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Abstract  

Electricity is one of the most significant energy sources in the modern world. Over the last century, 

there has been no significant change in the centrally controlled structure of electrical power grids, 

especially in developing countries. Global population and economic expansion, together with air 

pollution, put further strain on the electricity industry. The power electrical grid, as the main structure 

for power transmission, has to reconsider its concepts. Currently, critical peak load caused by 

residential customers has attracted utilities to pay more attention to residential demand response 

(RDR) programs. With the rise in household computing power and the increasing number of smart 

appliances, more and more residents can participate in demand response (DR) management through 

the home energy management system (HEMS) to prioritize the start-up of electrical appliances 

according to the necessity of use and efficiency. This research is an applied case study designed for 

cold regions with an average household population of three people. It is suggested that, in addition 

to, time of consumption and household type, the cluster of appliances affects the price of 

consumption, and the cost paid by users varies depending on the cluster of appliances used by 

different households at different times. To evaluate the potential for changing prices to better 

consumption criteria, a multi-agent hierarchical model including utility and different types of 

households and appliances is presented in this study that takes into consideration two main 

objectives, including peak smoothing and energy consumption reduction. Based on the specified 

indicators, the analytical results of two scenarios were analyzed, and it was concluded that variable 

pricing of appliance consumption can reduce electricity consumption and smooth the peak load 

curve. 
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1. Introduction 

In modern economies worldwide, electricity is arguably the 

most versatile energy source and is closely linked to both 

social and economic progress. Electrical power has increased 

faster than any other fuel, which has led to a steady increase 

in the fuel mix's overall proportions (Lin & Zhu, 2020). This 

trend is expected to continue in the next years as growing, 

especially rural, segments of the world's population in 

emerging countries start moving up the energy ladder and 

connecting to electrical grids. Fossil fuels provide the vast 

bulk of the primary power source that humans use to generate 

electricity (Kumar et al., 2023). Since fossil fuels are 

becoming less and less available over the present century, 

they must be replaced since they seriously damage the 

atmosphere, ecosystems, and human health. The primary 

source of greenhouse gas (GHG) emissions from human 

activities, especially CO2, into the earth's atmosphere is the 

burning of fossil fuels. Therefore, the anticipated production 

of power is closely linked to greenhouse gas emissions and 

human-caused climate change (Sharda et al., 2021). 

Predictions about the evolution of the global energy 

infrastructure over the next millennium provide the basis of 

the assessment of the expected environmental harm caused 

by human activities. Architects, administrators, energy 

legislators, authorities, and creators around the world are 

focusing on using energy sources with the least amount of 

pollution to generate electricity because both environmental 

degradation and global warming are recognized as major 

problems. Consequently, the development of carbon-free 

power-generating techniques should focus on the extent to 

which energy contributes to global greenhouse gas emissions 

(Khan et al., 2016). Renewable energy sources (RES) are 

now used to meet the world's energy demands. Renewable 

energy sources (RES) include biomass, water power, 

geothermal energy, wind, solar power, and maritime energy. 

The green renewable power source is the main, 

unadulterated, and infinite source of electricity. Around the 

world, authorities are encouraging people to use sustainable 

energy sources, preserve energy, and offer rewards to those 

who do so (H¨o¨ok & Tang, 2012). 

To meet these challenges, the scientific community as well as 

industrial entities, are taking steps to upgrade their grid 

infrastructure and related technologies to ensure energy 

production and supply over the next century.  While many of 

the current solutions that must meet demand are based on the 

traditional idea of increasing supply to meet demand, demand 

response by managing demand opposes the aforementioned 

idea and seeks to match the available energy. To effectively 

manage the demand response, utilities use different signals 

such as price. One of the pricing methods that can be 

considered is different pricing for electrical appliance 

clusters (Simsar et al., 2023). Thus, this study aims to develop 

an extendable agent-based model of household energy 

consumption, which can simulate the consumption of 

appliances to identify the influence of the various pricing for 

each cluster of appliances. Regarding organization, section 2 

reviews the literature and studies on the models of household 

electricity consumption. Section 3 presents the proposed 

framework. Section 4 describes the scenario analysis in the 

research. Section 5 discusses the model validation and results 

of the experiments. Finally, the paper is concluded in Section 

6. 

