boosting
algorithm.

To develop the WDEA model, input and output variables
must be selected from the location evaluation indicators,
which are summarized as follows:

Input Variables:
= Land Cost (C1)
=  Tax (C2)

=  (Capacity Expansion Capability (C7)
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=  Smart Infrastructure (C8)

= Natural Conditions (C9)
Output Variables:

= Work Safety (C3)

= Society Benefits (C4)

= Impact on Ecological Landscape (C5)

= Pollution Prevention and Control (C6)
In the WDEA model, the weight of each input and output
variable is provided as an input parameter to the model. This
approach ensures that the evaluation of locations is based on
the importance of each specific criterion. The dataset used
consists of a total of 300 records, with an average of 10
records representing each specific time interval. The WDEA
model is executed 30 times, and the efficiency labels for the
300 records are determined. Sample values for one evaluation
using the WDEA model are presented in Table 6.
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Table 6.
Sample dataset value for running WDEA
DMU (C1) (C2) (C3) (C4 (C5) (C6) (C7) (C8) (C9)
1 2N950NA 9 1 3 1 Q 41 5 1 2
2 318206.9 0 4 7 10 91 4 6 4
3 325617.4 1 9 9 6 51 1 4 7
4 3318951 0 2 1 8 33 1 1 3
5 3377181 0 8 6 5 71 2 9 5
6 342400.5 0 5 4 1 54 1 6 9
7 382776.6 0 8 10 5 59 4 2 4
8 383164.6 1 4 3 2 50 3 8 4
9 390198.8 0 4 10 3 46 4 6 6
10 391669.1 1 2 8 6 28 3 8 5

By executing the WDEA model, the efficiency of each option
has been determined, as shown in Table 7, which presents the
efficiency values along with their respective labels. As
explained in Section 3.3, options with an efficiency score
greater than 0.9 are labeled as Selected, those with a score
between 0.7 and 0.9 are labeled as Reserved, and those with
a score below 0.7 are labeled as Rejected.

Table 7
The efficiency value and label are sample data.
DMU Efficiency Label

1 0.378 Rejected
2 0.505 Rejected
3 0.936 Selected
4 0.172 Rejected
5 0.460 Rejected
6 0.332 Rejected
7 0.780 Reserved
8 0.704 Reserved
9 0.840 Reserved
10 0.976 Selected

Based on the evaluation sample provided using the
WDEA method, the entire dataset has been labeled. One of

Tax (C2)
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Society Benefits (C4) nﬂ.

Impact on Ecological Landscape (C5) n -

the initial steps in developing data-driven models is
examining the correlation coefficient. The correlation
coefficient is a numerical measure that indicates the strength
and direction of a linear relationship between two variables.
This value lies within the range [-1, 1]. A positive correlation
coefficient (>0) indicates that as one variable increases, the
other variable also increases, while a negative correlation
coefficient (<0) indicates an inverse relationship. A value
close to 1 or -1 represents a strong correlation, while a value
near zero indicates no linear relationship between the
variables. For instance, a coefficient of 0.8 shows a strong
positive relationship, whereas 0.2 indicates a weak
correlation. Based on the correlation matrix and heatmap
presented in Figure 3, the relationships between most features
in the dataset are weak to moderate, with correlation values
rarely approaching 1 or -1. This suggests that the variables
act significantly independently, and there is no severe
multicollinearity in this dataset. Therefore, no issues are
expected in developing the prediction or classification model,
and all features can be utilized in modeling. However, the
relative relationships between some variables may contribute
to a better interpretation of the model’s results.
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Fig. 3. Heatmap diagram of feature correlation coefficient
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The Gradient Boosting algorithm has been used to evaluate
and label the points. This algorithm was selected as an
appropriate approach for our problem due to its high
flexibility and advanced learning capabilities in identifying
complex patterns. The primary goal of this algorithm is to
predict the labels of points based on input features while
minimizing prediction errors. In this study, the Gradient
Boosting model was trained using input data such as Land
Cost, Capacity Expansion Capability, Smart Infrastructure,
and other features. After training, the model successfully
labeled the points into three categories: Selected (Efficient),
Reserved, and Rejected (Inefficient).

Figure 4 illustrates a part of the output of the Gradient
Boosting algorithm. The decision tree shown represents one
of the trees in the Gradient Boosting model, which functions
as a weak learner. In the Gradient Boosting model, hundreds
or even thousands of small trees are combined sequentially to
build a strong model. Each decision tree is responsible for
learning a portion of the residual errors from the previous
trees and ultimately reduces the overall error of the model.

