
137 

 

Vol.18, Issue 1, Winter & Spring 2025, 137-149  

  
Research Article

 

Product-oriented split delivery in the multi-compartment vehicle routing problem  

 

Mahnaz Shoeib

 

1

 

, Jafar Bagherinejad,2,*

 

Mahdi Bashiri 3

  
 
1.

 
Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran. 

 2.
 
Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.

 3.
 
Centre for Business in Society, Coventry University, Coventry, UK

 

  

 

 

https://doi.org/10.71720/joie.2025.1190026  
 

Abstract  

This paper addresses split delivery in the multi-compartment vehicle routing problem in which the 

possibility of splitting delivery depends on the product type. For certain product types, split delivery 

is not allowed but for other ones is permitted under a certain condition. The arrival time consistency 

is considered as split delivery condition. If the time difference between vehicle arrivals to the 

customer does not exceed a certain limit, the consistency of arrival time is established and split 

delivery is allowed. A mathematical model is developed to describe the proposed problem and used 

to solve small sized instances. To solve large sized instances, an adaptive large neighborhood search 

and a matheuristic based on fixing a part of customer to route assignment variables are developed. 

Computational experiments are performed on the multi-compartment vehicle routing problem with 

and without product-oriented split delivery. The effect of capacity and compartments per vehicle on 

delivery mode is investigated. The results demonstrate that the matheuristic outperforms the adaptive 

large neighborhood search in term of quality and computational time. Furthermore, delivery mode 

does not have a significant effect on the proposed algorithms’ computational time and the number 

of vehicles is more affected by delivery mode than distance travelled.   
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1. Introduction 

Transportation is one of the most important parts of logistics 

systems. Since transportation costs comprise 10% of the 

product’s total cost, saving transportation costs becomes a 

competitive factor (Doan et al., 2021). Previous studies have 

indicated how vehicle routing optimization can achieve 

significant economic savings (about 5-30% or 5-20%) 

(Cattaruzza et al., 2017). Therefore, the vehicle routing 

problem (VRP), introduced by Dantzig & Ramser (1959), has 

become one of the most studied optimization problems in 

operation research and logistics (Konstantakopoulos et al., 

2022; Goli et al.,2018). 

In the classical VRP, each customer is visited exactly once, 

split delivery is not allowed. In VRP with split delivery 

(VRPSD), the single-visit assumption is relaxed and each 

customer may be served by more than one vehicle. A 

customer’s demand may be split due to one of these reasons: 

(1) the demand exceeds the vehicle capacity, in which case 

demand splitting is unavoidable. (2) Splitting demand can 

lead to significant cost savings (Toth & Vigo, 2014). By 

allowing split deliveries, the traveled distance, the number of 

vehicles, and their loading can be optimized (Kou et al., 

2024; Han & Chu, 2016; Gu et al., 2024). Therefore, 

significant cost savings in logistics operations can be 

achieved by split deliveries. From the customers’ viewpoint 

in VRPSD, a customer has to wait more than once to receive 

the total demand, which negatively affects customer 

satisfaction. Therefore, split delivery is often not suitable for 

products that customer prefers to receive all of them at once 

(Gulczynski et al., 2010). 

Each customer may order several types of products that have 

to be transported separately due to their special transportation 

requirements, such as different temperature and humidity 

conditions. To distribute these incompatible products, multi-

compartment vehicles (MCVs) are used which enable 

simultaneous transportation of the several non-mixable 

product types in different compartments (Guo et al., 2021). 

The multi-compartment vehicle routing problem (MCVRP) 

is a generalization of the classical VRP in which the vehicle 

capacity can be divided into several loading zones, i.e., 

compartments. Each compartment can be dedicated to only a 

single product type (Gu et al., 2024). 

When demands of several product types are considered, split 

delivery is not that different product types can be delivered 

by different vehicles; it is the fulfillment of a demand for a 

single product type by more than one vehicle (Ostermeier et 

al., 2021; Henke, 2018). The benefits of split delivery depend 

on customer characteristics such as customers’ locations and 

customers’ demand patterns (Archetti et al., 2008).  

Split delivery may only be allowed for certain product types 

and not for others (Alinaghian & Shokouhi, 2018).  

For example, in companies such as FreshBox and Sysco, 

which distribute both perishable and non-perishable 

products, distribution strategies can vary depending on the 

product type. Customers prefer to receive perishable products 

at once, as repeatedly opening refrigeration units during 

multiple deliveries cause temperature fluctuations that 

accelerate spoilage. In contrast, split delivery is allowed in 

non-perishable products distribution. 

Split delivery may only be beneficial under certain 

conditions, which to the best of our knowledge has not been 

studied so far.  

This paper addresses the MCVRP with split delivery in which 

the possibility of splitting delivery depends on the product 

type. The split delivery of certain product types is not 

possible and these products must be delivered to the customer 

by only one vehicle. It is assumed that split delivery is 

allowed for other product types if the time interval between 

visits does not exceed a certain limit, which is called 

consistent arrival time. In other words, the distribution 

company can only achieve the benefits of splitting deliveries 

when it guarantees consistency of arrival time. Considering 

the NP-hardness of the proposed problem (Chen & Shi, 

2019), a matheuristic and an adaptive large neighborhood 

search (ALNS) is designed to solve large-scale instances.  

The main contributions of this study are as follows. First, we 

generalize an MCVRP by allowing product-oriented split 

delivery. The generalization is motivated by the fact that 

delivery modes depend on product type. For various reasons, 

such as ensuring inventory level or customer preferences, the 

split delivery of certain product types is not possible, while 

demand of some products may be split because of the 

dimensions, weight and availability of products. We propose 

an MIP model that can solve small sized instances to 

optimality. We also developed a matheuristic based on fixing 

a part of customer-to-route assignment variables. For 

comparison purpose, the performance of matheuristic is 

compared against ALNS.  

The remainder of the paper is organized as follows. Section 

2 briefly reviews the existing literature on MCVRPs. In 

Section 3, problem definition and mathematical model are 

presented. The proposed solution approaches are described in 

Section 4. The computational results are presented and 

discussed in Section 5. Finally, conclusions and suggestions 

for future studies are given in Section 6. 

2. Literature Review 

VRP, first introduced by Dantzig & Ramser (1959), is one of 

the most challenging optimization problems in the field of 

operation research, leading to extensive research in various 

conditions and application areas. Different variants of VRPs 

have appeared over the last decades (Elatar et al., 2023). 

VRPSD is first introduced by Dror & Trudeau (1989), who 

demonstrated that considerable cost savings can be achieved 

by split delivery, both in terms of the total distance traveled 

and number of vehicles used. The VRPSD is shown to be NP-

hard despite the relaxation of the single-visit assumption 

(Dror & Trudeau, 1990). Archetti et al. (2008) showed that 

the benefits of split delivery mainly depend on the 

characteristics of the demand. Archetti & Speranza (2012) 

provided a survey on the VRPSDs. Bortfeldt & Yi (2019) 

studied VRPSD and tree-dimensional loading constraints. 

They proposed a hybrid algorithm consisting of a local search 

algorithm for routing optimization, a genetic algorithm and 

several construction heuristics for packing. Lia et al. (2020) 

studied a VRPSD in which synchronization constraint, 

proportional service time and multiple time windows was 
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considered. They proposed a branch-price-and-cut algorithm 

to solve the problem. Wang et al. (2023) proposed a weighted 

open VRPSD with iterated clustering to simultaneously 

optimize the route of bus and passenger waking distance. To 

solve the proposed problem, they developed a max-min ant 

system algorithm by improving the decision mechanism for 

node access of vehicles. Zhang et al. (2024) studied VRPSD, 

multiple trips per vehicle and simultaneous pickup and 

delivery arising in the ground baggage handling problem at 

the airports. Other patricidal constraint such as time window, 

baggage release and back times were also taken into account. 

They developed ALNS using a two-stage solution evaluation 

method to solve this problem. 

The aforementioned studies only consider the demand of one 

product type, which is delivered by single-compartment 

vehicles (SCVs). However, in practice, more than one 

product type may be requested (Chen & Shi, 2019). Gu et al. 

