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Abstract

  

The objective of this manuscript is to introduce an innovative methodology for addressing multiple 

attribute group decision-making (MAGDM) problems utilizing interval-valued intuitionistic fuzzy 

sets (IVIFS). The proposed approach solves the problem using a mathematical programming 

methodology. In the present investigation, a group decision-making problem characterized by IVIF 

multiple attributes is conceptualized as a linear programming model and resolved expeditiously. 

The models that are being proposed have been reformulated into two analogous linear 

programming (LP) models through the application of a variable transformation and the concept of 

aggregation operators. The obtained LP models are solvable by common approaches. The principal 

benefit of the suggested methodology is its facilitation of decision-makers (DM) in identifying an 

alternative that exhibits optimal performance, and the decision-making process does not rely on 

DM knowledge. Application of the proposed method is represented in a decision-making problem, 

and the results are compared with similar methods, proving the compatibility of the proposed 

method with previous ones. The

 

solid and understandable logic with computational easiness are the 

main advantages of the proposed method.  
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1. Introduction 

Decision-making primarily examines the framework within 

which an individual decision-maker (DM) or a collective 

decision-making group deliberates upon a course of action 

in an environment characterized by uncertainty. The field of 

decision theory facilitates the identification of the 

alternative that possesses the highest expected value, which 

can also be interpreted as the likelihood of attaining a 

prospective outcome. The overarching objective of 

formulating decision-making theory is to aid individuals in 

selecting from a predetermined array of alternatives. In the 

domain of operations research, the principal domains of 

inquiry frequently encompass multi-criteria decision-

making problems. From a managerial perspective, decision-

making problems are generally classified into two 

predominant categories: selection and planning problems 

(Simon, 1977). In the context of MCDM (multi-criteria 

decision-making), challenges arise when multiple criteria 

must be fulfilled to reach an effective decision. 

Furthermore, Multi-Criteria Decision Making (MCDM) 

encompasses both MODM (Multi-Objective Decision 

Making) and MADM (Multi-Attribute Decision Making) 

(Climaco, 2012). Generally, in MODM, trouble with 

making plans is considered. However, by MADM, 

selections are issued. A MADM problem can be described 

as follows: Let B={ b1, b2, …, bm} denote a non-empty, 

finite collection of decision alternatives, and D= { d1, d2, …, 

dn } is a finite set of goals, criteria, or attributes, consistent 

with the desirability of a judged alternative. MADM aims to 

decide the most desirable alternative with the very best 

diploma of desirability, admired for all related objectives 

(Zimmermann, 1987). 

Human information is regularly inexact and incomplete. 

(Yovits, 1988) stated that uncertainty could also arise 

because of approximate or partial records. The maximum of 

our facts regarding our adjacent phenomena is decided 

approximately or partially. Consequently, observing a few 

frameworks to deal with these uncertainties appears 

essential.  

The fuzzy set theory is among the broadly common 

frameworks about uncertainty (Zadeh, 1965). Fuzzy sets 

represent an extension of classic set theory in which each 

element within a universal set is allocated a degree of 

membership. Unlike classical sets, which clearly distinguish 

non-membership and membership, fuzzy sets allow for 

varying degrees of membership. This theory is extensively 

used in addressing decision-making problems.  

(Grattan Guinness, 1976) and (Gau & Buehrer, 1993) 

suggested that simply presenting a linguistic expression 

within a fuzzy set (FS) might not always be adequate. To 

address this, (Atanassov, 2016) introduced the concept of 

intuitionistic fuzzy sets (IFS), expanding on Zadeh's original 

fuzzy sets by incorporating the aspect of hesitancy.  

The Interval-valued Intuitionistic Fuzzy Set (IVIFS) 

demonstrates significant utility in the context of MAGDM 

or MADM problems, wherein the components of vector W 

or matrix D are characterized as IVIFNs. It is worth noting 

that the famous MADM approaches were developed in IVIF 

forms. The technique for Order of Preference by Similarity 

to the Ideal Solution  (TOPSIS) problem was extended by 

(Tan, 2011), (Ye, 2010), and (Park, Park, et al., 2011) under 

IVIF frameworks with specific distances within IVIFNs and 

anti-ideal and ideal descriptions. (Park, Cho, et al., 2011) 

gift an IVIF extension of the VIKOR (Vise Kriterijumska 

Optimizacija I Kompromisno Resenje) approach. A 

closeness coefficient was proposed by (Li, 2011) based on a 

nonlinear programming technique to solve IVIF MADM 

problems. (Arshi et al., 2023, 2024) introduced an 

innovative methodology aimed at addressing multiple 

attribute group decision-making (MAGDM) problems 

through the application of interval-valued intuitionistic 

fuzzy sets (IVIFS) and neutrosophic numbers. MADM 

problems were solved by (Chen et al., 2012), who 

introduced innovative fuzzy ranking techniques for 

Intuitionistic Fuzzy Values (IFVs), utilizing Interval-Valued 

Intuitionistic Fuzzy (IVIF) weighted average operators. The 

IVIF continuous weighted entropy was proposed by (Jin et 

al., 2014), and a method was developed for MAGDM 

problems conditional over the IVIF attitudinal expected 

score function and weighted relative closeness. (Garg & 

Kumar, 2020) introduce an innovative MADM approach 

using an IVIF (interval-valued intuitionistic fuzzy) set 

framework. This methodology integrates the Technique for 

Order Preference by Similarity to the Ideal Solution 

(TOPSIS). (Hajiagha et al., 2015) introduced a linear 

programming framework for multi-attribute group decision-

making (MAGDM) challenges. This framework addressed a 

sequence of issues in an iterative manner, culminating in a 

definitive score computed for each alternative.  

(Sadabadi et al., 2021) converted a fuzzy multiple criteria 

decision-making (FMCDM) issue into two linear 

programming models using a simple additive weighting 

method (SAW). (Garg & Arora, 2018) proposed a nonlinear 

programming framework that employs the TOPSIS 

methodology to address the complexities inherent in multi-

attribute decision-making problems. (Wan et al., 2020) 

developed a method for addressing MAGDM problems 

using IVIF data. They defined the weights of every DM 

with admiration for the attribute. Subsequently, an interval-

programming multi-objective model was solved to 

determine the weights of the attributes. Lastly, the 

comprehensive interval values of the alternatives were used 

to rank them. (Saffarzadeh et al., 2020) proposed a method 

for determining the weights of Decision Makers (DMs) in 

Group Multiple Criteria Decision-Making (GMCDM) 

problems based on interval data. (Mohammadghasemi et al., 

2019) proposed the TOPSIS method with the incorporation 

of Gaussian Interval Type-2 Fuzzy Sets (GIT2FSs) as a 

more flexible alternative to conventional triangular 

Membership Functions (MFs). Their work emphasized the 

effectiveness of GIT2FSs in accurately modeling curved 

MFs. (Tang & Meng, 2018) proposed the Induced 

Generalized Symmetrical Interval-Valued Intuitionistic 

Fuzzy Choquet-Shapley (IG-SIVIFCS) operator, which 

takes into account the global importance of elements as well 

as their global interactions. (Elsayed, 2024) proposed a 

multiple decision-making model (MCDM) to evaluate and 

schedule environmentally friendly fuel alternatives with the 
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aim of reducing greenhouse gas emissions. This method 

includes the effect of removing the value (MEREC) to 

obtain the weight of the value and using the TODIM method 

to give the options using triangular neutrosophic numbers. 