2. Literature Review 

With the pyramidally serious environmental pollution as well 

as the increasingly tense relationship between energy supply 

and demand, the contradiction between the use of inefficient 

and single types of energy and the reserve of resources is 

gradually deepening (Hua et al., 2025). Residential 

consumers play an important role in the sustainable transition 

of the energy system by leveraging their household loads for 

demand response (DR). Sridhar et al. analyzed the enrollment 

rates of residential consumers within DR through an agent-

based model (ABM). Both economic and noneconomic 

(social/behavioral) parameters that influence consumer 

enrollment in DR are considered. An energy management 

model, a home energy management system (HEMS), is used 

to identify the potential economic savings of consumers 

enrolling in DR. Consumers are randomly assigned to 

different neighborhoods and have different social 

relationships (e.g., friends, neighbors), which, in turn, 

influences their decision-making in the ABM (Sridhar et al., 

2024). In recent years, researchers have focused on problems 

including price, consumption of energy (Sadeqi & 

Roozmand, 2023), and agent-based modeling and simulation 

(Vanhée & Borit, 2024). Customers and utilities may lessen 

pricing volatility and peak demand by using demand 

response. To lower the needs for infrastructure related to 

energy generating, demand itself can be made more flexible 

rather than requiring electricity generation to adjust to 

fluctuations in demand. Demand response is a cost-effective 

and promising approach that will increase the flexibility of 

power demand and allow individual consumers to modify 

their demand plans in order to satisfy their energy supply 

requirements (Simsar et al., 2023). Additional options 

include lowering energy and utility costs by installing 

efficient renewable energy systems, educating consumers 

about their energy usage, utilizing energy-efficient 

appliances, replacing traditional devices with smart ones, and 

leveraging contemporary power communication 

technologies (Del Mar Sol`a et al., 2023). An intelligent 

energy management system called a home energy 

management system lets homeowners monitor how much 

energy is produced, stored, and used (Shareef et al., 2018). 

Using communication and sensing techniques used in houses, 

a personal smart device allows for real-time control and 

monitoring of many intelligent home device functions (Han 

et al., 2011). By evaluating the user interface panel and using 

feedback from sensing devices to regulate the difference error 

between the input and output signals, the HEMS framework 

functions as a feedback control system that instructs 

intelligent appliances (Chen et al., 2021). HEMS offers a 

number of features, including monitoring the performance of 

electrical components and transmitting vital data about the 

energy usage of each household appliance in real time (Son 

et al., 2010). Managing various home appliances remotely or 

manually; administration for the generation, conservation, 
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and use of power; If any irregularities are found, an alert will 

be sounded; Maintain energy and price records in real time to 

cut down on power usage (Sare et al., 2014). These days, 

HEMS is crucial because of its computerization capabilities 

and operational recommendations, which lower power 

consumption and boost efficiency. HEMS are demand-

response devices that adjust and lower demand to improve 

the energy generation and consumption profile of a 

consumer's house (Jin et al., 2017). 

With the advent of the smart electrical grid, people may now 

plan their domestic energy usage to save money on energy 

and lower the power Peak-to-Average Ratio (PAR) 

(Dragomir & Dragomir, 2023). The ability to schedule home 

device operations in HEMS allows users to achieve their 

goals and priorities while minimizing energy use, electricity 

costs, peak load demand, and user comfort (Yang et al., 

2023). Efficient scheduling techniques include the ability to 

switch between non-schedulable electrical items such as 

screens, lighting, presses, kitchen appliances, and portable 

devices, as well as schedulable electrical devices such as 

electric vehicles, washing machines, dryers, heating systems, 

and cooling systems at any time (Zhou et al., 2016). Many 

schedule control strategies have been used to provide the 

most efficient appliance scheduling. scheduling energy use 

while taking a number of tactics into account (Yoshihisa et 

al., 2012). Before scheduling, the energy management 

control must receive the output power from Demand 

Response (DR), Distributive Generation (DG), and Real 

Time Pricing (RTP). RTP makes use of the forecasted data. 

Each device includes a smart plug to enable completely 

autonomous control of household appliances, and a 

scheduling system controller will establish a wireless 

networking connection with each terminal (Yang et al., 

2018). HEMS used to schedule home devices by shifting or 

reducing loads by taking advantage of the DR program to run 

appliances at the time of low rates of electricity thereby 

ensuring the comfort of users (Haider et al., 2016). HEMS 

schedules high-consumption appliances to consume power 

from clean energy resources during periods of peak demand 

or when grid power rates are high, this result in reducing the 

grid’s burden and ensuring its stability (Luo et al., 2018). 

with the aid of devices that continuously monitor the amount 

of electricity consumed by various home electronics and 

assess energy usage patterns at the appliance level. In order 

to reduce power consumption and associated costs, HEMS 

provides a range of consumption plans (Bapat et al., 2011). 

Demand response reduces the need to invest in production 

during peak hours, improves efficiency and stability, and has 

several financial and environmental advantages. It is 

particularly successful at moving consumption away from 

peak hours. The proper signal must be given to the final 

consumer in order to be able to create a win-win situation for 

customers and utilities (Simsar et al., 2023). It has been 

demonstrated that DEMAND programs provide both the 

supply and demand sides with a number of operational and 

financial advantages (Siano, 2014; Zhang et al., 2018). 