(2024) presented a survey on VRPs with multiple products in 

which the VRPs have been classified into two categories: 

VRP with compatible and incompatible products. The 

MCVRP, which was raised for the first time in fuel 

distribution, deals with the distribution of incompatible 

products. Application of the MCVRP include the perishable 

products distribution (J. Wang et al., 2023), waste collection 

(Mohammadi et al., 2023), fuel distribution (L. Wang et al., 

2020), agricultural contexts (Polat & Topaloğlu, 2020) and 

etc. 

Asawarungsaengkul et al. (2013) presented an MCVRP for 

distribution of liquid products in which customer demand is 

divided according to a predetermined pattern. The solution 

procedures including the optimization approaches (CPLEX), 

2-opt algorithm, and clustering technique is proposed. 

Moshref-Javadi & Lee (2016) proposed an MCVRP with 

split delivery which focuses on the reduction of the 

customers' waiting time. A hybrid heuristic based on 

simulated annealing (SA) and variable neighborhood search 

(VNS) was designed to solve the problem. Urli & Kilby 

(2017) studied a multi-compartment fleet size and mix rich 

VRPSDs with time window and compatibility constraints 

arising in the context of fuel delivery. They suggested a 

constraint-based large neighborhood search (LNS) to solve 

the proposed problem. Alinaghian & Shokouhi (2018) 

introduced MCVRP with multi-depot in which split delivery 

is allowed only for a set of product types. They developed a 

hybrid solution approach that combines ALNS with VNS to 

solve large-scale instances. Zbib & Laporte (2020) developed 

a data-driven matheuristic for the commodity-split multi-

compartment capacitated arc routing problem arising in 

recyclable waste collection. Wang et al. (2020) considered an 

MCVRP with split delivery and multiple trips in the context 

of fuel replenishment problem and proposed ALNS to solve 

this problem. Polat & Topaloğlu (2020) studied milk 

collection problem as MCVRP with split delivery and time 

limit in an uncertain environment. They implemented an 

enhanced iterative local search (EILS) algorithm to solve the 

proposed problem. 

Although split delivery has received much attention in the 

literature, few studies have addressed MCVRP with split 

delivery. In the studied MCVRPs with split delivery, it is 

assumed that split delivery is always allowed and demand 

splitting does not depend on specific conditions. 

3. Problem Description and Model Formulation 

The proposed problem is defined on a complete undirected 

graph 𝐺 = (𝑉, 𝐸) where 𝑉 = {0} ∪ 𝑉 ˊ is the set of nodes and 

𝐸 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the set of edges. The depot is 

denoted by node 0 and the set 𝑉 ˊ = 𝑉 \{0} contains all nodes 

corresponding to customers. A nonnegative travel time 𝑡𝑖𝑗 is 

assigned to each edge (𝑖, 𝑗) ∈ 𝐸. It is assumed that all travel 

times are deterministic and symmetric (𝑡𝑖𝑗 = 𝑡𝑗𝑖).  

Let 𝑀 = {1, … , ℳ} be a set of incompatible products that 

must be stored and transported separately. Each customer 𝑖 ∈
𝑉 ˊ has a demand 𝑑𝑖𝑚 ≥ 0  for each product type 𝑚 ∈ 𝑀. The 

depot has no demand (𝑑0𝑚 = 0). 𝑀𝑖
ˊ is a subset of products 

that must be delivered to the customer 𝑖 at once. The 

unloading time of product 𝑚 is denoted by 𝑡𝑢𝑚. 

Heterogeneous fleet 𝐾 = {1, … , 𝒦 } of vehicles is available 

at the depot, each equipped with a total capacity, 𝑄𝑘 . The total 

capacity of each vehicle 𝑘 ∈ 𝐾 can be divided into a limited 

number of compartments, denoted by 𝐿𝑘 = {1, … , ℒ𝑘}. The 

size of each compartment is chosen arbitrarily between 0 and 

𝑄𝑘 in such a way that the total capacity of the compartments 

per vehicle does not exceed 𝑄𝑘. Due to products 

incompatibility, each compartment of a vehicle is assigned to 

a single product type. The demand of each customer for each 

product type does not exceed 𝑄𝑘. The vehicle fleet is assumed 

to be sufficiently large to satisfy all customer demands. Each 

vehicle is used for one tour at most. All vehicles depart from 

the depot at time 0 and have to return to the depot after 

visiting customers they serve. The transportation and 

unloading cost per time unit for vehicle 𝑘 are denoted by 𝑐𝑡𝑘 

and 𝑐𝑢𝑘, respectively.  

It is assumed that the possibility of splitting delivery depends 

on the product type. With respect to product type, two types 

of delivery mode are considered. A demand of customer 𝑖 ∈
𝑉 ˊ for product type 𝑚 ∈ 𝑀𝑖

ˊ (certain product types for each 

customer) must be delivered by only one vehicle. In other 

words, split delivery of product 𝑚 ∈ 𝑀𝑖
ˊ is not allowed for 

customer 𝑖 ∈ 𝑉 ˊ. However, split delivery of other product 

types (𝑚 ∈ 𝑀\𝑀𝑖
ˊ) is allowed if the time interval between 

visits does not exceed a certain limit (𝜎). The threshold 

reflects the maximum duration customers are willing to wait 

between receiving one portion of an order and the next. In 

this model, 𝕄 is a sufficient large positive number. The 

objective of proposed problem is to determine routing plan 

that minimize total cost. To model the proposed problem, the 

following decision variables are defined: 

𝑥𝑖𝑗𝑘  is a binary variable which equals to 1 if the edge (𝑖, 𝑗) ∈

𝐸 is travelled by vehicle  𝑘 ∈ 𝐾, and 0 otherwise. 

𝑦𝑖𝑚𝑘  is a binary variable which equals to 1 if customer 𝑖 ∈ 𝑉 

receive product 𝑚 ∈ 𝑀 from vehicle 𝑘 ∈ 𝐾, and 0 otherwise. 

𝑤𝑚𝑙𝑘 is a binary variable which equals to 1 if product 𝑚 ∈ 𝑀 

is assigned to compartment 𝑙 ∈ 𝑙𝑘 of vehicle 𝑘 ∈ 𝐾, and 0 

otherwise. 
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𝑧𝑖𝑚𝑘 ∈ [0, 1] is a non-negative continuous variable indicating 

the proportion of product 𝑚 ∈ 𝑀 that is delivered by vehicle 

𝑘 ∈ 𝐾 to customer 𝑖 ∈ 𝑉 ˊ. 

𝑠𝑖𝑘 ≥ 0 is a non-negative continuous variable indicating the 

arrival time of vehicle 𝑘 ∈ 𝐾 at customer 𝑖 ∈ 𝑉 ˊ and 𝑠0𝑘 = 0. 

The mathematical model formulation is as follows: 
 

𝑀𝑖𝑛 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑡𝑖𝑗𝑐𝑡𝑘

𝑘∈𝐾𝑗∈𝑉
𝑗≠𝑖

𝑖∈𝑉

+ ∑ ∑ ∑ 𝑧𝑖𝑚𝑘𝑑𝑖𝑚𝑡𝑢𝑚𝑐𝑢𝑘

𝑘∈𝐾𝑚∈𝑀𝑖∈𝑉

 (1) 

∑ 𝑧𝑖𝑚𝑘

𝑘∈𝐾

= 1 ∀𝑖 ∈ 𝑉 ˊ, 𝑚 ∈ 𝑀, 𝑑𝑖𝑚 > 0 (2) 

∑ 𝑥𝑖𝑗𝑘

𝑗∈𝑉,𝑗≠𝑖

≤ 1 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (3) 

∑ ∑ 𝑧𝑖𝑚𝑘𝑑𝑖𝑚

𝑚∈𝑀𝑖∈𝑉 ˊ

≤ 𝑄𝑘 ∀𝑘 ∈ 𝐾 (4) 

𝑧𝑖𝑚𝑘 ≤ 𝑦𝑖𝑚𝑘 ∀𝑖 ∈ 𝑉 ˊ, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾 (5) 

𝑦𝑖𝑚𝑘 ≤ 𝕄𝑧𝑖𝑚𝑘  ∀𝑖 ∈ 𝑉 ˊ, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾 (6) 

𝑦𝑖𝑚𝑘 ≤ ∑ 𝑤𝑚𝑙𝑘

𝑙∈𝐿𝑘

 ∀𝑖 ∈ 𝑉 ˊ, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾 (7) 

∑ 𝑤𝑚𝑙𝑘

𝑚∈𝑀

≤ ∑ 𝑥0𝑗𝑘

𝑗∈𝑉 ˊ

 ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿𝑘 (8) 

