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Abstract 
 

In order to represent the potential energy function over the whole range of R, many potential 
energy functions have been proposed. In the present paper, we employ many potential energy 
functions, to use Numerov method for solving the nuclear Schrödinger equation for the IF 
molecule, as an example of a heteronuclear diatomic molecules. Then we determine the 
spectroscopic constants eω , e exω , eB , and eα of the IF molecule from vibrational and vibration-
rotation levels obtained from solution of the nuclear Schrödinger equation. Finally, by 
comparison of obtained values with the experimental ones, their accuracy rate is determined as 
well as their deviation percentages from experimental values.  

 
Keywords: Spectroscopic constants; Potential energy functions; Heteronuclear diatomic 
molecules 
 
 
1. Introduction 
 

The molecular Schrödinger equation is extremely complicated to solve. The exact solution 
of this equation is a formidable task due to the fact that the electronic and nuclear degrees of 
freedom are scrambled in the related molecular Hamiltonian [1-5]. Based on the fact that nuclei 
are much heavier than electrons, the Born-Oppenheimer approximation is a very efficient 
method to treat the electronic and nuclear motions separately [6]. The electronic Schrödinger 
equation and nuclear Schrödinger equation are as follows:  
 

,ˆ
el el el elH Εψ ψ=                                      (1) 

,ˆ( )N N NT U Εψ ψ+ =                                (2) 
 
where U is the electronic energy including internuclear repulsion which acts as the potential 
energy for the nuclear Schrödinger equation. For diatomic molecules, the potential energy U 
depends only on internuclear distance R. So this subject is a central-force problem [7-9]. As we 
know, the nuclear-motion wave function is 
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.( ) ( )M

N J N N
Y P Rψ θ φ=            (3) 

 
where the M

JY  functions are the spherical harmonic functions with quantum number J and M , 
and ( )P R  is the radial function.   

So, the Schrödinger equation can be written in the form 
 

2 2

int2
1

.
2 2

( )
( ) ( ) ( ) ( )

J J
F R U R F R E F R

Rµ µ

− +
′′ + + =

⎡ ⎤
⎢ ⎥
⎣ ⎦

h h  (4) 

 
The latter equation looks like a one-dimensional Schrödinger equation with the effective 

potential energy 2 21 2( ) ( ) /U R J J Rµ+ + h .   
At first, our goal in the present paper is to solve the nuclear Schrödinger equation for 

heteronuclear diatomic molecules to obtain the vibration-rotation eigenvalues and 
eigenfunctions.  

In the perturbative method, we may improve the approximation by taking further terms in the 
expansion of U. Note that, for large R, this expansion is not convergent. To represent the 
potential energy function over the whole range of R, many potential energy functions such as 
Morse, Rydberg, and so on, have been proposed [10-17]. These functions contain parameters 
(usually three) that are evaluated from experimental quantities for the molecular electronic state 
of interest [18].  

In this paper, the nuclear Schrödinger equation for the IF molecule as a heteronuclear 
diatomic molecules will be solved by the Numerov method. The potential functions of Morse 
[19], Rydberg [20], Varshni(II) [21], Varshni(III) [21], Varshni(VI) [21], Poschl-Teller [22], 
Hulburt-Hirschfelder [23], Frost-Musulin [24], Linnet [25], Lippincott [26], and Rosen-Morse 
[27] are used to calculate the vibrational and vibration-rotation eigenvalues and eigenfunctions. 
The accuracy of these potential functions are estimated by comparing the available experimental 
values with the numerical results which we will obtain. Thereafter we will obtain the 
spectroscopic constants eω , e exω , eB , and eα  from computed vibrational and vibration-rotation 
energy levels.   
 