Although most DR providers serve commercial and industrial 

clients, residential demand response (RDR) has gained 

increased attention in recent years due to the sharp increase 

in home power usage, particularly air conditioning. (National 

Energy Administration of China, 2019; Xie et al., 2018). 

High home energy consumption has emerged as the primary 

cause of the majority of peak demand and significant peak-

valley variations during heat waves in hot summers (Mhanna 

et al., 2016). Numerous in-depth studies have been conducted 

on the modeling of home power consumption profiles. 

However, the goal of the study has a significant influence on 

the approach choice. Twelve distinct household load curve 

models were examined and assessed by Grandjean et al., who 

divided them into two primary categories: Top-down and 

bottom-up (Grandjean et al., 2012).  

Agent-based modelling is and simulation (ABMS) known as 

a modelling and simulation technique capable of modelling 

complex systems composed of interacting autonomous 

‘agents’ (Segovia et al., 2022). Numerous domains, including 

supply chain management (Rahman et al., 2021), marketing 

(Rand & Stummer, 2021), finance and economics (Axtell & 

Farmer, 2022; Segovia et al., 2022; Zehra & Urooj, 2022), 

and others, have made use of ABMS. The past two decades 

represent a fast development of ABMS in management and 

business studies because of characteristics including 

heterogeneity, a bottom-up viewpoint, non-linearity, learning 

agents, and a complex system approach (Zehra & Urooj, 

2022). Vijayan et al. propose an extendable agent-based 

computational model for assessing household electricity 

consumption patterns in cities of developing nations. They 

demonstrated the model using an urban precinct in India as a 

representative case. It simulates the monthly electricity 

consumption of an urban precinct in Nagpur by combining 

the significant factors impacting household electricity 

consumption in developing nations with the household's 

electricity consumption process in relation to outdoor 

weather conditions and the heterogeneity in occupants’ 

behavior (Vijayan et al., 2024). 

Using sociodemographic criteria, Gonzalo et al. employed 

the ABMS technique to create zones within the London 

metropolitan region. In order to replicate the hourly power 

consumption for domestic energy, electric vehicle charging, 

and heat pumps, a heterogeneous set of agents with an 

occupancy profile is created for each zone. This model 

focused on electric vehicles and showed their residential 

usage as a total amount of power used (Bustos-Turu et al., 

2016). In order to assess the economic feasibility of different 

available storage technologies using a simulation-based 

method, Zheng et al. created an agent-based stochastic 

appliance level demand model to randomly generate demand 

profiles for a single representative US household. They then 

created dispatch strategies based on available demand 

response tariffs (Zheng et al., 2014). A multi-agent system 

architecture was presented by Wang et al. to investigate 

residential power usage under various price schemes (Wang 

et al., 2018). In the study, an ML-based simulation 

framework for exploring two fairness constructs of dynamic 

pricing for residential electricity with behavioral agent-based 

models based on social theory combined with active learning 

is described (Thorve et al., 2024). In the case study, four 

demand response algorithms were used to simulate a single 

family with a single occupancy pattern type. Elie et al. 
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suggested methods for achieving sustainable building 

performance by using the building's inhabitants as agents and 

their thermal comfort as an objective function for 

optimization (Azar et al., 2016). The suggested model's main 

goal is to integrate building performance with human 

activities. Zhang et al. investigated an office building's power 

usage using an ABMS model (Zhang et al., 2011).  An ABMS 

model was presented by Lin et al. to investigate the power 

consumption of office buildings using a tiered pricing 

structure (Lin et al., 2018). Lin et al. looked at smart charging 

techniques by using multi-ABMS to analyze the charging 

patterns and penetration rates of electric vehicles (Lin et al., 

2016). The use of the ABMS concept in relation to smart 

power markets and grids was studied by Philipp et al (Ringler 

et al., 2016). Multi-agent deep reinforcement learning 

optimization for immediate form multi-home energy 

administration, including EV charging schedules, was 

proposed in this study in (Kaewdornhan et al., 2023) in order 

to exchange information and reach the best possible decision. 

The SHEM multi-agent system (MAS) was proposed by (Wu 

et al., 2014) as a way to plan equipment operations and 

develop a prototype that can meet user requests for instant 

demand management. Using a novel fuzzy energy factor in 

the FLC approach for rapid demand management was also 

created and validated. In (Jabash & Jasper, 2020), an 

intelligent multi-agent Adaptive Neuro-fuzzy inference 

approach embedded in HEMS is given for the effective 

management of ESS, scheduling devices, and integrated 

green energy. This study (Wang et al., 2023) focuses on how 

to accomplish a significant savings by using multi-agent deep 

reinforcement learning to choose the best course of action 

using efficient power transactions and DSM methods. 