∑ 𝑥𝑖𝑗𝑘

𝑗∈𝑉,𝑗≠𝑖

= ∑ 𝑥𝑗𝑖𝑘

𝑗∈𝑉,𝑗≠𝑖

 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (9) 

𝑠𝑖𝑘 + ∑ 𝑧𝑖𝑚𝑘𝑑𝑖𝑚𝑡𝑢𝑚 + 𝑡𝑖𝑗 − 𝕄(1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘

𝑚∈𝑀

 
(10) 

 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉 ˊ, 𝑘 ∈ 𝐾 

𝑠𝑖𝑘 + ∑ 𝑧𝑖𝑚𝑘𝑑𝑖𝑚𝑡𝑢𝑚 + 𝑡𝑖𝑗 + 𝕄(1 − 𝑥𝑖𝑗𝑘) ≥ 𝑠𝑗𝑘

𝑚∈𝑀

 
(11) 

 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉 ˊ, 𝑘 ∈ 𝐾 

𝑠𝑗𝑘 ≤ 𝕄 ∑ 𝑦𝑗𝑚𝑘

𝑚∈𝑀

 ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (12) 

𝑠0𝑘 = 0 ∀ 𝑘 ∈ 𝐾 (13) 

𝑦𝑗𝑚𝑘 ≤ ∑ 𝑥𝑖𝑗𝑘

𝑖

 ∀𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾 (14) 

∑ 𝑦𝑗𝑚𝑘

𝑘∈𝐾

≤ 1 ∀𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀𝑗
ˊ (15) 

|𝑠𝑗𝑘 − 𝑠
𝑗𝑘ˊ

| ≤ 𝜎 + 𝕄(2 − 𝑦𝑗𝑚𝑘 − 𝑦
𝑗𝑚𝑘ˊ

) 
(16) 

∀𝑘, 𝑘ˊ ∈ 𝐾, 𝑘 ≠ 𝑘ˊ, 𝑗 ∈ 𝑉 ˊ, 𝑚 ∉ 𝑀𝑗
ˊ 

𝑥𝑖𝑗𝑘 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 

(17) 

𝑦𝑖𝑚𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾 

𝑤𝑚𝑙𝑘 ∈ {0,1} ∀𝑚 ∈ 𝑀, 𝑙 ∈ 𝐿𝑘 , 𝑘 ∈ 𝐾 

𝑧𝑖𝑚𝑘 ∈ [0, 1] ∀𝑖 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾 

𝑠𝑖𝑘 ≥ 0 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 

The objective function (1) minimizes the total cost including 

transportation and delivery costs. Constraints (2) ensure that 

each customer’s demand for each product type must be 

satisfied. Constraints (3) guarantee that each vehicle 

performs at most one tour. Constraints (4) limit the vehicle 

capacity to 𝑄𝑘. Constraints (5) and (6) link variables 𝑧𝑖𝑚𝑘  and 

𝑦𝑖𝑚𝑘 . They set 𝑦𝑖𝑚𝑘 = 1 if a proportion of product 𝑚 ∈ 𝑀 is 

delivered to customer 𝑖 ∈ 𝑉 ˊ by vehicle 𝑘 ∈ 𝐾. Constraints 

(7) states that customer 𝑖 ∈ 𝑉 ˊcan receive product 𝑚 ∈
𝑀 from vehicle 𝑘 ∈ 𝐾 if at least one compartment of this 

vehicle is assigned to the corresponding product. Constraints 

(8) ensure that each compartment of each vehicle leaving the 

depot is dedicated to only one product type. Constraints (9) 

is the flow conservation, generating that a vehicle that visits 

a certain node must leave it. Constraints (10) and (11) 

determine the vehicle arrival times to all customers in which 

waiting time between deliveries is not allowed. For customer 

𝑗 ∈ 𝑉 ˊ who is not receiving any product from vehicle 𝑘 ∈ 𝐾, 

constraints (12) set 𝑠𝑗𝑘 = 0. Constraints (13) guarantees that 

each vehicle departure from the depot at time zero. 

Constraints (14) link variables 𝑦𝑗𝑚𝑘  and 𝑥𝑖𝑗𝑘 . Constraints 

(15) ensure that each demand of product 𝑚 ∈ 𝑀𝑗
ˊ is delivered 

to customer 𝑗 ∈ 𝑉 ˊ by exactly one vehicle. Constraints (16) 

ensure that split delivery of product 𝑚 ∈ 𝑀\𝑀𝑗
ˊ is allowed for 

customer 𝑗 ∈ 𝑉 ˊ if the time interval between visits does not 

exceed a certain limit. Finally, constraints (17) define the 

domains of the decision variables. 

4. Solution Approaches 

4.1. Matheuristic 

Matheuristics are hybrid optimization methods that make use 

of mathematical programming techniques in metaheuristics 

to the solution approach customization (Ngoo et al., 2024). 

To solve the problem, we propose a fix-and-optimize based 

matheuristic that iteratively selects a subset of variables to be 

fixed at their current values, while remaining sub problem is 

exactly or heuristically optimized (Dumez et al., 2023). 

In the proposed matheuristic, three strategies are used to fix 

a part of the solution, all of which are based on fixing 

customers to route assignment variables. The type of fixing 

strategy is denoted by 𝑟 (𝑟 ∈ {1,2,3}). In the first strategy, the 

demand of all product types (𝑚 ∈ 𝑀) of the certain 

customers is fixed in the routes. For each certain customer, in 

the second strategy only the demand of product type 𝑚 ∈ 𝑀𝑗
́  

and in the third strategy only the demand of product type 𝑚 ∈
𝑀\𝑀𝑗

́  is fixed in the routes. The pseudo-code of the 

developed matheuristic is given in Algorithm 1.  

The algorithm starts with initializing the parameters (lines 1-

3). The selection probability of each fixing strategy will 

depend on its weight. Initially, all fixing strategies have the 

same weight (line 4), i.e., the probability of selection is equal 

for all fixing strategies. The solution approach is initialized 

with a feasible initial solution (𝑆𝑖𝑛𝑖) obtained through a 

constructive heuristic (Section 4.3). The best solution (𝑆𝑏𝑒𝑠𝑡) 

set equal to the initial solution (lines 5-6). A set of customers 

(𝑉∗) is randomly selected (lines 7-8). The main loop of the 

algorithm is then started and repeated until a predetermined 

termination criterion is met (lines 9-29). In each iteration, a 

fixing strategy is chosen by the roulette wheel selection 

method (line 13). The selected customers (𝑖 ∈ 𝑉∗) are free to 

be assigned to any route while the assignment variables of 

other ones (𝑖 ∉ 𝑉∗) are fixed at their current value according 

to the selected strategy (lines 14-19). After applying the 
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fixing strategy, the mathematical model (sub problem) is run 

with a short time limit 𝑇𝐿 (line 20). The best solution found 

is kept as an incumbent solution (𝑆 ́). Then, the best solution 

and the weight of the selected strategy are updated. The 

weight of the selected strategy is increased by 𝛿 if it finds a 

new best solution. If 𝑆∗ is not improved, the counter of non-

improving iterations (𝑛𝑜𝐼𝑚𝑝) is updated (lines 21-29) and 

other customers are selected randomly (lines 10-12). The 

algorithm stops when one of the predefined termination 

criteria is met. These criteria are the maximum number of 

iterations (𝑖𝑡𝑒𝑟𝑚𝑎𝑥) or maximum number of iterations 

without any improvement (𝑛𝑜𝐼𝑚𝑝𝑚𝑎𝑥).  

Algorithm 1 Matheuristic 

1 Set parameters 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, 𝑛𝑜𝐼𝑚𝑝𝑚𝑎𝑥, 𝑉 ́, 𝑇𝐿, 𝑀, 𝑀𝑗
́  

2 𝑛𝑜𝐼𝑚𝑝 ← 0 

3 𝑖𝑡𝑒𝑟 ← 0 

4 Set initial weights of fixing strategy 𝑟 equal to one (𝑤𝑟
0 = 1). 

5 Generate a feasible initial solution 𝑆𝑖𝑛𝑖 

6 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑖𝑛𝑖 

7 𝑁 ← generate a random number ∈ [1, |𝑉 ́|) 

8 𝑉∗ ← Select 𝑁 customers randomly as free customers. 