(Ishizaka & Siraj, 2018) assessed public transport 

satisfaction using a combined MCDM technique. This 

approach integrates Delphi, Group AHP (GAHP), and the 

Preference Ranking Organization Method for Enrichment of 

Assessments.  

(Abdollahi & Pour-Moallem, 2020) proposed a method 

combining TOPSIS and entropy to rank various Demand 

Response Resources (DRRs). (Abootalebi et al., 2018) 

developed an approach to address Group Multiple Criteria 

Decision-Making (GMCDM) problems, specifically for 

situations where data is precise with crisp values. (Meng & 

Tan, 2017) explored intuitive, hesitant, fuzzy linguistic 

distance measures (Pamu ar et al., 2018) presented a hybrid 

Multi-Criteria Decision-Making (MCDM) framework that 

amalgamates Interval Rough Analytic Hierarchy Process 

(IRAHP) with Multi-Attributive Border Approximation 

Area Comparison (MABAC). (Hajek & Froelich, 2019) 

presented how TOPSIS can be integrated with intuitionistic 

fuzzy cognitive maps valued by intervals to enhance group 

decision-making effectiveness. (Isen & Boran, 2018) 

created a hybrid model utilizing a genetic algorithm, an 

adaptive neuro-fuzzy inference system, and fuzzy c-means 

for inventory classification. (Perez-Canedo & Verdegay, 

2023) employed a lexicographic approach to ascertain 

distinct optimal fuzzy objective values, juxtaposing these 

findings with outcomes derived from linear ranking function 

methodologies. Furthermore, they elucidated the 

applicability of the lexicographic method in the domains of 

dietary planning and the analysis of time-cost trade-off 

problems within fuzzy contexts. Table 1 shows a brief 

description of the literature review.  

Given that the attributes of interval-valued intuitionistic 

fuzzy sets can substantially improve the articulation of 

uncertainty and the administration of ambiguous data in 

decision-making contexts, this research endeavors to 

introduce an innovative framework for addressing Multi-

Attribute Group Decision-Making (MAGDM) problems 

utilizing IVIF information. For this purpose, we employ 

linear programming (LP) techniques to solve the problem. 

As we know, solving the LP models is easy and simple. 

Indeed, the salient contributions of this research encompass: 

firstly, the presentation of an innovative methodology for 

tackling Multiple Attribute Group Decision-Making 

(MAGDM) problems when confronted with Interval-Valued 

Intuitionistic Fuzzy (IVIF) data; second, employing linear 

programming to solve an MCDM problem with IVIF 

numbers; third, the proposed methodology is simple and can 

be extended to an MCDM problem with any number of 

alternative and criteria. 

The present investigation is organized in the following 

manner: Section 2 offers a comprehensive overview of 

IVIFSs along with essential concepts, and Section 2 

addresses the specific problem and its formulations. Section 

3 elucidates the proposed method for addressing the 

problem. A numerical example demonstrating the 

applicability of the proposed technique is presented in 

Section 4. Finally, Section 5 draws several conclusions. 

 
Table 1  

Brief description of the literature 

Author Year Method or subject 

Jin et al. 2014 The IVIF continuous weighted entropy 

Ishizaka & Siraj 2018 A public transport satisfaction using a combined MCDM problem 

Abootalebi et al.  2018 Determining expert weights in the GMADM problem 

Isen & Boran              2018 Genetic algorithm, adaptive neuro-fuzzy inference system, and fuzzy c-means 

Hajek & Froelich  2019 Integration of TOPSIS with interval-valued intuitionistic fuzzy cognitive maps 

Mohammadghasemi et al.  2019 Using TOPSIS method with the incorporation of Gaussian Interval Type-2 Fuzzy Sets  

Saffarzadeh et al.      2020 Presenting a method to determine decision makers' weight (DMs) in GMCDM 

Abdollahi & Pour-Moallem             2020 A technique based on TOPSIS and entropy 

Garg & Kumar              2020 Integration of IVIF and TOPSIS 

Wan et al. 2020 Solving MAGDM problems with Atanassov's interval-valued intuitionistic fuzzy values 

Sadabadi et al. 2021 Transforming MAGDM into linear programming model 

Khan et al. 2021 Using linguistic interval-valued Q-rung Orthopair fuzzy TOPSIS method 

Azam et al. 2022 A Decision-Making Approach for the Evaluation of Information Security Management 

Perez-Canedo & Verdagay  2023 Using lexicographic method 

Arshi et al. 2023 Transforming MAGDM into a linear programming model 

Elsayed   2024 Using MCDM to evaluate and schedule environmentally friendly fuel alternatives 

Arshi et al.  2024 Solving MAGDM problems with interval-valued neutrosophic numbers 

 

2. Mathematical Foundation  

(Atanassov & Gargov, 1989) generalized the IFS idea to 

IVIFSs. Consider E[0,1] as the complete collection of 

closed subintervals within the interval [0,1]. Let Y denote a 

particular non-empty set in which an IVIFS (Interval-

Valued Intuitionistic Fuzzy Set) is articulated through the 

expression 𝐵̂={𝑦, 𝜇𝐵̂(𝑦), 𝜈𝐵̂(𝑦)│𝑦 ∈ 𝑌}, where 𝜇𝐵̂: 𝑌 →
𝐸[0,1] , 𝜈𝐵̂: 𝑌 → 𝐸[0,1] under the condition 

0<𝑠𝑢𝑝𝑦𝜇𝐵̂(𝑦) + 𝑠𝑢𝑝𝑦𝜈𝐵̂(𝑦)  ≤ 1.  
The intervals 𝜇𝐵̂(𝑦) , 𝜈𝐵̂(𝑦) represent the degrees of non-

membership and membership associated with the element 𝑦 

to the set 𝐵. Therefore, for every 𝑦 ∈ 𝑌, 𝜇𝐵̂(𝑦)and 𝜈𝐵̂(𝑦) 
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denote closed intervals with upper and lower endpoints 

represented by 𝜇𝐵𝐿(𝑦), 𝜇𝐵𝑈(𝑦), 𝜈𝐵𝐿(𝑦), and  𝜈𝐵𝑈(𝑦).  
 