3. Research Method 

This section discusses the proposed ABMS framework. 

Three agents make up the architecture of the framework: the 

utility agent, the household agent, and the appliance agent. 

Fig.1 illustrates the hierarchical connection between the 

Household and Appliances agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Hierarchical connection 

 

The appliance agent has the parameters such as appliance 

types, appliance power & price. The type of appliances, 

clustered in (Simsar et al., 2023) according to their inherent 

characteristics, is identified and shown in Table 1. The 

appliances that are in the first cluster are known as essential 

loads and should be run immediately; these are the base loads 

that can be predicted a day ahead, including different types 

of lamps, heating or cooling appliances such as air 

conditioners or water heaters, and cooking appliances. The 

appliances that are in the second cluster are known in two 

categories: 1) These loads can be scheduled on the optimal 

decisions. These devices can shift their run time within user-

defined time or optimally defined time, such as a dishwasher, 

washing machine, etc. 2) Appliances that should always be 

plugged in (fridge, phone, garage door, Wi-Fi modem, water 

pump, etc.). The price of these loads in the case of the 

variable price scenario, is greater than the first cluster of 

appliances in the peak time. The appliances that are in the 

third cluster are known as items that are mostly recreational 

or non-essential, such as an outdoor hot tub, straightening 

iron, water feature, game console, etc., which can be placed 

in lower priorities. The price of these loads in the case of the 

variable price scenario, is greater than the second cluster of 

appliances in the peak time. This agent models the appliance 

behavior at a microscopic level and interacts with upper 

agents to simulate steady or intermittent load over time. 

The household agent consists of three types of households, 

which are a group of individuals in a house with parameters 

such as number of members (𝐻𝑐𝑜𝑢𝑛𝑡) and mean hourly 

energy consumption (𝑀𝑒𝑎𝑛𝐻𝑜𝑢𝑟𝑙𝑦𝐻𝑠𝐶𝑜𝑛). 𝑡 establishes 

the amount of time that each type of household consumes 

each appliance wich is determined by H1(h), H2(h) & H3(h).  

Equations 7, 8, and 9 represent household types. Table 1 

summarizes each appliance's consumption according to the 

type of household. A low-consumption household is 

represented by H1, a medium-consumption household is 

represented by H2, and a high-consumption household is 

represented by H3. In the case of the variable price scenario 

for appliances, the household's hourly consumption is 

compared to the 𝑀𝑒𝑎𝑛𝐻𝑜𝑢𝑟𝑙𝑦𝐻𝑠𝐶𝑜𝑛, and if the 

𝑀𝑒𝑎𝑛𝐻𝑜𝑢𝑟𝑙𝑦𝐻𝑠𝐶𝑜𝑛 is greater, the appliance is switched off. 

This agent interacts with the appliance agent for outputs, e.g., 

triggers to switch on/off a device, while it provides a central 

role in computing the occupancy of individuals’ overtime. 

The Utility agent, has the parameters such as The maximum 

and minimum total hourly consumption based on the 

available capacity of the utility, which determines peak and 

off-peak hours of consumption. This agent interacts with the 

household agent in order to determine peak load times and 

peak load shedding during peak times. 

Over the course of three months, the suggested framework 

creates the load curve for a specified number of homes on a 

24-hour scale. Our implementation is agent-based and 

hierarchical. 

Utility agent Household agent 

agent 

appliance agent 

HEMS 
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Table 1  
Clusters of Appliance. 