The internal nodes of these trees are based on conditions
related to the feature values, dividing the data into two
branches. Each branch represents a decision made by the
model that applies to a specific subset of the data. The leaf
nodes provide the final output of the tree, which helps the
model correct inaccurate predictions.

Individually, this tree does not perform strongly and only
compensates for a small part of the model's errors. However,
in combination with other trees, it plays a critical role in
improving the model's overall performance. Visualizing
decision trees is particularly important for analyzing and
interpreting the model. This visualization demonstrates how
features contribute to the model's decision-making process
and identifies which features have a greater impact. For
instance, features that appear more frequently in the internal
nodes are likely more important to the model. Such
visualizations can aid in better understanding the model's
performance, identifying patterns in the data, and making the
model's analysis clearer to audiences.

Land Cost (C1) <= 1604917.438
friedman_mse = 0.25
samples = 240
value = -0.0

/.

friedman_mse = -0.0
samples = 115
value = -1,391

S

friedman_mse = -0.0
samples = 125
value = 1.28

Fig. 4. Part of the gradient boosting algorithm

Based on the developed Gradient Boosting model, the
capability to independently evaluate each point exists. This
model can estimate the appropriate label for any point using
the values of input features (such as land cost, natural
conditions, work safety, etc.). In other words, by providing
specific values for the defined features, the model
automatically and accurately assigns the point's label to one
of the three categories: Selected (Efficient), Reserved, or

g9:

nee-

Rejected (Inefficient). This flexible feature of the model
allows it to perform quick and accurate evaluations under
various conditions and for multiple points, making it a
practical tool for operational decision-making. In this
context, based on the developed model, the selected points in
the present study, which include waste collection and
recycling facilities, are illustrated in Figure 5.

Fig. 5. Points selected using data-driven model

4.3. Effectiveness of the employed stochastic BWM
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To examine the performance of the employed stochastic
BWM, this section aims to compare its outputs with one of
the well-known traditional methods named fuzzy AHP. In

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0

Consistency Ratio

this way, Figure 6 depicts the weights achieved by the applied
stochastic BWM and the fuzzy AHP.

C1 C2 C3 C4 c5 Ccé Cc7 C8 C9

H Stochastic BWM  H fuzzy AHP

Fig. 6. Comparing the outputs of the stochastic BWM and the fuzzy AHP

The results shows that weights of the majority of indicators
are close to each other that confirm the validity of the
employed method. However, based on the achieve results, the
value of the consistency ratio for the stochastic BWM is equal
to 0.03854385 while it is equal to 0.057398 for the fuzzy
AHP that confirm the efficiency and reliability of the
employed stochastic BWM.

4.4. Effectiveness of the machine learning method

To evaluate the performance and accuracy of the data-driven
model, specifically the Gradient Boosting algorithm, two
approaches are employed: the Confusion Matrix and
evaluation metrics such as Accuracy, Precision, Recall, and
F1-Score. The Confusion Matrix is a visual and analytical
tool for assessing the performance of classification models. It
demonstrates how the model's predictions align with the

True Labels
Reserved Rejected

Selected
o

Rejected

Reserved
Predicted Labels
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actual labels. The matrix is divided into four main
components: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). These components
provide insights into the number of correct and incorrect
predictions. The rows of the matrix represent the true labels,
while the columns indicate the predicted labels.

Figure 7 illustrates the Confusion Matrix. This matrix reflects
the highly accurate performance of the model. Specifically,
out of 31 points with the true label Rejected, the model
correctly predicted all cases. Additionally, out of 17 points
with the true label Reserved, the model successfully
identified 16 cases, misclassifying only 1 point into the
Selected category. Furthermore, for the 12 points with the
true label Selected, the model correctly predicted all cases
without any errors.

30
0
25
20
L 15
-10
12 -5
Selected -0
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Fig. 7. Algorithm evaluation confusion matrix

These results indicate that the model exhibits a very high (ANN) algorithms were also executed on the dataset, and
level of accuracy in distinguishing and classifying points, their accuracy and performance evaluation results are
with minimal errors. This highlights the model's efficiency presented in Table 8. The findings indicate that the
and reliability in performing classification tasks. Support performance of the Gradient Boosting algorithm surpasses all
Vector Machine (SVM) and Artificial Neural Network other algorithms.
Table 8
Accuracy of the implemented algorithm.
Algorithm Accuracy Precision Recall F1-Score
Gradient Boosting 0.98 0.94 0.94 0.96
SVM 0.86 0.85 0.86 0.86
ANN 0.91 0.92 0.91 0.92
4.5. Managerial insights but also revealed how optimizing facility networks can

reduce average waste transportation distances, lower
greenhouse gas emissions, and increase recycling efficiency.
This practical linkage illustrates how data-driven
optimization directly supports sustainable agricultural
transformation in Iran’s semi-arid ecosystems.