The IVIFS B is denoted by  

𝐵 =
{< 𝑦, [𝜇𝐵𝐿(𝑦), 𝜇𝐵𝑈(𝑦)], [𝜈𝐵𝐿(𝑦), 𝜈𝐵𝑈(𝑦)] > |𝑦 ∈ 𝑌}  

(1) 

Where 0 < 𝜇𝐵𝑈(𝑦) + 𝜈𝐵𝑈(𝑦) ≤ 1, 𝜇𝐵𝐿(𝑦), 𝜈𝐵𝐿(𝑦) ≥ 0. An 

𝐼𝑉𝐼𝐹 set value is represented by 𝐵̂= ([e,f], [g,h]) for 

convenience, and termed as an IVIFN. If  𝐵̂1 = ([e1,f1], 

[g1,h1]) and 𝐵̂2=([e2,f2], [g2,h2]) be any two IVIFNs; their 

operational laws are determined as follows (Wan et al., 

2020): 

𝐵̂1 + 𝐵̂2 = ([𝑒1 + 𝑒2 − 𝑒1𝑒2, 𝑓1 + 𝑓2
− 𝑓1𝑓2], [𝑔1𝑔2, ℎ1ℎ2]) 

(2) 

𝐵̂1. 𝐵̂2 = ([𝑒1𝑒2, 𝑓1𝑓2], [𝑔1 + 𝑔2 − 𝑔1𝑔2, ℎ1 + ℎ2
− ℎ1ℎ2])  

(3) 

λ𝐵̂1 = ([1 − (1 − 𝑒1)
𝜆, 1

− (1 − 𝑓1)
𝜆], [𝑔1

𝜆 , ℎ1
𝜆])  ,   𝜆

≥ 0  

(4) 

The score function was defined by (Xu, 2007) for an IVIFN 

𝐵̂=([e, f], [g, h]) as  

𝑠(𝐵̂) = 
1

2
(e-g+f-h) (5) 

 And its accuracy functions as 

h(𝐵̂)= 
1

2
 (e+g+f+h) (6) 

for two IVIFNs 𝐵̂1and 𝐵̂2, 

1. If (𝐵̂1) <s(𝐵̂2), then 𝐵̂1 is smaller compared to 

𝐵̂2, 𝐵̂1 < 𝐵̂2. 

2. If s(𝐵̂1) = s(𝐵̂2), then 

(2.1) When h(𝐵̂1) = h(𝐵̂2) thus, 𝐵̂1 = 𝐵̂2. 

(2.2) When h(𝐵̂1) < h(𝐵̂2) thus, 𝐵̂1 is smaller than 

𝐵̂2, 𝐵̂1 < 𝐵̂2 (Xu [30]) 

Let 𝐵̂𝑗 =([ej, fj], [gj, hj]) ,j= 1,2, … , n as a set of IVIFNs. 

Then, the generalized interval intuitionistic fuzzy weighted 

average GIFWBw(𝐵̂1, 𝐵̂2, … , 𝐵̂𝑛) GIIFWBw(𝐵̂1, 𝐵̂2, … , 𝐵̂𝑛) is 

defined as follows: 

GIIFWBw(𝐵1, 𝐵2, … , 𝐵𝑛)=(𝑤1𝐵̂1
𝜆 + 𝑤2𝐵̂2

𝜆 +

⋯+ 𝑤𝑛𝐵̂𝑛
𝜆)

1

𝜆  
(7) 

in which 𝜆 > 0, and W= [𝑤1, 𝑤2, … , 𝑤𝑛]
𝑇  represents the 

weight vector with 𝑤𝑗 ≥ 0 , j= 1, 2, …, n, and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1. 

It is found that GIIFWB is also an IVIFN, which is 

determined as (Zhao et al., 2010): 

GIIFWBw(𝐵̂1, 𝐵̂2, … , 𝐵̂𝑛) = ([(1 −

∏ (1 − 𝑒𝑗
𝜆)𝑛

𝑗=1

𝑤𝑗
)
1

𝜆, (1 − ∏ (1 − 𝑓𝑗
𝜆)𝑤𝑗)𝑛

𝑗=1

1

𝜆 ],[1- 

(1 − ∏ (1 − (1 − 𝑔𝑗)
𝜆
)𝑤𝑗)𝑛

𝑗=1

1

𝜆
, 1 −

(1 − ∏ (1 − (1 − ℎ𝑗)
𝜆
)𝑤𝑗)𝑛

𝑗=1

1

𝜆
 ])  

(8) 

If 𝜆 =0, thus, Eq. (6) is changed into IIFWB (interval 

intuitionistic fuzzy weighted average). 

Assuming a collective of K decision-makers evaluating the 

set of alternatives  B={B1, B2, …, Bn} regard to criteria set 

D={D1, D2, …, Dn}, each decision maker individually makes 

the evaluations along with an individual decision matrix 

Ak=[𝑥̂𝑖𝑗
𝑘 ]. The 𝑥̂𝑖𝑗

𝑘  are expressed in the form of an IVIFN 

𝑥̂𝑖𝑗
𝑘 = [(𝜇𝑖𝑗,

𝑘 𝜇𝑖𝑗
𝑘
) , (𝜈𝑖𝑗

𝑘 , 𝜈𝑖𝑗
𝑘
)] , 1 ≤ 𝑖 ≤ 𝑚 ; 1 ≤ 𝑗 ≤ 𝑛. The 

issue at hand pertains to the determination of hierarchies or 

evaluations of alternatives, thereby facilitating decision-

makers in selecting their preferred alternative(s) or 

hierarchical arrangement. 

An aggregated decision matrix A is initially formulated via 

the GIIFWB methodology (by assigning a predetermined 

weight to diverse experts) or through the IIFWB approach 

(taking into account the perspectives of all experts as 

equivalent, i.e. 𝑤𝑘 =
1

𝐾
, 𝑘 = 1,2, … , 𝐾). The aggregated 

decision matrix will be obtained in the form of A=[𝑥̂𝑖𝑗] 

where, 

𝑥̂𝑖𝑗 =GIIFWBw(𝑥̂𝑖𝑗
1 , 𝑥̂𝑖𝑗

2 , … , 𝑥̂𝑖𝑗
𝑘 )  (9) 

The extended variant of the aggregated matrix A is denoted 

as: 

A=[
𝑥̂11 ⋯ 𝑥̂1𝑛
⋮ ⋱ ⋮
𝑥̂𝑚1 ⋯ 𝑥̂𝑚𝑛

]  (10) 

When addressing the issue of ranking alternatives within set 

B, the subsequent formulation is taken into account for the 

Multi-Attribute Group Decision-Making (MAGDM) 

problem: 

𝑔𝐼𝑖 = 𝑀𝑎𝑥 ∑𝑤𝑗
𝑔
𝑥̂𝑖𝑗

𝑛

𝑗=1

 

s.t 

∑ 𝑤𝑗
𝑔𝑛

𝑗=1 𝑥̂𝑖𝑗 ≤ 1̂    1 ≤ 𝑖 ≤ 𝑚      (i) 