Appliance Type power(kwh) H1(h) a H2(h) b H3(h) c 

Corded Electric Handheld Leaf Blower 3 2.5 0.25 0.33 1 

Curling Iron 3 0.035 0.22 0.3 0.7 

Drill 3 0.85 0.1 0.17 0.24 

Electric Blanket 3 0.2 1 1.5 3 

Electric Mower 3 1.5 0.25 0.7 1 

Electric Shaver 3 0.02 0.03 0.12 0.3 

Game Console 3 0.2 1 2 5 

Hair blow Dryer 3 2.5 0.15 0.22 0.3 

Heated Hair Rollers 3 0.4 0.25 0.35 0.75 

Outdoor Hot Tub 3 0.5 0.25 0.5 0.75 

Power Saw 3 0.275 0.07 0.1 1.14 

Straightening Iron 3 0.3 0.15 0.22 0.3 

Strimmer 3 0.5 0.25 0.7 1 

Treadmill 3 0.9 0.5 0.75 1 

Water Feature 3 0.035 6 16 24 

Air Purifier 2 0.03 2 8 18 

Bathroom Towel Heater 2 0.15 1 5 8 

Coffee Machine 2 1.5 0.13 0.33 0.5 

Computer (Monitor & Printer) 2 0.2 1 3 8 

Cordless Drill Charger 2 0.15 0.03 0.08 0.2 

Clothes Dryer 2 5 0.2 0.4 1 

Dehumidifier 2 0.35 4 13 24 

Dish Washer 2 1.5 1.4 2 4 

Electronic Alarmclock – Radio 2 0.005 24 24 24 

Espresso Coffee Machine 2 0.9 0.017 0.025 0.05 

EV Home Charger 2 3.4 8 12 24 

Laptop Computer 2 0.1 1.5 2 2.5 

Microwave 2 1 0.17 0.25 1 

Furnace Fan Motor (Intermittent) 2 0.35 5.3 8 13.83 

Projector 2 0.27 0.75 2 5 

Crock Pot 2 0.25 6 8 10 

Humidifier (Portable) 2 0.1 2.67 11 18 

Iron 2 1 0.04 0.2 0.34 

Kettle Boiler 2 1.35 0.14 0.2 0.33 

Laser Printer 2 0.8 0.1 0.4 0.75 

Mobile Phone Charger 2 0.007 1 2 4 

Nintendo Switch AC Adapter 2 0.04 2 3.5 6 

Paper Shredder 2 0.22 0.05 0.08 0.25 

Power Shower 2 7.5 0.08 0.25 0.33 

Rice Cooker 2 0.8 0.33 0.42 0.68 

Scanner 2 0.018 0.015 0.03 0.08 

Sewing Machine 2 0.075 0.13 0.47 2 

Slow Cooker 2 0.18 6 8 10 

Steriliser 2 0.65 0.03 0.06 0.5 

Vacuum Cleaner 2 0.8 0.067 0.15 0.2 

Washing Machine A+++ 2 0.5 0.24 0.75 1.33 

Washing Machine B 2 1.8 0.24 0.75 1.33 

Water Dispenser 2 0.1 3 7 10 
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Appliance Type power(kwh) H1(h) a H2(h) b H3(h) c 

Air Conditioner (Room) 6,000 BTU 1 0.75 8 12 24 

Air Cooler 1 0.08 4 6 24 

AV Receiver 1 0.45 2 5.8 8 

Ceiling Fan 1 0.065 0.5 4.64 24 

Cooker Hood 1 0.2 0.5 0.8 3 

DVD Player 1 0.06 0.3 0.58 2 

Electric Pressure Cooker 1 1 0.08 0.5 1 

Electric Tankless Water Heater 
1 

3.8 1 3 5 

Electric stove 1 2 0.23 2 3 

Energy Saver Lamp 1 0.06 3 5 8 

Evaporative Air Conditioner 1 2.6 0.5 2 7.23 

Extractor Fan 1 0.012 0.3 0.8 1.1 

Fan (Portable) 1 0.115 0.5 2 4.64 

Food Blender 1 0.39 0.1 0.13 0.17 

Fridge A+ 1 0.335 6 12 24 

Fryer 1 1.15 0.33 0.67 2 

Garage Door Opener 1 0.3 0.16 0.4 0.6 

Halogen Lamp 1 0.018 0.56 4 6.67 

Heater 1 1.2 1 5 8 

LCD television 1 0.17 2 5.8 14.67 

LED television 1 0.12 2 5.8 14.67 

MI Box 1 0.007 2 5.8 8 

Furnace Fan Motor (Continuous) 
1 

0.35 24 24 24 

Night Light 1 0.001 4 8 10 

Oven 1 2.15 0.23 2 3 

Sandwich Maker 1 1 0.27 0.3 0.4 

Space Heater 1 5 1 5 8 

Stereo 1 0.03 0.5 3 5.67 

Stove Hood 1 0.03 0.5 0.8 2.5 

Toaster 1 1.35 0.13 0.2 0.33 

Tower Fan 1 0.06 0.5 7.5 24 

Video Cassette Record DVD 1 0.04 1.67 3 6.67 

Water Heater Typical Family(4) 
1 

3.8 0.74 3.33 5 

Water Pump (Deep well – higher powered) 
1 

1.1 0.33 0.5 1.67 

Water Pump (Deep well – moderate power) 
1 

0.5 0.33 0.5 1.67 

WiFi Booster 1 0.002 12 18 24 

Home Phone 1 0.005 24 24 24 

a,b,c Publications of Managerial Focus of Comprehensive Statistics Report about the Electricity Power Distribution Sector 2021. 