9 while 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 or 𝑛𝑜𝐼𝑚𝑝 < 𝑛𝑜𝐼𝑚𝑝𝑚𝑎𝑥 do 

10     if 𝑛𝑜𝐼𝑚𝑝 > 0 then 

11         𝑁 ← generate a random number ∈ [1, |𝑉 ́|) 

12         Select  𝑁 customers randomly as free customers 

13     Select a fixing strategy using roulette wheel selection method based on previously weights. 

14     if fixing strategy 𝑟 = 1 is selected then 

15         𝑦𝑖𝑚𝑘 = 𝑦𝑖𝑚𝑘
∗   𝑖 ∉ 𝑉∗, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾 

16     elif fixing strategy 𝑟 = 2 is selected then 

17         𝑦𝑖𝑚𝑘 = 𝑦𝑖𝑚𝑘
∗   𝑖 ∉ 𝑉∗, 𝑚 ∈ 𝑀𝑖

́ , 𝑘 ∈ 𝐾 

18     else 

19         𝑦𝑖𝑚𝑘 = 𝑦𝑖𝑚𝑘
∗   𝑖 ∉ 𝑉∗, 𝑚 ∈ 𝑀\𝑀𝑖

́ , 𝑘 ∈ 𝐾 

20     Run the model with 𝑇𝐿 and keep the best solution found so far (𝑆 ́). 

21     if  𝑆 ́ is better than 𝑆𝑏𝑒𝑠𝑡 then 

22         𝑛𝑜𝐼𝑚𝑝 ← 0 

23         𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

24         𝑆𝑏𝑒𝑠𝑡 ← 𝑆 ́ 

25         𝑤𝑟
𝑖𝑡𝑒𝑟 ← 𝑤𝑟

𝑖𝑡𝑒𝑟−1 + 𝛿 (Update the weights of the fixing strategy) 

26     else 

27         𝑛𝑜𝐼𝑚𝑝 ← 𝑛𝑜𝐼𝑚𝑝 + 1 

28         𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

29 end while 

4.2. ALNS 

The ALNS is a metaheuristic introduced by Ropke & 

Pisinger (2006) as an extension of LNS. Similar to LNS, 

ALNS is also based on the ruin and recreate principle. 

However, in contrast to LNS, several destroy and insertion 

operators are allowed to be used in the ALNS. The ALNS has 

been used successfully to solve different variants of the VRPs 

(Voigt, 2024). The pseudo-code of the ALNS is provided in 

Algorithm 2. 

The ALNS starts with the construction of a feasible initial 

solution (𝑆𝑖𝑛𝑖) and initializing the relevant parameters (lines 

1-4). The set of removal and insertion operators are denoted 

by Ω− and Ω+, respectively. All operators (𝑖 ∈ Ω− ∪ Ω+) 

initially have the same weight (𝑤𝑖) and the probability to be 

selected. All scores (𝜋𝑖) are equal to zero (line 5). In the 

beginning of the algorithm, the best solution (𝑆𝑏𝑒𝑠𝑡) and 

current solution (𝑆𝑡) are equal to 𝑆𝑖𝑛𝑖  (line 6). The main loop 

of the algorithm is then started (lines 7-26) and repeated until 

a termination criterion is met. In each iteration, a removal and 

insertion operators are selected using the roulette wheel 

selection (line 8). The selected removal and insertion 

operators are successively applied to destroy the current 

solution and then repair it to generate a new solution 𝑆 ́ (line 

11). The new solution is accepted as the current solution 

depending on an acceptance criterion (Section 4.2.1). Then, 

the best solution is updated. If  𝑆𝑏𝑒𝑠𝑡  is not improved, the 

counter of non-improving iterations (𝑛𝑜𝐼𝑚𝑝) is updated and 

another removal and insertion operators are selected using 

roulette wheel selection based on previously obtained scores 

(lines 9-10). For every 𝛾 iterations, the weight of each 

operator is updated according to their performance (lines 24-

25) (Section 4.2.3). The algorithm terminates when either a 

maximum number of iterations (𝑖𝑡𝑒𝑟𝑚𝑎𝑥) or maximum 

number of iterations without improvement (𝑛𝑜𝐼𝑚𝑝𝑚𝑎𝑥) has 

been reached. 

4.2.1. Acceptance criterion 

The acceptance criterions are implemented in different ways 

to decide whether a new solution should become the current 

solution or not. The simplest acceptance criterion is to only 

accept improving solution. In the proposed ALNS, 

acceptance criterion is based on SA, in which a new solution 

with objective value 𝑂𝑏𝑗(𝑆 ́) is always accepted if it improves 

the current solution with objective value 𝑂𝑏𝑗(𝑆𝑡), i.e., 

𝑂𝑏𝑗(𝑆 ́) < 𝑂𝑏𝑗(𝑆𝑡). Otherwise, a new solution is accepted 

with probability of 𝑒− (
𝑂𝑏𝑗(𝑆́)−𝑂𝑏𝑗(𝑆𝑡) 

𝑇
)
. 𝑇 > 0 is the current 
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temperature. Initially, 𝑇 is set to a value that non-improving 

solution are always accepted. Then, it is decreased by a 

cooling factor (𝜏) in each iteration where 0 < 𝜏 < 1 (Zhang 

et al., 2024)

 

Algorithm 2 ALNS 
1 Generate a feasible initial solution, 𝑆𝑖𝑛𝑖    
2 Set parameters 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, 𝑛𝑜𝐼𝑚𝑝𝑚𝑎𝑥 
3 𝑖𝑡𝑒𝑟 ← 0 
4 𝑛𝑜𝐼𝑚𝑝 ← 0 
5 Set 𝑤𝑖 = 1 and 𝜋𝑖 = 0 for each operator (𝑖 ∈ Ω− ∪ Ω+) 
6 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑡 ← 𝑆𝑖𝑛𝑖 
7 while 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 or  𝑛𝑜𝐼𝑚𝑝 < 𝑛𝑜𝐼𝑚𝑝𝑚𝑎𝑥 do 
8 Select a removal and insertion operator using roulette wheel selection based on previously obtained scores 
9 if  𝑛𝑜𝐼𝑚𝑝 > 0 then 

10 Select a removal and insertion operator using roulette wheel selection based on previously obtained scores 
11 𝑆 ́ ← Apply selected removal and insertion operators to generate a new solution  
12 if  𝑆 ́ is accepted then 
13 𝑆𝑡 ← 𝑆 ́ 
14 if 𝑆 ́ is better than 𝑆𝑏𝑒𝑠𝑡 then 
15 𝑆𝑏𝑒𝑠𝑡 ← 𝑆 ́ 
16 𝑛𝑜𝐼𝑚𝑝 ← 0 
17 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 
18 else 
19 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 
20              𝑛𝑜𝐼𝑚𝑝 ← 𝑛𝑜𝐼𝑚𝑝 + 1 
21 else 
22 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 
23    𝑛𝑜𝐼𝑚𝑝 ← 𝑛𝑜𝐼𝑚𝑝 + 1 
24 if mod (𝑖𝑡𝑒𝑟, 𝛾) = 0 then 
25 Update the weights of operators and reset scores 

26 end while 

 

4.2.2.  Removal and reinsert operations 

The removal operator removes a number of customers (𝑝) 

from the current solution and the insertion operator reinserts 

the removed customers. To ensure feasibility, first all 

customers who are visited more than once are selected, then 

the number of customers who are visited only once are 

selected based on the removal operator. The following 

operators are used in the proposed ALNS. 

Random removal: The random removal operator selects 𝜌 

customers randomly and removes them from the current 

solution. 

Vehicle removal (Route destruction): A vehicle 𝑘 is 

randomly selected. The customers served by vehicle 𝑘 are 

selected until the number of customers is equal to 𝑝. If all 

customers served by vehicle 𝑘 have been selected and the 

number of selected customers is less than 𝑝, another vehicle 

is selected. This process continues until 𝑝 customers are 

selected (Mancini, 2016). 

Shaw removal: The idea of removing customers based on 

their similarities was first proposed by Shaw (1998). The 

first customer is chosen randomly. In the subsequent 

iterations, Shaw removal removes the customer that is most 

similar to the customer removed in the preceding iteration. 

The procedure is repeated until 𝑝 customers are removed. In 

this paper, the similarity between two customers 𝑖 and 𝑗 is 

expressed by 𝑅𝑖𝑗 based on travel time and demand by Eq. 