𝑤𝑗
𝑔
≥ 0                  1 ≤ 𝑗 ≤ 𝑛             (ii) 

∑ 𝑤𝑗
𝑔𝑛

𝑗=1 = 1              (iii) 

𝑤𝑗
𝑔
≥ 𝑤𝑘

𝑔
∀(𝑗, 𝑘) ∈ {1, … , 𝑛}  𝑗 ≠ 𝑘           (iv) 

𝑤𝑗
𝑔
≥            (v)  

(11) 

in which 1̂ represents an IVIFN, like [(0.9, 0.95), (0.01, 

0.05)], and 𝑤𝑗  , 1 ≤ 𝑗 ≤ 𝑛 denotes the criterion j importance 

weight. This framework, originating from data envelopment 

analysis and proposed by (Ramanathan, 2006) as the R-

model, operates as a weighted linear optimization 

instrument for the resolution of multi-criteria inventory 

classification problems. It aims to maximize the overall 

score of each alternative i through an objective function that 

is a linear representation of the criteria. In accordance with 

constraint (i), the cumulative score associated with each 

alternative is required to remain below the value of 1, 

employing analogous weights for the respective alternative. 

Concurrently, constraint (ii) delineates that all weights 

attributed to the criteria must possess a positive value. The 

summation of weights is restricted by the arbitrary 

constraints (iii)-(v) as normalized, and some predetermined 

preferences are imposed over criteria weights. A lower 

bound is determined by constraint (v) to prevent no criteria 

weight to be 0. This model is solved repeatedly for each 

alternative and ranked in descending order based on their 

scores. To enhance its functionality, we extended the R-

model and proposed a corresponding weighted linear 

optimization model, organized in the following structure: 
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𝑏𝐼𝑖 = 𝑀𝑖𝑛 ∑𝑤𝑗
𝑏

𝑛

𝑗=1

𝑥̂𝑖𝑗  

s.t. 

∑𝑤𝑗
𝑏𝑥̂𝑖𝑗 ≥ 1̂

𝑛

𝑗=1

     1 ≤ 𝑖 ≤ 𝑚 

𝑤𝑗
𝑏 ≥ 0                1 ≤ 𝑗 ≤ 𝑛 

∑𝑤𝑗
𝑏 = 1

𝑛

𝑗=1

 

𝑤𝑗
𝑏 ≥ 𝑤𝑘

𝑏∀(𝑗, 𝑘) ∈ {1, … , 𝑛}, 𝑗 ≠ 𝑘 

𝑤𝑗
𝑏 ≥ 𝜀  

(12) 

To calculate the weights in model (12) for the ith 

alternative, a weighted linear optimization is employed. 

This process includes constraints ensuring that the weighted 

sum of all alternatives, using the same set of weights, must 

be greater than or equal to 1̂. 

3. Development of the proposed method 

The MAGDM issues delineated in Equations (11) and (12) 

can be conceptualized as dual linear programming problems 

under the context of Interval-Valued Intuitionistic Fuzzy 

(IVIF) information. 

An optimization problem is formally defined as a 

mathematical construct intended to ascertain the supremum 

or infimum of a particular real-valued function f across a 

designated subset G of a universal set X, that is to sa 

𝛼 = 𝑖𝑛𝑓{ 𝑓(𝑥) ∶ 𝑥 ∈ 𝐺 } ,   𝐺 ⊆ 𝑋  (13) 

In the context of optimization problems, acquiring the value 

of  𝛼 or correspondingly, an 𝑥0 ∈ 𝐺 that𝑓(𝑥0) = 𝛼 

(Ponstein, 2004) is incorporated. Two matrix 

representations of linear programming are delineated in 

Equations (14) and (15). 

𝑀𝑎𝑥 𝐶𝑋 

s.t 

𝐴𝑋 ≤ 𝑏 ,   𝑋 ≥ 0  

(14) 

And 

𝑀𝑖𝑛 𝐶𝑋 

s.t 

𝐴𝑋 ≥ 𝑏 ,    𝑋 ≥ 0  

(15) 

In this context, X denotes the column vector of decision 

variables, A signifies the technological matrix, C represents 

the row vector of cost (or profit) coefficients, and b 

indicates the right-hand side vector corresponding to 

resources. Under the presumption of the certainty axiom, 

every element of matrix A, in addition to the vectors b and 

C, is ascertained to be deterministic in nature.  

LP is prolonged below specific uncertainty frameworks. As 

an example, refer to the study of (Charnes & Cooper, 1959), 

(Madansky, 1960) for stochastic LP, (Chen et al., 2004), 

(Ishibuchi & Tanaka, 1990), (Dang & Forrest, 2009), 

(Jimenez et al., 2007), and (Kaur & Kumar, 2013) for fuzzy 

LP. Nevertheless, the wide variety of works on LP with 

IVIF information is restricted. In this context, an innovative 

methodology has been developed to address the linear 

programming (LP) challenges, wherein the parameters are 

articulated as Interval-Valued Intuitionistic Fuzzy Numbers 

(IVIFNs). In this investigation, two linear programming 

models incorporating IVIF data, with parameters denoted as 

A, b, and C, are established as IVIFNs. 

𝑀𝑎𝑥 𝐶̂𝑋 

s.t. 

𝐴̂𝑋 ≤ 𝑏̂ 

  𝑋 ≥ 0  

(16) 

And 

𝑀𝑖𝑛 𝐶̂𝑋 

s.t. 

𝐴̂𝑋 ≥ 𝑏̂ 

    𝑋 ≥ 0 

(17) 

For a long-form, IVIF-LP in Eqs. (16) and (17) stated as: 

𝑀𝑎𝑥∑𝑐̂𝑗𝑥𝑗

𝑛

𝑗=1

 

s.t. 

∑ 𝑎̂𝑖𝑗𝑥𝑗 ≤ 𝑏̂𝑖                1 ≤ 𝑖 ≤ 𝑚

𝑛

𝑗=1

 

𝑥𝑗 ≥ 0                               1 ≤ 𝑗 ≤ 𝑛 

(18) 

And 

𝑀𝑖𝑛∑ 𝑐̂𝑗𝑥𝑗

𝑛

𝑗=1

 

s.t. 

∑ 𝑎̂𝑖𝑗𝑥𝑗 ≥ 𝑏̂𝑖                1 ≤ 𝑖 ≤ 𝑚

𝑛

𝑗=1

 

𝑥𝑗 ≥ 0                              1 ≤ 𝑗 ≤ 𝑛 

(19) 

The definite parameters in Eq. (18), (19) are IVIFNs set as: 

𝑐̂𝑗 = [(𝑐1𝑗 , 𝑐2𝑗), (𝑐3𝑗 , 𝑐4𝑗)] , 1 ≤ 𝑗 ≤ 𝑛 where (𝑐1𝑗 , 𝑐2𝑗) 
and (𝑐3𝑗 , 𝑐4𝑗) are membership and non-membership 

intervals, respectively. 