 

The average consumption amount per household  (𝐻𝑆𝐶) 

depends on both the average consumption amount per home 

(𝑀𝑒𝑎𝑛𝐻𝑜𝑢𝑟𝑙𝑦𝐻𝑠𝐶𝑜𝑛) and the household 

population(𝐻𝑐𝑜𝑢𝑛𝑡). The household population is 

determined by the Poisson distribution with  𝜆 = 31. 

 

𝐻𝑆𝐶 =  𝑀𝑒𝑎𝑛𝐻𝑜𝑢𝑟𝑙𝑦𝐻𝑠𝐶𝑜𝑛 ∗ 𝐻𝑐𝑜𝑢𝑛𝑡      (1) 

                                                           
1 Statistical Center of Iran 

𝐻𝑐𝑜𝑢𝑛𝑡 = 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(3) (2) 

3.1. Mathematical model of agent-based modeling  

The mathematical model of the problem is as follows: 

 

𝑍𝑖𝑡  =  ∑ ∑ 𝑝𝑜𝑤𝑒𝑟𝑖 × 𝑡

3

𝑖=1

24

𝑡=0

× 𝑃𝑟𝑖𝑐𝑒𝑖𝑡    (3) 
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min 𝑍𝑡𝑜𝑡𝑎𝑙 = min ∑ ∑ ∑ 𝑍𝑖𝑡𝑗

24

𝑡=0

3

𝑖=1

𝑗

𝑗=1

          (4) 

𝐶𝑖𝑡  =  ∑ ∑ 𝑝𝑜𝑤𝑒𝑟𝑖 × 𝑡

3

𝑖=1

24

𝑡=0

   (5) 

min 𝐶𝑡𝑜𝑡𝑎𝑙 = min ∑ ∑ ∑ 𝐶𝑖𝑡𝑗

24

𝑡=0

3

𝑖=1

3

𝑗=1

       (6) 

 

∑ ∑ ∑ 𝐶𝑑𝑖𝑡1

3

𝑖=1

24

𝑡=0

31

𝑑=1

≤ 𝑁𝑝     𝑗 = 1   (7) 

 𝑁𝑝 < ∑ ∑ ∑ 𝐶𝑑𝑖𝑡2

3

𝑖=1

24

𝑡=0

31

𝑑=1

< 𝑝       𝑗 = 2          (8) 

𝑝 ≤ ∑ ∑ ∑ 𝐶𝑑𝑖𝑡3

3

𝑖=1

24

𝑡=0

31

𝑑=1

       𝑗 = 3   (9) 

In this model, 𝑝𝑜𝑤𝑒𝑟𝑖 (Kw/h) indicates the amount of power 

consumption of each appliance. 𝑃𝑟𝑖𝑐𝑒𝑖𝑡  shows the cost per 

kilowatt of energy consumed by cluster of appliances i at time 

t. 𝐶𝑖𝑡   determines the daily consumption of a household. 

𝐶𝑡𝑜𝑡𝑎𝑙 shows the total daily consumption of households. 𝑍𝑖𝑡   
determines the daily cost of a household. 𝑍𝑡𝑜𝑡𝑎𝑙 shows the 

total daily cost of households. 𝐶𝑑𝑖𝑡 determines the monthly 

consumption of a household that if it is more than 𝑝, it is a 

high-consumption household, if it is less than 𝑁𝑝, it is a low-

consumption household, and if it is between the two, it is an 

average-consumption household. J stands for household, i for 

appliance, and t for the amount of time (hour) the equipment 

has been turned on. 

3.2. Simulation procedure  

This section explains how to use ABMS libraries to 

implement the suggested agent-based model for household 

electricity consumption with a time unit of day in AnyLogic 

8 Professional 8.7.11. A flowchart of this procedure is shown 

in Fig. 2. To compute electricity consumption per minute, 

three agents of appliance, household, and utility are included 

in the design of the home energy management system. Also, 

Table 1 lists the three types of appliance agents and the 

amount of energy consumption by the three types of 

household agents. The number of the appliances is the same 

in different types of houses. An initial population of the house 

agents is configurable through user inputs. The behavior of 

appliance agents is encapsulated within the house agent. The 

house agent may switch on or off the appliances, using the 

probability distributions assigned to each appliance and 

conditional transitions. In order to investigate changes in 

domestic load and for demand-side or demand-response 

management, the utility agent aggregates the consumption of 

the households within and is made to communicate with 

external modules, such as transmission grids and power 

distribution. The classification of households as high-, low-, 

or average-consumption is based on the quantity of electricity 

used. The utility calculates the amount of electricity 

consumed by all households per hour and compares it with 

the amount of energy delivered from the producer and 

determines the peak hours. The lower the amount of 

electricity consumed during peak hours, the better for the 

utility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Flow chart for model initializations 

3.3. Agents behavior 

The behavior of appliance agents is encapsulated within the 

household agent; hence a hierarchy is formed. 