 
2. Results and Discussion 
 
2.1. Numerical solution of the vibrational Schrödinger equation of heteronuclear diatomic 
molecules  

 
Since we are dealing with small quantities, to solve the Schrödinger equation by numerical 

methods, we should reformulate the equation using dimensionless variables. We seek to find a 
dimensionless reduced energy Er and a dimensionless reduced x coordinate xr which are defined 
as 

,r
x

x
B

=     ,r
E

E
A

=                                                   (5) 

 
where the constant A has dimensions of energy, and B is a constant with dimensions of length. 
Now, for instance, we consider the Schrödinger equation with the Varshni(III) potential function. 
Substituting the Varshni(III) potential function into (4) with 0J = , the Schrödinger equation 
becomes  

22 2 2
1 ,

2

( )( ) e e
e

r rr
x D e E

r

βψ ψ ψ
µ

− −−
′′ + − =

⎡ ⎤
⎢ ⎥⎣ ⎦

h                                 (6) 
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where ex r r= − . Equation (6) contains the three constants µ , β , and h . Thus, by using the 
constants, we can make the quantities of the equation dimensionless: 
 

[ ] 2L ,β −=         [ ] 2 1ML T ,−=h         [ ] M,µ =                     (7) 
 
therefore 
 

1 2 .A µ β−= h                                                              (8) 
 
let a b cB µ β= h . Therefore 
 

1
2 .B β

−
=                                                       (9) 

 
 Since 2( )x dxψ  is the probability which is dimensionless, the ( )xψ  must have the 
dimensions of length-1/2. We now rewrite the Schrödinger equation with Varshni(III) potential 
function in terms of the reduced variables ,e rD , rx , rψ , and rE .  

 In view of (5), we have 1
rdx dx B−= . Substituting (5), (8) and (9) into (6), we obtain  

 
2 2 1

2
1 222 1 2 5 2 1 2 1 2 1 2

2 1 2

1 2 1 2 1 2

12

.                                        

, ,((( ) )( )),
,

,
( ) ( ) ( )

( )

( ) ( )

r e r e rx r re rr e r r
r r e r

r r

rd D e
dx x r

E

β ββψβ µ β ψ βµ β

µ β ψ β

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− − + −− − − − −
−

− − −

− + −
+

=

h h

h

 

                                                                                       (10) 
 
 Dividing by 1 2B−  and simplifying (10), we have 

 
2

22 21 2 1 2
         2

2
1

2
, ,

.,
,

( )
( ) ( )

( )
e r r r e rr

e r r r r
r r e r

rd x x r
D e E

dx x r

ψ
β µ β ψ µ β ψ

µ

− −− − +
+ − =

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

h
h h    (11) 

Therefore, 
 

2
2 2

2
2

2 1 2, ,
.,

,

( )

( )
e r r r e rr

e r r r
r r e r

rd x x r
D e E

dx x r

ψ
ψ

− +
= − −

+

⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

                                                  (12) 

 
Since 
 

,Gψ ψ′′ =                                                                                                        (13) 
 
we have 

r r r
Gψ ψ′′ = and hence 

 

2

2

2
2 1 2,( ),

.,
,( )

r r e rx x re r
r e r r

r e r

r
G D e E

x r

− +
= − −

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                (14) 
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Now, we are in the position to be able to solve the Schrödinger equation with Varshni(III) 
potential function via the Numerov method. In addition to finding the dimensionless 
expression rG , we need to find relations between parameters that we need.  

In order to find the relations between these parameters, we use the following three necessary 
conditions [16, 21, 28]:  

 
,( ) ( )e eU r U D− ∞ = −                                                    (15) 

 

0,
e

dU

dr r r
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                (16) 

 
2

2 .e

e

d U
k

dr r r
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                (17) 

 
then, letting 2 2e e ek r D∆ = , we have 
 

1 2

2
1

.
2 er

β
∆ −

=                                                 (18) 

 
 In a similar fashion, we can obtain relations between the parameters and the dimensionless 
expression rG . Table 1 exhibits all potential functions together with their parameters and the 

dimensionless expression rG . In the table, we make use of the symbols 2 2e e ek r D∆ = , 

8 e e eG x Bω= , and 26e e eF Bα ω= , where er , ek , eD , eω , e exω , eB , and eα  stand for the 
equilibrium bond length, force constant, dissociation energy, vibrational frequency, 
anharmonicity constant, equilibrium rotational constant, and the vibration-rotation coupling 
constant, respectively.  
 