𝑎̂𝑖𝑗 = [(𝑎1𝑖𝑗 , 𝑎2𝑖𝑗), (𝑎3𝑖𝑗 , 𝑎4𝑖𝑗)], 1 ≤ 𝑖 ≤ 𝑚; 1 ≤ 𝑗 ≤ 𝑛  
where(𝑎1𝑖𝑗 , 𝑎2𝑖𝑗) and (𝑎3𝑖𝑗 , 𝑎4𝑖𝑗) are membership and non-

membership intervals, respectively. 

𝑏̂𝑖 = [(𝑏1𝑖 , 𝑏2𝑖), (𝑏3𝑖 , 𝑏4𝑖)], 1 ≤  𝑖 ≤ 𝑚 where (𝑏1𝑖 , 𝑏2𝑖) is 

membership and (𝑏3𝑖 , 𝑏4𝑖) is a non-membership interval. 
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Now, take into account the objective function  ∑ 𝑐̂𝑛
𝑗=1 𝑥𝑗 . 

Since objective function coefficients 𝑐̂𝑗 , 1 ≤ 𝑗 ≤ 𝑛 are 

IVIFNs; thus, the objective function is represented as a 

linear combination of these Interval Valued Intuitionistic 

Fuzzy Numbers (IVIFNs) by means of non-negative 

coefficients 𝑥𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑛. The outcomes of this linear 

combination may be obtained through an interactive process 

utilizing both the multiplication and summation operators, 

which are delineated in relations (2) and (4), respectively. 

This inductive procedure comprises scalar multiplication in 

conjunction with the IVIF summation operation, and it 

comprehensively includes all relevant operations. A simple 

transformation of variables may be employed to diminish 

the total number of operations. The variable t is defined as 

follows: 

𝑡 =  
1

𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
 (20) 

Now, the objective function ∑ 𝑐̂𝑗𝑥𝑗
𝑛
𝑗=1  is multiplied by t. 

Determining the variable  𝑡𝑥𝑗 = 𝑦𝑗 , 𝑗 = 1, … , 𝑛, the 

objective function is converted into: 

∑𝑐̂𝑗𝑦𝑗

𝑛

𝑗=1

 (21) 

Since ∑ 𝑦𝑗 = 1
𝑛
𝑗=1  and 𝑦𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑛, relation (21) can 

be inferred as IIFWA of a set of IVIFNs 𝑐̂𝑗 , 1 ≤ 𝑗 ≤ 𝑛. 

Using relation (8), relation (21) is converted as: 

([(1 −∏(1 − 𝑐1𝑗)
𝑦𝑗

𝑛

𝑗=1

) ,(1

−∏(1 − 𝑐2𝑗)
𝑦𝑗

𝑛

𝑗=1

)] , [∏𝑐
3𝑗

𝑦𝑗

𝑛

𝑗=1

,∏𝑐
4𝑗

𝑦𝑗
])

𝑛

𝑗=1

 

(22) 

Using t in Equation (20) helps in deriving a closed form for 

the objective functions. As for the explanation of the score 

functions in Equation (5), an IVIFN is optimized by 

increasing its membership degree while its non-membership 

degree is decreased. Also, reducing the membership degree 

will minimize an IVIFN while increasing its non-

membership degree. Assume two interval numbers 𝐴 =
[𝑎, 𝑎] and 𝐵 = [𝑏, 𝑏]. Then, 𝐴 ≥ 𝐵 if 𝑎 ≥ 𝑏 and 𝑎 ≥ 𝑏 

(Wang & Li, 2012), thus, Eq. (22) will be maximized if(1 −
∏ (1 − 𝑐1𝑗)

𝑦𝑗𝑛
𝑗=1 ) and(1 − ∏ (1 − 𝑐2𝑗)

𝑦𝑗)𝑛
𝑗=1  are 

maximized while ∏ 𝑐
3𝑗

𝑦𝑗𝑛
𝑗=1  and ∏ 𝑐

4𝑗

𝑦𝑗𝑛
𝑗=1  are minimized. 

These conditions are met when: 

∏ (1 − 𝑐1𝑗)
𝑦𝑗𝑛

𝑗=1 and∏ (1 − 𝑐2𝑗)
𝑦𝑗𝑛

𝑗=1  are minimized, and 

simultaneously; 

∏ 𝑐
3𝑗

𝑦𝑗𝑛
𝑗=1 and∏ 𝑐

4𝑗

𝑦𝑗𝑛
𝑗=1  are minimized. 

Consequently, the singular objective function associated 

with the IVIF-LP problem is reformulated as: 

𝑀𝑖𝑛 (∏(1 − 𝑐1𝑗)
𝑦𝑗 ,∏(1

𝑛

𝑗=1

𝑛

𝑗=1

− 𝑐2𝑗)
𝑦𝑗 ,∏𝑐

3𝑗

𝑦𝑗
,∏𝑐

4𝑗

𝑦𝑗
)

𝑛

𝑗=1

𝑛

𝑗=1

 

(23) 

Given that the natural logarithm function exhibits an 

increasing characteristic, the process of minimizing the 

aforementioned IVIF components is tantamount to the 

"minimization" of the natural logarithm of these 

components, as: 

𝑀𝑖𝑛 (∑𝑦𝑗 . 𝐿𝑛 (1

𝑛

𝑗=1

− 𝑐1𝑗),∑𝑦𝑗 . 𝐿𝑛 (1

𝑛

𝑗=1

− 𝑐2𝑗),∑𝑦𝑗 . 𝐿𝑛 (𝑐3𝑗),∑𝑦𝑗 . 𝐿𝑛 (𝑐4𝑗))

𝑛

𝑗=1

𝑛

𝑗=1

 

(24) 

All the elements of the above vector are in [0,1]. Thus, 

minimizing it corresponds to "minimization" of the 

summation of its elements. That is, 

𝑀𝑖𝑛 ∑𝑦𝑗 . 𝐿𝑛 ((1 − 𝑐1𝑗)(1 − 𝑐2𝑗)𝑐3𝑗𝑐4𝑗

𝑛

𝑗=1

 (25) 

Now, consider the ith constraint  ∑ 𝑎̂𝑖𝑗𝑥𝑗(≤=≥
𝑛
𝑗=1 ) 𝑏̂𝑖, for a 

specific value 𝑖, 1 ≤ 𝑖 ≤ 𝑚 in relations (18) and (19). To 

address this constraint, both sides are multiplied by 𝑡, 
relation (20). Hence, the initial constraint is transformed 

into ∑ 𝑎̂𝑖𝑗𝑦𝑗(≤=≥)𝑡𝑏̂𝑖
𝑛
𝑗=1 . Taking into account the 

constraint’s left side, The IIFWA operator of a set of 

IVIFNs, denoted as 𝑎̂𝑖𝑗 , 1 ≤  𝑗 ≤ 𝑛, can be expressed as 

follows: 