3.3.1. Appliance agent 

According to Figure 1, in the off state, the appliance is off 

and waiting for a message to turn on based on the probability 

of the appliance turning on. Regardless of the type, the 

appliances are turned on and turned off after the working time 

has elapsed. In this case, the price of electricity consumed is 

𝑝𝑡𝑗, which depends on t, the type of time of consumption 

(peak or off-peak), and j, household type (low consumption 

user, medium consumption user, high consumption user). 

The price of electricity used under a fixed pricing scenario is 

determined by the household type and the time of 

consumption. If the variable price scenario is in effect, the 

price of electricity used depends on the kind of household j, 

the type of appliance i used in the home, and the type of time 

of consumption t. For every one of the 85 appliances that are 

switched on, this cycle is repeated. During the on-to-off 

transition, the quantity of consumption is determined hourly, 

daily, monthly, and quarterly. The bill cost is obtained based 

on the price  𝑝𝑡𝑗𝑖 , which is determined.  
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Fig. 3.Appliance behavior 

3.3.2. Household agent 

The state diagram for the household agent is presented in 

Figure 2. If the monthly electricity consumption of the 

household is greater than the maximum amount set by the 

utility, the household is a high-consumption household; if it 

is less than the defined minimum amount of electricity 

consumption, the household is a low-consumption 

household; in between this range is average consumption, 

and the pattern of calculating the cost of electricity 

consumption is different for each type of household. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. household behavior 

3.3.3. Utility agent 

The utility agent state diagram is shown in Figure 3. As the 

ruling authority, the utility agent establishes the peak states 

and sets the daily minimum and maximum power 

consumption amounts. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Utility behavior 

4. Scenario Analysis 

To evaluate home energy consumption patterns and 

investigate the impact of particular factors, we created two 

scenarios. Scenario 1 is intended to simulate energy usage in 

a fixed-price setting. Scenario 2 simulates energy use in a 

variable-price setting. 

4.1. Energy consumption simulation in Fixed-Price scenario 

The price of electricity used under a fixed pricing scenario, 

as shown in Table 2, is determined by the household type and 

the time of consumption. Therefore, the price of electricity 

consumption for a household is higher during peak hours than 

at other times, and the price of electricity consumption during 

peak hours is higher for a high-consumption household than 

for a low-consumption household. During the on-to-off 

transition, the quantity of consumption is determined hourly, 

daily, monthly, and quarterly. The bill cost is obtained based 

on the price 𝑝𝑡𝑗, which is determined. 

4.2. Energy consumption simulation in Variable-Price 

scenario 

As illustrated in Table 3, if the variable price scenario is in 

effect, the price of electricity used depends on the kind of 

household j, the type of appliance i used in the home, and the 

type of time of consumption t. For every one of the 85 

appliances that are switched on, this cycle is repeated. During 

the on-to-off transition, the quantity of consumption is 

determined hourly, daily, monthly, and quarterly. The bill 

cost is obtained based on the price  𝑝𝑡𝑗𝑖 , which is determined. 

 

 
Table 2  
Price in fixed price scenarios 

Fixed price scenarios (T1,H1) (T1,H2) (T1,H3) (T2,H1) (T2,H2) (T2,H3) (T3,H1) (T3,H2) (T3,H3) 

Price of App1, App2, & App13 120 159 183 300 397 457 600 794 913 

Publications of Managerial Focus of Comprehensive Statistics Report about the Electricity Power Distribution Sector 2023.

Table 4  
Evaluation of simulation results 

Scenarios 
Hourly max 

consumption 

Hourly mean 

consumption 

Hourly MAD 

consumption 
CostMonth.max CostMonth.mean CostMonth.deviation 

Fixed prices 1307.21553 636.111635 184.9057655 421937755.3 201026954.1 119942838.4 

Variable prices 754.21487 283.047607 77.52504767 40722728.92 20208926.52 11744029.21 
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5. Research results 

The results are reviewed and analyzed according to repeated 

scenarios and indicators. For two distinct scenarios, the 

hourly consumption diagram illustrates the simulation 

results. The hourly consumption diagram is shown in Fig. 6 

& Fig. 7. The graphic shows that in the case when appliance 

prices are changing, hourly consumption is reduced. It is 

quite difficult to perform the validation of ABMSs; to 

validate the model, every simulation scenario was run 30 

times, with the system producing the necessary output each 

time. The "maximum hourly consumption" is one of the key 

indicators; it has dramatically dropped in the variable pricing 

scenario and has a reduced "standard deviation." Thus, it is 

possible to say that the "hourly consumption" diagram has 

smoothed out. All indicators in the variable-price scenario 

have decreased in comparison to the fixed-price scenario, as 

Table 4 illustrates. This means that a decrease in the hourly 

MAD consumption signifies a smoothing of the hourly peak 

diagram, while a decrease in the hourly max and mean 

consumption indicates a decrease in consumption. In a 

similar vein, the consumer's reduction in the monthly cost 

signifies their contentment. Consequently, the problem 

identified in the literature review—which is a win-win 

situation for the utility and the household—is thus resolved.  