Moreover, the managerial implications extend beyond local
operations. By promoting the conversion of agricultural
waste into valuable by-products such as compost and animal
feed, the framework encourages a circular economy mindset
within Iran’s agricultural sector. Policymakers can adopt
these insights to design incentive systems for farmers and
cooperatives, fostering a shift from reactive waste disposal to
proactive resource recovery. The model’s data-centric
structure also provides a scalable template for other Iranian
provinces—such as Kerman, Yazd, and Fars—where similar
crops and environmental challenges exist, ensuring
consistency in national-level sustainability strategies.

From a broader managerial perspective, the integration of
machine learning into agricultural waste management
decisions represents a pivotal step toward digital and
intelligent governance. The proposed model not only
enhances operational efficiency and environmental
responsibility but also supports the alignment of agricultural
planning with Iran’s sustainable development goals.
Managers and planners can use this framework to build
resilient waste management systems that adapt to climate
change, improve resource circularity, and contribute to the
long-term socio-economic stability of rural communities.

In summary, by explicitly contextualizing the results within
the Iranian agricultural sector and demonstrating their
tangible benefits in Damghan County, this study strengthens
the practical and policy-oriented relevance of its findings.
The approach provides a roadmap for decision-makers to
integrate data analytics, sustainability principles, and
resilience thinking into the strategic design of agricultural
waste management systems.

This study provides comprehensive managerial insights for
optimizing agricultural waste management, particularly
within the context of sustainability and resilience in
developing agricultural regions such as Iran. The proposed
hybrid data-driven framework—integrating the Stochastic
Best-Worst Method (SBWM), Weighted Data Envelopment
Analysis (WDEA), and Gradient Boosting algorithm—offers
a scientifically grounded and practically applicable structure
for selecting optimal locations for agricultural waste
collection and recycling facilities. By combining multi-
criteria decision-making with advanced machine learning,
the model bridges the gap between theoretical evaluation and
real-world implementation, enabling policymakers and
managers to make informed, evidence-based decisions.

A major managerial implication of this research lies in its
capability to handle uncertainty in data and decision
environments. Through the SBWM component, the model
accounts for the variability in experts’ opinions and dynamic
environmental factors, ensuring that decisions remain robust
under different economic or ecological scenarios. This
feature is especially relevant in Iran, where agricultural waste
generation fluctuates due to seasonal variations, water
scarcity, and market instability. The model’s robustness thus
provides a reliable foundation for long-term infrastructure
planning and resource allocation in rural and semi-arid
regions.

The integration of Gradient Boosting significantly enhances
the predictive and classification power of the model. By
accurately categorizing candidate sites into efficient,
reserved, and rejected clusters, it allows decision-makers to
prioritize high-potential locations. This precision-driven
approach helps in optimizing investments, minimizing waste
transportation  costs, and reducing environmental
degradation. Managers can utilize these insights to develop a
tiered implementation plan that aligns with both national
sustainability strategies and local operational capacities.

The empirical application of this model to Damghan 5. Conclusion
County—a central hub for pistachio cultivation and
processing in Iran—further demonstrates its contextual
relevance and practical significance. Damghan’s agricultural
economy produces a large volume of pistachio green hull
waste each year, much of which remains underutilized and
contributes to soil and water contamination. The
implementation of the proposed model in this setting not only
identified suitable locations for new waste treatment facilities

Owing to the undeniable importance of the waste
management problem in the agricultural sector, the current
article has addressed the agricultural waste management
problem considering two important aspects namely
sustainability and resilience. To this end, this work has
developed a machine learning-based model to evaluate the
potential points to establish the collection and recycling
centers for handling the agricultural waste. In this way, at the
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outset, the major indicators were specified and their weights
were computed employing the stochastic BWM. Then, the
potential points for establishing the facilities were assessed
using the machine learning approach. Based on the achieved
results, land cost, impact on ecological landscape, pollution
prevention and control, and capacity expansion capability
have been determined the most important ones. Also, the
findings indicate that the machine learning model, with an
accuracy of 98%, effectively evaluates the points, thereby
selecting the optimal location with high flexibility and
agility. Moreover, the obtained outputs demonstrated the
reliability and effectiveness of the developed data-driven
method. Furthermore, future studies can consider other
crucial aspects such as agility and digitalization. Also, future
works can investigate the research problem under mixed
uncertainty (e.g., fuzzy-scenario) to deal with a high level of
uncertainty.
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