(18). 

𝑅𝑖𝑗 = 𝜑
𝑡𝑖𝑗

𝑡𝑚𝑎𝑥

+ (1 − 𝜑)
|∑ 𝑑𝑖𝑚𝑚 − ∑ 𝑑𝑗𝑚𝑚 |

𝑑𝑚𝑎𝑥

 (18) 

Where 𝑡𝑚𝑎𝑥 indicate the maximum travel time between any 

pair of customers and 𝑑𝑚𝑎𝑥  is the maximum demand 

(∑ 𝑑𝑖𝑚𝑚 ). 𝜑 ∈ [0,1] is a relative weight of each term. 

Greedy insertion: For each removed customer (i.e., 

unassigned customer), all feasible positions in the fleet are 

determined. The customer with the lowest insertion cost is 

then selected and inserted in its lowest-cost position. Then, 

the insertion costs of the remaining customers are updated 

and this procedure is repeated until all customers have been 

reinserted.  

Random insertion: For each removed customer, all feasible 

positions in the fleet are determined. A customer is selected 

randomly and inserted in its random feasible position. The 

feasible positions of the remaining customers are determined 

and this procedure is repeated until all customers have been 

reinserted. 

4.2.3. Adaptive weight adjustment 

For every γ iteration (i.e., time segment j), the weight of each 

operator is updated according to their performance by Eq. 

(19). 

𝑤𝑖𝑗+1 = (1 − 𝜆)𝑤𝑖𝑗 + 𝜆
𝜋𝑖

𝜃𝑖

 (19) 

Where 𝜆 ∈ [0,1] is a parameter that controls how the weights 

are influenced by the historical performance. 𝜃𝑖 is the number 

of times that operator 𝑖 was called in the last 𝛾 iteration. 𝜋𝑖 is 

the current score of the operator 𝑖. The parameters 𝑣1, 𝑣2 and 

𝑣3 are used to update the operator’ score by Eq. (20), where 

𝑣1 > 𝑣2 > 𝑣3 (Friedrich & Elbert, 2022). 

                        𝑣1  If new best solution has been found. 

 

𝜋𝑖
𝛾+1

= 𝜋𝑖
𝛾

+   𝑣2   If new solution is accepted but worse   

than best solution. 
 

                        𝑣3   If new solution is rejected. 

(20) 

4.3. Initial Solution 

A feasible initial solution is generated through a constructive 

algorithm. If the customer’s demand exceeds the capacity of 
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a vehicle, it is splitting into several customers, each of which 

requests only one product type. With a such splitting, each 

customer can be assigned to each vehicle. First, a customer 

is randomly selected and assigned to a randomly selected 

vehicle to generate a feasible route. Then, unassigned 

customers are inserted by Greedy insertion heuristic 

(Section 4.2.2). If insertion is not possible anymore due to 

capacity constraints, a new vehicle is selected and this 

procedure is repeated until all customers have been inserted. 

5. Numerical experiments 

This section presents numerical experiments to investigate 

the efficiency of the proposed model and solution 

approaches. The experiments are implemented in Python, 

utilizing Gurobi optimizer, version 10.0.3 as the 

optimization solver with a time limit of 14400 seconds. All 

computational experiments are performed on a laptop with 

16 GB RAM and 2.8 GHz Intel Corei5-3210M processor 

running Windows 10. 

5.1. Test instances 

The computational results are based on instances derived 

from Martins et al. (2019), which includes 50 customers who 

order incompatible products in several time periods. In this 

data set, the capacity of all vehicle is identical, at 33 units 

and the time required to unload each product type is 2 units 

(𝑡𝑢𝑚 = 2). 

We generate two sets of small and large sized instances 

based on Martins et al. (2019). The small sized instances are 

generated by randomly extracting up to 15 customers with 

up to 3 product types from each instances in Martins et al. 

(2019). On the other hand, 20 to 50 customers with up to 3 

product types are extracted as large sized instances. For each 

combination of customer and product type, 5 instances are 

generated (60 instances in total) which is indicated in 

column “EX” in detailed Table A1 in Appendix. The 

proposed problem is a single-period MCVRP in which the 

arrival time consistency of several vehicles is studied; 

therefore, the computational experiments are conducted over 

a single period (The first period was randomly selected.). 

It is assumed that the fleet is sufficiently large to serve all 

demand. The maximum number of compartments per vehicle 

is equal to the number of products, i.e., ℳ = ℒ𝑘 for 𝑘 ∈ 𝐾. 

Transportation and unloading costs of vehicles per time unit 

are set to 10 and 3.75 units, respectively. Each instance was 

solved with and without considering customer requirement in 

term of splitting delivery (product-oriented split delivery or 

general split delivery). These instances are described as 𝑛 −
ℳ − 𝐺𝑠𝑝𝑙𝑖𝑡/𝑃𝑠𝑝𝑙𝑖𝑡, where 𝑛 is the maximum number of 

customers, ℳ is the number of product types and the last 

field 𝐺𝑠𝑝𝑙𝑖𝑡/𝑃𝑠𝑝𝑙𝑖𝑡 refers to customer requirement in term 

of splitting delivery. In the case of product-oriented split 

delivery (𝑃𝑠𝑝𝑙𝑖𝑡), the demand of each customer for given 

product types cannot be split (𝑚 ∈ 𝑀𝑖
ˊ for 𝑖 ∈ 𝑉 ́), but split 

delivery of other product types is allowed under certain 

condition. In 𝐺𝑠𝑝𝑙𝑖𝑡, split delivery is allowed for all product 

types. It is assumed that the demand of first product type 

cannot be split in product-oriented split delivery mode (𝑀𝑖
́ =

{1} for 𝑖 ∈ 𝑉 ́). 

The maximum allowed arrival time difference is assumed to 

be 1 hour. Note that the proposed model contains a large 

positive number 𝕄. The upper bound of 𝕄 can be calculated 

by Eq. (21). 

𝕄 ≥ ∑ ∑ 𝑡𝑖𝑗

𝑗∈𝑉 ˊ𝑖∈𝑉

+ ∑ ∑ 𝑑𝑗𝑚𝑡𝑢𝑚

𝑚∈𝑀𝑗∈𝑉 ˊ

 (21) 

Since the proposed solution approaches has a random 

component, each algorithm has been run 5 times on each 

instance. The best and average objective function value over 

5 runs, denoted as 𝑂𝑏𝑗𝑏𝑒𝑠𝑡  and 𝑂𝑏𝑗𝑎𝑣𝑔 respectively, are 

reported. The average computational times, denoted as 

𝑇𝑎𝑣𝑔 , are presented. The adaptive weights are updated every 

5 iterations. All parameters are tuned experimentally to 

achieve a reasonable balance between effectiveness and 

computational time. An overview of the parameters used in 

the solution approaches is provided in Tables 1 and 2. 

 

  

Table 1 

The parameters of matheuristic 

Notation Description Value 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 Maximum number of iterations 50 

𝑛𝑜𝐼𝑚𝑝𝑚𝑎𝑥 Maximum number of non-improving iterations 5 

𝑇𝐿 Time limit (in seconds) 10 

𝛿 Score used in updating the weight of fixing strategy 0.1 

Table 2  

The parameters of ALNS 

Notation Description Value 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥  Maximum number of iterations 300 

𝑛𝑜𝐼𝑚𝑝𝑚𝑎𝑥  Maximum number of non-improving iterations  100 

𝑇 Initial temperature in SA 0.4 

𝜏 Cooling factor in SA  0.9994 

𝜑 Shaw parameter 0.5 

𝛾 Number of iterations per segment 5 

𝜆 The parameter is used to weight adjustment 0.3 

𝑣1 The parameter is used to update the operator’ score if a new best solution is found. 20 

𝑣2  The parameter is used to update the operator’ score if a new solution is accepted. 10 

𝑣3  The parameter is used to update the operator’ score if a new solution is rejected. 1 
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5.2.  Computational results       

This section presents the computational results using the 

solution approaches described in Section 4. We solve the 

small sized instances with ALNS and matheuristic and 

compare the results with optimal solution obtained by 

Gurobi. Table A1 in Appendix presents the computational 

results of the small sized instances in detail. The large sized 

instances are solved by ALNS and matheuristic, since 

Gurobi is not able to find a solution when the number of 

customers or product types grows up to 20 and 3, 

respectively. Tables 3 and 4 present the average 

computational results of the small and large sized instances, 

where each row represents the average results of five 

instances with the same combination of customer and 

product.  