([(1

−∏(1 − 𝑎1𝑖𝑗)
𝑦𝑗), (1

𝑛

𝑗=1

−∏(1 − 𝑎2𝑖𝑗)
𝑦𝑗

𝑛

𝑗=1

)], [∏𝑎
3𝑖𝑗

𝑦𝑗
,∏𝑎

4𝑖𝑗

𝑦𝑗
])

𝑛

𝑗=1

𝑛

𝑗=1

 

(26) 

The product 𝑡𝑏̂ can be handled on the right side, in terms of 

the scalar multiplication in Eq. (4), as: 

([1 − (1 − 𝑏1)
𝑡 , 1 − (1 − 𝑏2)

𝑡], [𝑏3
𝑡 , 𝑏4

𝑡]) (27) 

In relation to ≤ kind constraints, the membership on the 

right side must be inferior to that of the left constraints, 

while its non-membership should be superior. This 

comparative interval principle is: 

{
 
 
 
 
 

 
 
 
 
 1 −∏(1 − 𝑎1𝑖𝑗)

𝑦𝑗 ≤ 1 − (1 − 𝑏1)
𝑡

𝑛

𝑗=1

1 −∏(1 − 𝑎2𝑖𝑗) ≤ 1 − (1 − 𝑏2)
𝑡

𝑛

𝑗=1

∏𝑎
3𝑖𝑗

𝑦𝑗
≥ 𝑏3

𝑡

𝑛

𝑗=1

∏𝑎
4𝑖𝑗

𝑦𝑗
≥ 𝑏4

𝑡

𝑛

𝑗=1

 (28) 
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The constraints set in Eq. (28) are converted in the linear 

structure using the logarithm Neperien function: 

{
 
 
 
 
 

 
 
 
 
 ∑𝑦𝑗𝐿𝑛(1 − 𝑎1𝑖𝑗) ≥ 𝑡𝐿𝑛(1 − 𝑏1)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(1 − 𝑎2𝑖𝑗) ≥ 𝑡𝐿𝑛(1 − 𝑏2)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(𝑎3𝑖𝑗) ≥ 𝑡𝐿𝑛(𝑏3)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(𝑎4𝑖𝑗) ≥ 𝑡𝐿𝑛(𝑏4)

𝑛

𝑗=1

 (29) 

Utilizing a similar theoretical framework, an analogous 

linear set of constraints is formulated for each constraint 

that is of equal or greater significance: 

{
 
 
 
 
 

 
 
 
 
 ∑𝑦𝑗𝐿𝑛(1 − 𝑎1𝑖𝑗) ≤ 𝑡𝐿𝑛(1 − 𝑏1)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(1 − 𝑎2𝑖𝑗) ≤ 𝑡𝐿𝑛(1 − 𝑏2)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(𝑎3𝑖𝑗) ≤ 𝑡𝐿𝑛(𝑏3)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(𝑎4𝑖𝑗) ≤ 𝑡𝐿𝑛(𝑏4)

𝑛

𝑗=1

 (30) 

All the above ≤ or ≥ signs in relations (29) and (30) will 

be altered into equality for equality type constraints. 

Ultimately, the IVIF-LP problems in relations (18) and (19) 

are transformed into equivalent LP problems, as illustrated 

in relations (31) and (32). Upon resolution of this issue, the 

optimal parameters t* and 𝑦𝑗
∗ , 1 ≤ 𝑗 ≤ 𝑛 are established. 

By employing a reverse transformation in accordance with 

Equation (20), the optimal values of the initial 

variables𝑥𝑗
∗, 1 ≤ 𝑗 ≤ 𝑛, are determined. 

𝑔𝐼𝑖 = 𝑀𝑖𝑛 ∑𝑦𝑗 .  𝐿𝑛((1 − 𝑐1𝑗)(1

𝑛

𝑗=1

− 𝑐2𝑗)𝑐3𝑗𝑐4𝑗) 

s.t. 

{
 
 
 
 
 

 
 
 
 
 ∑𝑦𝑗𝐿𝑛(1 − 𝑎1𝑖𝑗) ≥ 𝑡𝐿𝑛(1 − 𝑏1)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(1 − 𝑎2𝑖𝑗) ≥ 𝑡𝐿𝑛(1 − 𝑏2)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(𝑎3𝑖𝑗) ≥ 𝑡𝐿𝑛(𝑏3)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(𝑎4𝑖𝑗) ≥ 𝑡𝐿𝑛(𝑏4)

𝑛

𝑗=1

 

(31) 

∑𝑦𝑗 = 1

𝑛

𝑗=1

 

𝑡, 𝑦𝑗 ≥ 0;    𝑗 = 1,2, … , 𝑛 

And 

b𝐼𝑖 = 𝑀𝑎𝑥 ∑ 𝑦𝑗𝐿𝑛((1 − 𝑐1𝑗)(1 −
𝑛
𝑗=1

𝑐2𝑗)𝑐3𝑗𝑐4𝑗) 

s.t. 

{
 
 

 
 
1 −∏ (1 − 𝑎1𝑖𝑗)

𝑦𝑗 ≤ 1 − (1 − 𝑏1)
𝑡𝑛

𝑗=1

1 − ∏ (1 − 𝑎2𝑖𝑗) ≤ 1 − (1 − 𝑏2)
𝑡𝑛

𝑗=1

∏ 𝑎
3𝑖𝑗

𝑦𝑗
≥ 𝑏3

𝑡𝑛
𝑗=1

∏ 𝑎
4𝑖𝑗

𝑦𝑗
≥ 𝑏4

𝑡𝑛
𝑗=1

  

{
 
 
 
 
 

 
 
 
 
 ∑𝑦𝑗𝐿𝑛(1 − 𝑎1𝑖𝑗) ≤ 𝑡𝐿𝑛(1 − 𝑏1)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(1 − 𝑎2𝑖𝑗) ≤ 𝑡𝐿𝑛(1 − 𝑏2)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(𝑎3𝑖𝑗) ≤ 𝑡𝐿𝑛(𝑏3)

𝑛

𝑗=1

∑𝑦𝑗𝐿𝑛(𝑎4𝑖𝑗) ≤ 𝑡𝐿𝑛(𝑏4)

𝑛

𝑗=1

 

∑𝑦𝑗 = 1

𝑛

𝑗=1

 

𝑡, 𝑦𝑗  ≥ 0,    1 ≤ 𝑗 ≤ 𝑛 

 

(32) 

The problems in relations (31) and (32) are two linear 

programming problems that are solved using ordinal 

techniques. Such a process can be carried out to resolve the 

MAGDM problems in relations (11) and (12). 