2.1.1. Determining rs , 0,rx , and ,maxrx  
 
 To utilize the recursion relation [2] 
 

2 2
1 1 1

1 2
1

5 1
2

6 12 ,
1 12

n n n n n n

n
n

G s G s

G s

ψ ψ ψ ψ
ψ

− − −

+
+

− + +
≈

−
                                             (19) 

 
as well as the experession rG , we need to determine the intial and final values of rx  and the 
distance rs  between the adjacent points. There are different methods to determine the intial and 
final values of rx . First, we need to locate the boundaries between the classically allowed and 
forbidden regions. The boundaries consist of points at which r rE V= .  Table 2 demonstrates A, 

0,rx , ,m axrx , the spectroscopic numerical values, and the dimensionless expression rG  for the IF 
molecule with various potential energy functions.   
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Table 1 
Potentials, relations between parameters, and the dimensionless expression rG . 

rG The dimensionless expression  Relations between 
parameters  Potential function  Potential  

2

2 1 2,
rx

e r rD e E
−

− −⎡ ⎤
⎣ ⎦  

1 2

2

e

e

k
a

D
=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

  
2

1
ax

eD e
−

−⎡ ⎤
⎣ ⎦  Morse 

 

2 1 1 2, ( ) rx
e r r rD x e E

−
− + −⎡ ⎤

⎣ ⎦  
1 2

e

e

k
d

D
=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

  1 1( )
dx

eD dx e
−

− +⎡ ⎤
⎣ ⎦  Rydberg 

 

2

2 1 2
,

,
,

rxe r
e r r

r e r

r
D e E

x r

−
− −

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  
1 2

1

e

a
r

∆ −
=  

2

1
( )ea r re

e

r
D e

r

− −
−

⎡ ⎤
⎢ ⎥
⎣ ⎦

  
Varshni   

(II) 
 

2

2

2
2 1 2,( ),

,
,

r r e rx x re r
e r r

r e r

r
D e E

x r

− +
− −

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  
1 2

2

1

2 er
β

∆ −
=  2 2

2

1
( )er re

e

r
D e

r

β− −
−

⎡ ⎤
⎢ ⎥
⎣ ⎦

  
Varshni  

(III) 
 

2

2 1 2
,

,
,

rxr e r
e r r

e r

x r
D e E

r

−+
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  
1 2

1

e

a
r

∆ +
=  

2

1
( )ea r r

e
e

r
D e

r

− −
−

⎡ ⎤
⎢ ⎥
⎣ ⎦

  
Varshni 

(VI) 
 

 
  

2 2
2 cosech sech 2

2 2

, ,

,

r e r r e r

e r r r r

x r x r
D M N E

+ +
+ − −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
  

1 2

2 2

4

2

1

tanh
2

( )

e

e

e

e

k
a

D

D
N

y
M N y

ar
y

=

=
−

=

=

⎧
⎛ ⎞⎪ ⎜ ⎟⎜ ⎟⎪
⎝ ⎠⎪

⎪
⎨
⎪
⎪

⎛ ⎞⎪
⎜ ⎟⎪ ⎝ ⎠⎩

  

 
 

2 2
cosech sech

2 2
e

ar ar
D M N+ −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
  

Poschl-
Teller 

 

22 3
2 1 1 2, ( ) ( )r rx x

e r r r rD e cx e bx E
− −

− + − −⎡ ⎤⎣ ⎦  2

2 2

1 2

7 1 5 5 5
12 4 2 4 12

2

1
2

1
1 1( )

e

e

e

e

F F G
a r

k
a

D

b
c

c F
ar

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎩ ⎭

− + + +

=

= −

= − +

⎧ ⎛ ⎞⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪

⎛ ⎞⎪
⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎪⎩

  2

3 3 2 4 4 2

1 2
ax ax

e

ax ax

D e e

ca x e ca x be ⎤
⎥⎦

− −

− −

⎡⎣ + − +

+

  
Hulburt-

Hirschfelder 
 

32 ,( )
,

,( )

r e rx rr
e r r r

r e r

a
D b e E

x r

− +
+ − −

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  
4

3 4

2 6

3

3

3

( )

e

e e

e

e e

e
nr

e

e

nr nr

nr

nD r
a

nr

D e
b

nr

−
∆ =

−

=
−

=
−

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

  3
nr

e

a
D be

r

−
+ − 

 