These tables are organized as follows. First column indicates 

the name of instance, which is composed of the number of 

customers, the number of products, and finally splitting 

mode (𝐺𝑠𝑝𝑙𝑖𝑡/𝑃𝑠𝑝𝑙𝑖𝑡). Under the Gurobi header, optimal 

objective function value (𝑂𝑏𝑗∗), computational time (𝑇) and 

optimality gap (𝐺𝑎𝑝∗) are reported. The optimality gap is the 

percentage gap between 𝑂𝑏𝑗∗ and lower bound reported by 

Gurobi. Under the ALNS and matheuristic headers, the best 

and average objective function value over five runs is 

reported, denoted as 𝑂𝑏𝑗𝑚𝑖𝑛 and 𝑂𝑏𝑗̅̅ ̅̅ ̅ respectively. The 

corresponding computational times are denoted as 𝑇𝑚𝑖𝑛 and 

�̅� respectively. The relative gap (𝐺𝑎𝑝̅̅ ̅̅ ̅) is measured with 

respect to Gurobi given by (𝑂𝑏𝑗̅̅ ̅̅ ̅ − 𝑂𝑏𝑗∗) 𝑂𝑏𝑗∗⁄ . The relative 

improvement of the matheuristic compared to ALNS is also 

reported in column “𝐼𝑚𝑝̅̅ ̅̅ ̅̅ ”, which is the percentage gap 

between 𝑂𝑏𝑗̅̅ ̅̅ ̅ in matheuristic and 𝑂𝑏𝑗̅̅ ̅̅ ̅ in ALNS. The average 

results over all instances are given in the last row of each 

table. 

As illustrated in Table 3, Gurobi only solves instances up to 

15 customers and 2 product types within a time limit of 4 

hours. As shown in Table A1 in Appendix, in 12 out of 15 

instances, Gurobi found the same optimal solution in both 

splitting delivery modes (𝐺𝑠𝑝𝑙𝑖𝑡/𝑃𝑠𝑝𝑙𝑖𝑡). This means that in 

the most small sized instances it is possible to meet customer 

requirements in term of demand splitting without additional 

costs. In the remaining three instances, the proposed model 

in the product-oriented split delivery mode costs more than 

the general mode. 

As the problem size increase, the computational time of 

Gurobi increases exponentially. In all small sized instances, 

both proposed algorithms find near optimal solutions within 

very short computational times. The ALNS is able to find 

high quality solutions with an average relative gap of 0.5% 

in less than 10 seconds per small sized instance. The 

matheuristic obtains near optimal solution with an average 

gap of only 0.12% within an average run time of 25.6 

seconds. The proposed matheuristic on an average achieve 

improvement of 0.38%, when compared to the proposed 

ALNS. There are no significant differences in computational 

times across the two algorithms. 

Note that although the Gurobi computational time is affected 

by the mode of demand splitting, it does not have a 

significant effect on the proposed algorithms computational 

time. 

In Table 4, we evaluate the performance of the matheuristic 

by comparing its results to the results of ALNS in the large 

sized instances. Table 4 shows that although the size of 

problem increases, both algorithms can obtain a solution in 

relatively short time. Based on the computational results 

provided in Table 4, the proposed matheuristic perform 

better than ALNS on all instances with an average 

improvement of 7.7%. Matheuristic are efficient, reducing 

up to nearly 20% ((141.9-178.2)/178.2) of computational 

time on average. Allowing product-oriented split delivery 

mode in MCVRP may lead to an increase in the number of 

vehicles needed or affect routing decisions and travelled 

distance. Therefore, as expected, the route generated in 

product-oriented mode are costly than the general mode in 

the large sized instances.  

 

 
 
Table 3  
Small sized instances 

 Gurobi ALNS Matheuristic 
𝐼𝑚𝑝̅̅ ̅̅ ̅̅  
(%) Instance 𝑂𝑏𝑗∗ 

𝐺𝑎𝑝∗ 
(%) 

T 

(s) 
𝑂𝑏𝑗𝑚𝑖𝑛 𝑂𝑏𝑗̅̅ ̅̅ ̅ 

𝐺𝑎𝑝̅̅ ̅̅ ̅  
(%) 

𝑇𝑚𝑖𝑛 
(s) 

�̅� 
(s) 

𝑂𝑏𝑗𝑚𝑖𝑛 𝑂𝑏𝑗̅̅ ̅̅ ̅ 
𝐺𝑎𝑝̅̅ ̅̅ ̅  
(%) 

𝑇𝑚𝑖𝑛 
(s) 

�̅� 
(s) 

10-2- 𝐺𝑠𝑝𝑙𝑖𝑡 12488.4 0.00 138.3 12488.4 12552.7 0.43 7.4 7.3 12488.4 12488.7 0.00 17.8 20.4 -0.43 

10-2- 𝑃𝑠𝑝𝑙𝑖𝑡 12488.4 0.00 54.2 12488.4 12488.4 0.00 4.7 5.7 12490.1 12490.1 0.01 8.9 9.1 0.01 

10-3- 𝐺𝑠𝑝𝑙𝑖𝑡 15196.5 0.00 436.7 15253.7 15288.5 0.54 12.0 12.0 15196.5 15217.9 0.13 21.2 26.0 -0.40 

10-3- 𝑃𝑠𝑝𝑙𝑖𝑡 15196.5 0.00 749.1 15196.5 15263.9 0.40 5.7 6.8 15196.5 15216.2 0.11 16.8 21.8 -0.29 

15-2- 𝐺𝑠𝑝𝑙𝑖𝑡 18484.6 0.00 8993.3 18484.6 18631 0.79 13.5 14.3 18484.6 18514.5 0.17 38.2 44.6 -0.62 

15-2- 𝑃𝑠𝑝𝑙𝑖𝑡 18597.5 0.00 4909.9 18669.6 18750.9 0.82 9.7 11.3 18615.7 18651 0.27 27.4 31.9 -0.54 

average  0.00 2546.9   0.50 8.8 9.6   0.12 21.7 25.6 -0.38 
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Fig.1 Comparison of MCVRP in two modes: 𝐺𝑠𝑝𝑙𝑖𝑡 and 𝑃𝑠𝑝𝑙𝑖𝑡 
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                       Fig.2. The effect of vehicle capacity on splitting delivery in MCVRP with product-oriented split delivery 

 
 

 

 

 

 ALNS Matheuristic 
𝐼𝑚𝑝̅̅ ̅̅ ̅̅  
(%) Instance 𝑂𝑏𝑗𝑚𝑖𝑛 𝑂𝑏𝑗̅̅ ̅̅ ̅ 

𝑇𝑚𝑖𝑛 
(s) 

�̅� 
(s) 

𝑂𝑏𝑗𝑚𝑖𝑛 𝑂𝑏𝑗̅̅ ̅̅ ̅ 
𝑇𝑚𝑖𝑛 
(s) 

�̅� 
(s) 