The model is validated through the following four steps: 

(1) micro-face validation; (2) macro-face validation; (3) input 

validation; and (4) output validation (Fraccascia et al., 2020). 

The micro-face validation criteria are satisfied because its 

mechanisms and characteristics are defined in a way that is 

consistent with the literature, and because it is based on the 

real household consumption system, it is consistent with the 

mechanisms of electricity consumption in the real world. The 

macro-face validation criteria are satisfied because the model 

aligns with real-world dynamics. This model is congruent 

with real-world dynamics since it is designed for cold 

weather and the peak times of the year, and it may be 

extended to different scenarios by adjusting certain 

parameters. Various strategies are adopted to meet the input 

validation criteria; the robustness of the model is tested by 

running additional simulations with randomness in the model 

inputs. In this model, input data is either taken from the real 

databases, and in the absence of data, random distributions 

are used to define the inputs. To validate the output criteria 

in this research, Table 4 presents the results.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Hourly consumption fixed-price scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Hourly consumption variable-price scenario 

6. Discussion and Conclusion 

Electricity is undoubtedly the most adaptable energy source 

in contemporary economies across the world and is strongly 

associated with both social and economic advancement. In 

this scenario, smart grid is an emerging technology that is 

related to different role players in different parts of energy 

systems. One fundamental aspect of smart grids is demand 

response. Increasing demand response efficiency requires an 

intelligent home appliance control system that prioritizes 

appliance startup based on efficiency and utilization 

requirements. Various signals, including price, are used by 

utilities to effectively control the demand response. 

Differentiating prices for various appliance clusters is one 

such pricing strategy. For demand response management, 

prior research employed an incentive-based pricing criteria in 

which home characteristics and time of use (ToU) were the 

only factors utilized to calculate the price. As an example, 

Thorve et al. simulate behavior adaptations in response to 

changes in electricity prices to study cost savings through 

monthly bills and peak demand reduction in synthetic 

household agents in a Time of Use (ToU) pricing scheme in 

Virginia, USA. Further, they can show that there exists a 

region in the parameter space that corresponds to a fair ToU 

pricing scheme for both entities: all income-stratified 

communities and power companies (Thorve et al., 2024). 

Unlike previous studies that used an incentive-based price 

criterion for load response management, where the price was 

determined solely based on time of use and household 

characteristics, in this study the cost of using each appliance, 

based on the time each cluster of appliances is used by each 

kind of household, has been considered. An extended agent-

based model is established in this study to investigate the 

rules governing home energy use. The findings demonstrate 

the enormous potential of agent-based modeling in 

simulations of home energy usage. Three kinds of agents 

created. Among them, the household categorization is 

critical, the appliances are detailed, and the utility is specified 

as a government agency. The design of appliance operation 

is the key to successfully simulating household energy 

consumption. The results are reviewed and analyzed 

according to repeated scenarios and indicators. Two 

scenarios were taken into consideration for the simulation: 

fixed and variable pricing for appliances. For two distinct 

scenarios, the hourly consumption diagram illustrates the 
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simulation results. The graphic shows that in the case when 

appliance prices are changing, hourly consumption is 

reduced. It is quite difficult to perform the validation of 

ABMSs; to validate the model, every simulation scenario was 

run 30 times, with the system producing the necessary output 

each time. The "maximum hourly consumption" is one of the 

key indicators; it has dramatically dropped in the variable 

pricing scenario and has a reduced "standard deviation." 

Thus, it is possible to say that the "hourly consumption" 

diagram has smoothed out. However, smart grid systems can 

benefit from this technique because the peak load 

consumption curve has been smoothed, and home power 

usage has been optimized by giving varying charges for the 

use of various clusters of appliances. Consequently, the 

problem identified in the literature review—which is a win-

win situation for the utility and the household—is thus 

resolved. This study considers one utility, the competitive 

situation and different utilities could be taken into account for 

evaluation. Environmental and household economic factors, 

which were not included in this study, may possibly be the 

subject of future research. An additional area of study in 

order to optimize home consumption patterns might also 

focus on determining the right price for consumption of 

appliance clusters. 
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