Linnet 
 

( ) ( )2
2 tanh sech, , ,e r r r e r r r e r rD A x r C x r E+ + − + −⎡ ⎤
⎣ ⎦

  
2

2 tan h

1 tan h

e

e

e

r
A c

d
D

c

r

d

= −

=

−

⎧ ⎛ ⎞⎪ ⎜ ⎟
⎪ ⎝ ⎠⎪
⎨
⎪ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥⎜ ⎟⎪ ⎢ ⎥⎝ ⎠⎣ ⎦⎩

  
 

2
tanh seche

r r
D A C

d d
+ −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  
Rosen-
Morse 
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Table 1 continued 
Potentials, relations between parameters, and the dimensionless expression rG . 

rG The dimensionless expression  Relations between 
parameters  Potential function  Potential  

2

2
2 1 2,( )

,

r

r e r

x

x r
e r rD e E

−

+
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
2

e

n
r

∆
=  

2

21

( )en r r

r
eD e

− −

−
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  Lippincott 
 

2 ,( )
,

,

r e rx r
e r r r

r e r

rc
D e b E

x r

− +
+ − −

+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  

2

1 2 1

1( )
e

e
e e

e
e e

a
r

ar
b e D ar

ar
c aD e r

+ ∆ −
=

= +

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

  
 

ar
e

c
D e b

r

−
+ −

⎡ ⎤
⎢ ⎥
⎣ ⎦

  

 
 

Frost-
Musulin 

 

 
Table 2 
A , 0,rx , ,maxrx , the spectroscopic numerical values, and the numerical dimensionless  
expression rG   for the IF molecule with various potential energy functions. 
 

The numerical 
dimensionless expression rG  

Spectroscopic 
numerical 

values  
max,rx  0,rx  A  Potential  

[ ]2
2 4879 9403 1 2. xr

r
e E−

× − −  81 740271 10.a = ×  0.8 -0.5 2 2 1 6 1770.a µ −
=h  Morse 

 

[ ]2 2439 9701 1 1 2. ( )
xr

r r
x e E

−
× − + −  82 461115 10.d = ×  1.02 -0.8 2 2 1 12 3540.d µ−

=h  Rydberg 
 

2
2 3236

2 9984 5615 1 2
2 3236

.
.

.

xr
r

r

e E
x

−
× − −

+

⎡ ⎤
⎢ ⎥⎣ ⎦

  81 216645 10.a = ×  0.4 -0.29 2 2 1 3 0190.a µ −
=h  

Varshni 
(II) 
 

2 2 1 0778
2

1 0778
2 46397 29 1 2

1 0778

( . ).
.

.
r rx x

r
r

e E
x

− + ×
× − −

+

⎡ ⎤
⎢ ⎥⎣ ⎦

   
153 185336 10.β = ×  0.21 -0.19 2 1 0 6497.β µ −

=h  Varshni (III) 
 

2
4 3236

2 2883 5968 1 2
4 3236

.
.

.

xr r
r

x
e E−+

× − −
⎡ ⎤
⎢ ⎥⎣ ⎦

  82 263897 10.a = ×  0.86 -0.74 2 2 1 10 4534.a µ
−
=h  

Varshni 
(VI) 
 

2 2
3 3236 3 3236

2 4879 9403 202913 47cosech 270728 48sech 2

2 2

. .
. . .

r r

r

x x
E

+ +

+ − −
⎡ ⎛ ⎞ ⎛ ⎞⎤

⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎝ ⎠⎦
  

8 1 740271 10

270728 48

202913 4736

0 93045256
 

.

.

.

.

r

r

a

N

M

y

= ×

=

=

=

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

  0.7 -0.5 2 2 1 6 1770.a µ −
=h  Poschl-Teller 

 

[ ]22 3
2 4879 9 1 0 0338 1 0 3481 2. ( ) . ( . )

xr r
r r r

x
e x e x E

−−
× − − + −  

81 740271 10

0 348194552

0 033809103

.