20-2- 𝐺𝑠𝑝𝑙𝑖𝑡 28527.9 29192.5 50.0 48.4 27915.9 28163.0 125.8 114.4 -3.53 

20-2- 𝑃𝑠𝑝𝑙𝑖𝑡 28921.0 29380.9 33.7 35.0 28134.6 28295.1 56.6 52.4 -3.70 

30-2- 𝐺𝑠𝑝𝑙𝑖𝑡 47471.1 49265.5 93.8 100.6 42488.7 43054.5 139.2 136.6 -12.61 

30-2- 𝑃𝑠𝑝𝑙𝑖𝑡 44367.5 44834.4 78.8 75.9 43463.0 43720.8 59.8 64.0 -2.48 

40-2- 𝐺𝑠𝑝𝑙𝑖𝑡 65862.2 67102.7 142.2 153.0 59969.1 60883.6 214.6 236.5 -9.27 

40-2- 𝑃𝑠𝑝𝑙𝑖𝑡 62346.0 62837.3 101.6 109.1 61598.4 62074.4 67.4 64.6 -1.21 

50-2- 𝐺𝑠𝑝𝑙𝑖𝑡 88933.0 90066.5 300.6 246.1 80255.2 82188.4 302.2 321.7 -8.75 

50-2- 𝑃𝑠𝑝𝑙𝑖𝑡 83313.4 84194.9 209.6 235.1 82294.5 83096.4 58.2 57.4 -1.30 

15-3- 𝐺𝑠𝑝𝑙𝑖𝑡 28676.1 29537.9 39.8 43.2 24943.2 25170.0 62.2 76.7 -14.79 

15-3- 𝑃𝑠𝑝𝑙𝑖𝑡 27886.5 27604.2 33.6 31.9 25528.3 25988.3 54.4 57.6 -5.85 

20-3- 𝐺𝑠𝑝𝑙𝑖𝑡 38184.6 39059.2 118.4 117.6 34141.4 34544.8 142.2 145.6 -11.56 

20-3- 𝑃𝑠𝑝𝑙𝑖𝑡 36238.8 37004.1 73.8 67.60 34538.0 35223.1 53.2 56.8 -4.81 

30-3- 𝐺𝑠𝑝𝑙𝑖𝑡 58421.1 59424.7 178.4 178.2 50179 51835.5 185 203.2 -12.77 

30-3- 𝑃𝑠𝑝𝑙𝑖𝑡 65999.4 67792.9 146.2 144.1 64603.8 65289.1 61.6 73.0 -3.69 

40-3- 𝐺𝑠𝑝𝑙𝑖𝑡 88046.5 89404.9 213.4 211.7 73824 75856.5 376.4 368.6 -15.15 

40-3- 𝑃𝑠𝑝𝑙𝑖𝑡 101664.5 104640.6 387.6 415.8 100183.6 100183.5 67.0 80.6 -4.26 

50-3- 𝐺𝑠𝑝𝑙𝑖𝑡 132402.6 134806.4 550.2 454.5 110355.2 114164.3 392.0 368.9 -15.31 

50-3- 𝑃𝑠𝑝𝑙𝑖𝑡 140470.4 142241.6 569.2 539.6 131556.7 131762.2 83.4 76.1 -7.37 

average   184.5 178.2   139.0 141.9 -7.7 
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In Fig.1, the number of customers (𝑛) is shown along the x-

axis, whereas the vertical axis corresponds to the differences 

between MCVRP with product-oriented split delivery 

(𝑃𝑠𝑝𝑙𝑖𝑡 mode) and general MCVRP (𝐺𝑠𝑝𝑙𝑖𝑡 mode). The 

differences are explained in terms of three factors: the 

number of vehicles, the travelled distance and the ratio of 

split demands to total splitable demands (SD/TD). Fig. 1 

illustrates how solutions are affected when product-oriented 

split delivery mode is taken into account. As expected, the 

average distance travelled and the number of vehicles 

required in MCVRP with product-oriented split delivery 

increase compared to the general MCVRP. On average, the 

number of vehicles is more affected by the mode of demand 

splitting than distance travelled. The SD/TD in Fig.1 shows 

that the demand splitting decreases with the increase in the 

number of customers. In other words, as the number of 

customers increases, the proposed model approaches the 

MCVRP without split delivery.  

Fig. 2 shows the effect of vehicle capacity on the splitting 

delivery in three instances (Instance 1: 𝑛 = 10 and ℳ = 2, 

Instance 2: 𝑛 = 15 and ℳ = 2, Instance 3: 𝑛 = 10 

and ℳ = 3). The SD/TD is shown along the y-axis, whereas 

the horizontal axis corresponds to the capacity of vehicles. 

Obviously, as the capacity of vehicles increases, the number 

of vehicles decreases or does not change. At first, the 

capacity of vehicles is very small compared to the customers' 

demand, therefore a large part of the orders is delivered in 

split delivery mode. As vehicle capacity increases, each 

vehicle can fully serve more customers, thus reducing split 

deliveries. By further increasing the capacity of vehicles, 

although each vehicle can visit more customers, it does not 

fully meet all the demands and again splitting delivery mode 

increases. Therefore, as the capacity of vehicles increases, a 

decreasing and then increasing trend in the SD/TD is 

repeated. 

After analyzing the effect of the vehicle capacity on the 

delivery mode, the influence of the maximum number of 

compartments (ℒ𝑘 for 𝑘 ∈ 𝐾), which determines the number 

of product types per vehicle, is examined in three instances. 

Table 5 summarizes the effect of decreasing ℒ𝑘 on the 

number of vehicles, travelled distance and splitting delivery 

mode (SD/TD).  

Each SCV (ℒ𝑘 = 1 𝑓𝑜𝑟 𝑘 ∈ 𝐾) carries only one type of 

product, while a MCV (ℒ𝑘 > 1 𝑓𝑜𝑟 𝑘 ∈ 𝐾) enables joint 

delivery of several product types. Therefore, if MCVs are 

considered, customers' demands can be met with less (or 

equal) number of vehicles. As stated in instance 3, if SCVs 

are used instead of 3-compartment vehicles, the number of 

vehicles required will be 14.29% more. As expected, 

restricting the value of ℒ𝑘 leads to increased travelled 

distance. As stated in instance 3, reducing the number of 

compartments from 3 to 2 leads to 24.8% increase in the 

travelled distance, while a further reduction from 3 to 1 lead 

to a further distance increase of 73.43%. 

The last column of Table 5 shows the SD/TD in each 

instance. In MCVs, the vehicle capacity is divided into 

several compartments; each compartment is assigned to one 

type of product, while the total capacity of each SCV is 

assigned to one type of product. As shown in Table 5, split 

delivery in MCVs is more than SCVs in instance 1. However, 

it is observed that in instance 3, split delivery in SCVs is more 

than MCVs. Therefore, it can be conducted that there is no 

significant relationship between the number of compartments 

and demand splitting. In addition to the number of 

compartments and the amount of each customer demand, the 

number of customers who are visited in each tour also affect 

the delivery mode. 
 

                            Table 5 

                           The influence of the number of compartments on the delivery mode 

Instance 𝑛 ℳ ℒ𝑘 
Changes in the number of vehicles 

compared to ℒ𝑘 = ℳ (%) 

Changes in the travelled distance 

compared to ℒ𝑘 = ℳ (%) 
SD/TD (%) 

1 10 2 
2   28.57 

1 20 41.97 14.29 

2 15 2 
2   10 

1 0 32.11 10 

3 10 3 

3   0 

2 0 24.80 0 

1 14.29 73.43 7.14 

 

6. Conclusion and future research  

This paper addressed an MCVRP with split delivery in 

which the possibility of splitting delivery depends on the 

product type. Each customer's demand for certain types of 

products cannot be split, but split delivery of other types of 

products is permitted if the time interval between vehicles 

arrival times does not exceed a certain limit. We developed 

a MIP model that can used to solve small sized instances 

optimality with the Gurobi optimizer. In order to tackle 

larger instances, a matheuristic based on fixing a part of 

customer-to-route assignment variables and an ALNS was 

proposed. 

The proposed algorithms are employed to solve MCVRP 

with product-oriented split delivery and general MCVRP in 

which split delivery is allowed for all product types. 

Computational experiments indicated that in most small sized 

instances, Gurobi found the same optimal solution in both 

splitting delivery mode (𝐺𝑠𝑝𝑙𝑖𝑡/𝑃𝑠𝑝𝑙𝑖𝑡), indicating that 

customers' requirements in term of splitting delivery can be 

implemented without additional costs. Although the delivery 

mode has an effect on the Gurobi computational time, it does 

not affect the computational time of the proposed algorithms. 
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As the problem size increase, the computational time of 

Gurobi increases exponentially. Both algorithms find near 

optimal solutions within very short computational times. In 

the large sized instances, the proposed matheuristic performs 

better than ALNS with an average improvement of 7.7% and 

reducing up to nearly 20% of computational time on 

average. In large sized instances, the product-oriented split 

delivery in MCVRP may lead to an increase in the number 

of vehicles needed or affect routing decision and travelled 

distances. Therefore, the route generated in product-oriented 

mode are costly than general mode. 

Our sensitivity analysis revealed that, on average, the 

number of vehicles is more affected by delivery mode than 

distance travelled. Furthermore, the computational results 

showed that as the number of customer increases, the split 

delivery decreases and the proposed model approaches the 

MCVRP without split delivery. However, vehicle capacity, 

the number of compartments and number of customers in 

each tour are factors affecting the delivery mode. 

An interesting avenue for future research is to consider a 

heterogeneous fleet composed of various vehicles with 

different characteristics and costs. In addition, split delivery 

could be investigated in a fleet of electric or hybrid vehicles. 