Solving relations (11) and (12), we reap the values 𝑔𝐼𝑖  and 

b𝐼𝑖 . Since 𝑔𝐼𝑖  and b𝐼𝑖  are oriented by respectively the 

weights with the highest and lowest favorability for the ith 

alternative. We can refer to these as the "good" and "bad" 

indexes for a multi-attribute decision-making problem. By 

integrating these two extremes, we are able to construct a 

composite index as follows: 

𝑛𝐼𝑖(𝜆) =  𝜆.
𝑔𝐼𝑖 − 𝑔𝐼

−

𝑔𝐼∗ − 𝑔𝐼−
+ (1 − 𝜆).

𝑏𝐼𝑖 − 𝑏𝐼
−

𝑏𝐼∗ − 𝑏𝐼−
 (33) 

Where 𝑔𝐼∗ = max{𝑔𝐼𝑖 , 1 ≤  𝑖 ≤ 𝑚} ,   𝑔𝐼
− = min{𝑔𝐼𝑖 , 1 ≤

 𝑖 ≤ 𝑚} , 𝑏𝐼∗ = max{𝑏𝐼𝑖 , 1 ≤  𝑖 ≤ 𝑚}, 𝑏𝐼− =
min{𝑏𝐼𝑖 , 1 ≤  𝑖 ≤ 𝑚}. The parameter 0 ≤ 𝜆 ≤ 1 acts as a 

control variable that represents the decision maker's 

inclination towards the bad and good indexes. If 𝜆 = 1, 𝑛𝐼𝑖  
becomes a normalized version of the good index  𝐼𝑖 . 
Conversely, when λ equals 0 , 𝑛𝐼𝑖  transforms into a 
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normalized version of the bad index 𝐼𝑖 . In various cases, 

(33) includes both indices. If decision-makers do not have a 

strong preference, choosing 𝜆 = 0.5 would be a fairly 

reasonable and neutral option. 

4. Using in MAGDM 

Here, a MAGDM problem is used to recommend that 

undergraduate students illustrate using the presented 

method. (Wang & Li, 2012) proposed this problem for the 

first time. 

Without losing the generality, it is assumed that three 

committee members (DMs) exist as d1, d2, and d3 and four 

students (x1, x2, x3, and x4) because the finalists are followed 

using initial screening. Using all DMs, it is agreed to assess 

such candidates in opposition to 4 capabilities of 

educational information, a1; college English take a look at 

Band rating, a2; teamwork abilities, a3; and studies 

potentials, a4. Here, it is assumed that there is an agreement 

in the group to evaluate qualitative features on five 

linguistic terms. A conversion scale that correlates IVIFNs 

with linguistic terms is reported in Table 2.  

 
Table 2  

IVIF scale utilized to evaluate alternative 

It is important to note that the technique presented is not 

affected by the IVIF scale used to convey the judgments of 

decision-makers. Therefore, any arbitrary scale can be 

performed. Nevertheless, here, the presented scale of (Wang 

& Li, 2012) is utilized. The decision-makers may use the 

suggested scale in Table 2 to represent their different ideas. 

For the assessment of subjective characteristics, the 

aforementioned scale or an alternative measurement is 

employed. In order to address objective (quantitative) 

attributes, it is imperative to implement a methodology that 

transforms specific quantitative data into Table 2.  

IVIFNs. It is supposed that an objective attribute is assessed 

as (hundred, a hundred and fifty, a hundred and twenty, 

ninety) for a hard and fast, which consists of 4 alternatives. 

The values of attribute vectors are then normalized. The 

obtained normalized vector was 0.7, 1, 0.8, and 0.6. 

Subsequently, the desirability of these values can be 

ascertained by the Decision Maker (DM) utilizing a 

linguistic scale. For example, assuming that the DM 

articulates its perspective in proximity to the 

aforementioned normalized vector as (VN, F, N, F). 

Consequently, the Interval Valued Intuitionistic Fuzzy 

(IVIF) scale functions to convert these linguistic values into 

their respective IVIF representations.  

Table 2 also represents the DMs’ IVIF evaluations on 

alternative performances regarding various criteria. 

(Wang & Li, 2012) estimated the criteria’s weight vector 

as [0.268,0.394,0.151,0.185]. The aggregated decision 

matrix considers decision matrices in Table 3. 

Taking into account the alternative x1, in terms of Eq. (11), 

the formulation of the MAGDM model is: 

𝑀𝑎𝑥 [(0,0), (0.5,0.749)]𝑤1 +

[(0.548,0.571), (0.177,0.296)]𝑤2 +

([0.578,0.630], [0.317,0.370])𝑤3 +

([0.856,0.915], [0.043,0.085])𝑤4  

s.t. 

[(0,0), (0.5,0.749)]𝑤1 +

[(0.548,0.571), (0.177,0.296)]𝑤2 +

([0.578,0.630], [0.317,0.370])𝑤3 +

([0.856,0.915], [0.043,0.085])𝑤4 ≤

[(0.9,0.95), (0.01,0.05)]  

([0.872,0.926], [0.037,0.055])𝑤1 +

([0.219,0.228], [0.319,0.532])𝑤2 +

([0.200,0.250], [0.700,0.750])𝑤3 +

([0.500,0.550], [0.400,0.450])𝑤4 ≤

[(0.9,0.95), (0.01,0.05)]  

([0.435,0.462], [0.269,0.403])𝑤1 +

([0.878,0.914], [0.036,0.059])𝑤2 +

([0.578,0.630], [0.317,0.370])𝑤3 +

([0.753,0.822], [0.117,0.178])𝑤4 ≤

[(0.9,0.95), (0.01,0.05)]  

([0.218,0.231], [0.385,0.577])𝑤1 +

([0,0], [0.413,0.690])𝑤2 +

([0.578,0.630], [0.317,0.370])𝑤3 +

([0.500,0.550], [0.400,0.450])𝑤4 ≤

[(0.9,0.95), (0.01,0.05)]  

∑𝑤𝑗 = 1

4

𝑗=1

 

𝑤𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 4 

This IVIF linear programming problem can be solved via 

converting it into a corresponding Eq. (31) model. 

𝑀𝑖𝑛 − 0.98𝑦1 − 4.59𝑦2 − 4𝑦3 − 10.01𝑦4  

s.t. 