Another aspect for future research could be considering 

uncertainty in certain parameters (e.g., demand and travel 

time), which brings the problem closer to real-life 

conditions. In terms of arrival time consistency, future work 

could assess the implications of varying the consistency 

threshold. From the solution approaches perspective, the 

proposed matheuristic could be developed in future studies. 
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 Appendix: Detailed results of small sized instances 
 

Table A1  
The detailed results of small sized instances 

  Gurobi ALNS Matheuristic 
𝐼𝑚𝑝̅̅ ̅̅ ̅̅  
(%) 

E
X

 Instance 𝑂𝑏𝑗∗ 
𝐺𝑎𝑝∗ 
(%) 

T 

(s) 
𝑂𝑏𝑗𝑚𝑖𝑛 𝑂𝑏𝑗̅̅ ̅̅ ̅ 

𝐺𝑎𝑝̅̅ ̅̅ ̅ 
(%) 

𝑇𝑚𝑖𝑛 
(s) 

�̅� 
(s) 

𝑂𝑏𝑗𝑚𝑖𝑛 𝑂𝑏𝑗̅̅ ̅̅ ̅ 
𝐺𝑎𝑝̅̅ ̅̅ ̅ 
(%) 

𝑇𝑚𝑖𝑛 
(s) 

�̅� 
(s) 

1 
10-2- 𝐺𝑠𝑝𝑙𝑖𝑡 7977.7 0.00 4.7 7977.7 7977.7 0.00 3 3.6 7977.7 7977.7 0.00 10.0 10.4 0.00 

10-2- 𝑃𝑠𝑝𝑙𝑖𝑡 7977.7 0.00 6.7 7977.7 7977.7 0.00 4 4.4 7977.7 7977.7 0.00 6.0 8.9 0.00 

2 
10-2- 𝐺𝑠𝑝𝑙𝑖𝑡 10562.5 0.00 7.4 10562.5 10562.5 0.00 5 7 10562.5 10562.5 0.00 13.0 17.4 0.00 

10-2- 𝑃𝑠𝑝𝑙𝑖𝑡 10562.5 0.00 6.4 10562.5 10562.5 0.00 4.7 4.7 10562.5 10562.5 0.00 8.4 10 0.00 

3 
10-2- 𝐺𝑠𝑝𝑙𝑖𝑡 15386.9 0.00 516.1 15386.9 15546.9 1.04 10 10.4 15386.9 15386.9 0.00 23.0 25.4 -1.03 

10-2- 𝑃𝑠𝑝𝑙𝑖𝑡 15386.9 0.00 117.6 15386.9 15386.9 0.00 5.2 7.1 15386.9 15386.9 0.00 10.0 4.4 0.00 

4 
10-2- 𝐺𝑠𝑝𝑙𝑖𝑡 14146.4 0.00 33.8 14146.4 14188.7 0.30 10 8.6 14146.4 14146.4 0.00 20.0 21.0 -0.30 

10-2- 𝑃𝑠𝑝𝑙𝑖𝑡 14146.4 0.00 24.8 14146.4 14146.4 0.00 5.2 6.3 14146.4 14146.4 0.00 10.0 12.0 0.00 

5 
10-2- 𝐺𝑠𝑝𝑙𝑖𝑡 14368.5 0.00 129.7 14368.5 14487.6 0.83 9 7 14368.5 14370.2 0.01 23.0 27.8 -0.81 

10-2- 𝑃𝑠𝑝𝑙𝑖𝑡 14368.5 0.00 115.3 14368.5 14368.5 0.00 4.6 5.9 14376.9 14376.9 0.06 10.0 10 0.06 

1 
10-3- 𝐺𝑠𝑝𝑙𝑖𝑡 8105.2 0.00 1.8 8105.2 8105.2 0.00 6 7 8105.2 8105.2 0.00 9.0 9.4 0.00 

10-3- 𝑃𝑠𝑝𝑙𝑖𝑡 8105.2 0.00 3.5 8105.2 8105.2 0.00 4.2 5.2 8105.2 8105.2 0.00 4.0 5.6 0.00 

2 
10-3- 𝐺𝑠𝑝𝑙𝑖𝑡 16403.4 0.00 296.4 16526.2 16542.4 0.85 11 10.8 16403.4 16403.4 0.00 23.0 30.0 -0.84 

10-3- 𝑃𝑠𝑝𝑙𝑖𝑡 16403.4 0.00 621.6 16403.4 16419.6 0.10 5.3 7.9 16403.4 16403.4 0.00 20.0 26.0 -0.10 

3 
10-3- 𝐺𝑠𝑝𝑙𝑖𝑡 18036.9 0.00 536.4 18036.9 18206.9 0.94 12 15 18036.9 18036.9 0.00 30.0 38.0 -0.93 

10-3- 𝑃𝑠𝑝𝑙𝑖𝑡 18036.9 0.00 557.5 18036.9 18186.0 0.83 6.5 6.8 18036.9 18126.6 0.50 20.0 24.8 -0.33 

4 
10-3- 𝐺𝑠𝑝𝑙𝑖𝑡 17377.9 0.00 458.8 17541.1 17443.2 0.38 13 11.2 17377.9 17377.9 0.00 23.0 28.2 -0.37 

10-3- 𝑃𝑠𝑝𝑙𝑖𝑡 17377.9 0.00 2131.9 17377.9 17391.3 0.08 6.3 6.5 17377.9 17386.9 0.05 20.0 32.4 -0.03 

5 
10-3- 𝐺𝑠𝑝𝑙𝑖𝑡 16059.0 0.00 890.1 16059.0 16144.8 0.53 18 16 16059.0 16165.9 0.67 21.0 24.2 0.13 

10-3- 𝑃𝑠𝑝𝑙𝑖𝑡 16059.0 0.00 430.8 16059.0 16217.4 0.99 6 7.7 16059.0 16059.0 0.00 20.0 20.0 -0.98 

1 
15-2- 𝐺𝑠𝑝𝑙𝑖𝑡 17892.7 0.00 12764.1 17892.7 17996.9 0.58 14 12.7 17892.7 18001.0 0.61 30.0 35.8 0.02 

15-2- 𝑃𝑠𝑝𝑙𝑖𝑡 18413.5 0.00 11617.9 18413.5 18434.9 0.12 7.5 8.4 18413.5 18413.5 0.00 21.0 23.0 -0.12 

2 
15-2- 𝐺𝑠𝑝𝑙𝑖𝑡 20675.1 0.00 5096.8 20675.1 20878.6 0.98 13.8 15.7 20675.1 20697.1 0.11 67.0 68.2 -0.87 

15-2- 𝑃𝑠𝑝𝑙𝑖𝑡 20682.3 0.00 2289.8 20979.5 20979.5 1.44 8.2 12.3 20773.1 20850.7 0.81 31.0 37.2 -0.61 

3 
15-2- 𝐺𝑠𝑝𝑙𝑖𝑡 16899.5 0.00 3229.0 16899.5 17044.5 0.86 12.8 15.4 16899.5 16914.1 0.09 31.0 32.4 -0.77 

15-2- 𝑃𝑠𝑝𝑙𝑖𝑡 16935.9 0.00 808.2 16999.1 17130.3 1.15 12 13.3 16935.9 16958.5 0.13 34.0 42.2 -1.00 

4 
15-2- 𝐺𝑠𝑝𝑙𝑖𝑡 18691.5 0.00 23814.4 18691.5 18843.5 0.81 14 15.3 18691.5 18696.2 0.03 31.0 36.4 -0.78 

15-2- 𝑃𝑠𝑝𝑙𝑖𝑡 18691.5 0.00 9796.3 18691.5 18818.4 0.68 10 10.9 18691.5 18710.0 0.10 20.0 27.2 -0.58 

5 
15-2- 𝐺𝑠𝑝𝑙𝑖𝑡 18264.3 0.00 62.2 18264.3 18391.3 0.70 13 12.6 18264.3 18264.3 0.00 32.0 50.2 -0.69 

15-2- 𝑃𝑠𝑝𝑙𝑖𝑡 18264.3 0.00 37.3 18264.3 18391.3 0.70 11 11.7 18264.3 18322.5 0.32 31.0 29.8 -0.37 

average  0.00 2546.9   0.50 8.8 9.6   0.12 21.7 25.6 -0.38 

 

 