0𝑦1 − 0.79𝑦2 − 0.86𝑦3 − 1.94𝑦4 ≥ −2.30𝑡  

0𝑦1 − 0.85𝑦2 − 0.99𝑦3 − 2.47𝑦4 ≥ −3𝑡  

−0.69𝑦1 − 1.73𝑦2 − 1.15𝑦3 − 3.15𝑦4 ≥ −4.61𝑡  

−0.29𝑦1 − 1.22𝑦2 − 0.99𝑦3 − 2.47𝑦4 ≥ −3𝑡               

−2.06𝑦1 − 0.25𝑦2 − 0.22𝑦3 − 0.69𝑦4 ≥ −2.30𝑡  

−2.60𝑦1 − 0.26𝑦2 − 0.29𝑦3 − 0.80𝑦4 ≥ −3𝑡  

−3.30𝑦1 − 1.14𝑦2 − 0.36𝑦3 − 0.92𝑦4 ≥ −4.61𝑡  

−2.90𝑦1 − 0.63𝑦2 − 0.29𝑦3 − 0.80𝑦4 ≥ −3𝑡  

−0.57𝑦1 − 2.10𝑦2 − 0.86𝑦3 − 1.40𝑦4 ≥ −2.30𝑡  

−0.62𝑦1 − 2.45𝑦2 − 0.99𝑦3 − 1.73𝑦4 ≥ −3𝑡  

−1.31𝑦1 − 3.32𝑦2 − 1.15𝑦3 − 2.15𝑦4 ≥ −4.61𝑡  

−0.91𝑦1 − 2.83𝑦2 − 0.99𝑦3 − 1.73𝑦4 ≥ −3𝑡  

−0.25𝑦1 − 0𝑦2 − 0.86𝑦3 − 0.69𝑦4 ≥ −2.30𝑡  

−0.26𝑦1 − 0𝑦2 − 0.99𝑦3 − 0.80𝑦4 ≥ −3𝑡  

−0.95𝑦1 − 0.88𝑦2 − 1.15𝑦3 − 0.92𝑦4 ≥ −4.61𝑡  

−0.55𝑦1 − 0.37𝑦2 − 0.99𝑦3 − 0.80𝑦4 ≥ −3𝑡  

Linguistic terms IVIFNs 

'Very nice' (VN) ([0.9,0.95],[0.02,0.05]) 

'Nice' (N) ([0.7,0.75],[0.2,0.25]) 

'Fair' (F) ([0.5,0.55],[0.4,0.45]) 

'Poor' (P) ([0.2,0.25],[0.7,0.75]) 

'Very poor' (VP) ([0.02,0.05],[0.9,0.95]) 
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∑𝑦𝑗 = 1

4

𝑗=1

 

𝑦𝑗 ≥ 0 , 1 ≤ 𝑗 ≤ 4 

𝑡 ≥ 0 

The model (12) and the transformer to model (32) are 

written similarly. 

 

  

Table 3  

Aggregated decision matrix 

  A1  A2  A3  A4 

x1 ([0,0],[0.5,0.749]) ([0.548,0.571],[0.177,0.296]) ([0.578,0.630],[0.317,0.370]) ([0.856,0.915[,[0.043,0.085]) 

x2 ([0.872,0.926],[0.037,0.055]) ([0.219,0.228],[0.319,0.532]) ([0.200,0.250],[0.700,0.750]) ([0.500,0.550],[0.400,0.450]) 

x3 ([0.435,0.462],[0.269,0.403]) ([0.878,0.914],[0.036,0.059]) ([0.578,0.630],[0.317,0.370]) ([0.753,0.822],[0.117,0.178]) 

x4 ([0.218,0.231],[0.385,0.577]) ([0,0],[0.413,0.690]) ([0.578,0.630],[0.317,0.370]) ([0.500,0.550],[0.400,0.450]) 

 
Table 4  
Objective values for alternative 

 𝑔𝐼i 𝑏𝐼𝑖 

x1 -10.01 -0.98 

x2 10.86 -1.15 

x3 -10.72 -3.44 

x4 -4.60 -1.27 

 

We applied the suggested model with 𝜆 = 0.5. 

𝑏𝐼∗ = −0.98,     𝑏𝐼− = −3.44,          𝑔𝐼∗ = −4.60, 𝑔𝐼− =
−10.86 

𝑛𝐼1 = 0.5675, 𝑛𝐼2 = 0.465,     𝑛𝐼3 = 0.011,     𝑛𝐼4
= 0.94  

Table 5  

Ranking of alternatives with different methods 

 
The proposed 

method 
TOPSIS-IVF 

(Wan & Dong, 

2020) 

(Wan et 

al., 2020) 

x1 2 3 2 2 

x2 3 2 3 3 

x3 4 1 1 1 

x4 1 4 4 4 

 

5. Using in MAGDM 

Numerous practical problems can be formulated within 

exceptional managerial, engineering, social, and economic 

fields as the MCDM problems. According to (Vincke, 

1992), the significant difficulties of MCDM problems are 

caused by not being precisely determined and the lack of 

definite solutions for them. Such challenges are 

strengthened when the uncertainty notion is considered as 

an inevitable feature of such problems. Numerous attempts 

exist to provide analysts with instruments to deal with 

MCDM problems within indefinite situations. Regarding the 

capabilities of IVIFSs in explaining the ill-defined and 

uncertain data in DM problems, two new linear 

programming-based models were presented in the present 

work for solving MAGDM problems with IVIF information. 

Driven by Data Envelopment Analysis (DEA), a rigorous 

logical framework is delineated by the suggested 

formulation. Several models were resolved iteratively 

within this methodology, culminating in an ultimate score 

for each alternative. These scores are employed to rank and 

compare alternatives. 

The proposed technique involves solving multiple models, 

with each model corresponding to a different alternative. 

After setting up the problem for the first alternative. Upon 

the establishment of the problem for the initial alternative, 

the objective functions were modified in accordance with 

multiple alternatives, while the region continued to be 

invariant and feasible. Therefore, it is crucial to develop 

multiple objective functions that share similar constraints. 

Considering the suggested model as an LP problem with 

IVIF parameters, a method is designed for solving such a 

problem, using an applied IVIFNs aggregation operator and 

a variable transformation to solve the crisp problem. Then, 

we proposed a combinational model. This model is a 

standardized index in the interval [0,1] through two weight 

sets as the most and least favourable for each alternative. At 

last, a numerical example was provided to explain the 

proposed methodology.  

The primary benefits of the proposed method can be 

outlined as follows: firstly, it enhances the motivation to use 

mathematical optimization models when addressing 

MAGDM problems. Recognizing this, the method offers a 

framework for decision-making through the resolution of 

two sets of optimization models. Secondly, the rationale 

behind developing this method is clear and well-founded. 

Maximizing or minimizing the weighted average of each 

alternative, with scores restricted to less than one, closely 

resembles the principles of Data Envelopment Analysis 

(DEA), a well-established method. Importantly, the model 

requires less information than other methods since attribute 

weights do not need to be predetermined; the model 

determines them internally. Despite the wide-ranging 

applications of IVIF in MAGDM (multi-attribute group 

decision-making) problems, mathematical programming 

with IVIF information has received limited attention. We 

plan to develop more generalized interactive aggregation 

operators utilizing various fuzzy environments (Khan et al., 

2019; Azam et al., 2022; Khan et al., 2020, 2021). For 

future research, one can extend the proposed methodology 

to other types of neutrosophic numbers. For instance, an 

extension of the proposed method in the presence of a 

single-valued trapezoidal neutrosophic number (SVTrNN). 

Further, in the context of this paper, future research can 

formulate the linear programming model with IVNNs. The 

application of IVNNs can also be examined to find the 

utility function of decision-makers in multi-attribute utility 

theory.  
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