.

.

a

b

c

⎧ = ×
⎪⎪
⎨ =−
⎪
⎪ =−⎩

  0.7  -0.52 2 2 1 6 1770.a µ−
=h  

Hulburt-
Hirschfelder 

  

2424094 63 8058
2 3722 3714 804309 7

3 8058

.( . )
. .

.

r
r

r

x
e E

x

− +
+ − −

+

⎡ ⎛ ⎞ ⎤
⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎦

  

81 992576 10

804309 7531

2424094 608

.

.

.

r

r

a

b

c

⎧ = ×⎪
⎪
⎨ =
⎪
⎪ =⎩

  0.8 -0.6 2 2 1 8 0979.a µ− =h  
Frost-

Musulin 
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Table 2 continued  
A , 0,rx , ,maxrx , the spectroscopic numerical values, and the numerical dimensionless  
expression rG   for the IF molecule with various potential energy functions 

The numerical 
dimensionless expression rG  

Spectroscopic 
numerical 

values  
max,rx  0,rx  A  Potential  

2 4892

3

653791 9
2 8698 6383 615697 6

2 4892

( . ).
. .

( . )

xr
r

r

e E
x

− +
+ − −

+

⎡ ⎤
⎢ ⎥⎣ ⎦

  

81 30347 10

653791 9266

615697 6035

11 04565649

.

.

.

.

r

r

n

a

b

⎧ = ×
⎪
⎪ =⎪
⎨
⎪ =
⎪
⎪∆=⎩

  0.45 -0.35 2 2 1 3 4653.n µ−
=h Linnet 

 

( )
( )2

2 8757258 744 8738943 4tanh 1 7155

4661670 4sech 1 7155

. . .

. .

[

]
r

r r

x

x E

− +

− + −
  

81 113229 10

8738943 401

4661670 421

.

.

.

r

r

d

A

C

−⎧ = ×⎪
⎪
⎨ =−
⎪
⎪ =⎩

  0.35 -0.25 2 2 1 1 6458.d µ− −
=h  Rosen-Morse 

 

2

2 22 0909
110 4494 1 2

( . )
.

xr
xr

r
e E

−

+
− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

  811 567585 10.n = ×  4.5 -3.5 2 2 1 272 9158.n µ−
=h  Lippincott 

 

 
2.1.2. Using spreadsheet program to obtain vibrational eigenvalues and eigenfunctions 

 
Now that our input data rG , rs , 0,rx , and ,maxrx are obtained, we can employ (19) by some 

software to draw the wave function and obtain the energy levels. Here we have used Excel 
spreadsheet program, which has the following benefits: 1) Having a friendly environment for 
programming, 2) Having a high power for numerical calculations, and 3) Having a high ability 
for sketching the wave functions.   

Now, we examine the correctness of the operation as well as the initial guess for ,vib rE . By 

choosing the columns containing rx  and rnPsi , we plot the wave function  rψ  against rx . If the 
sketched function has the well-behaved conditions of a wave function and its value at ,maxrPsi  is 
close to zero, then the guess for ,vib rE  is satisfactory. But if the value of ,maxrPsi  is not close the 

zero we have to change the value of ,vib rE . To find a better value for ,vib rE  we proceed as 

follows. We first put zero for ,vib rE  in the cell B3 and then by using the solver option we ask the 

program to find the amount of energy such that ,maxrPsi  is as close to zero as possible. The 
solver option in Tools menu is one of the most useful features of Excel.   

Since the cell F3 shows zero (Nodes = 0), we obtain the correct value of the first level of 
energy. To find the second level of energy we slightly increase the first level of energy. Again, 
by using solver option, we find a second level of energy. We must mention that the amount of 
increase must not be so high that the number of nodes reaches 2 or so low that the solver option 
can not find the next level of energy (a so-called “error”). We repeat the method for finding the 
next levels of energy. The number of nodes shows the kind of the state to which the energy 
belongs. 

As a final control of the correct values of the energy levels, we have to check them against 
the plotted wave functions (see Appendix (B)). Finally the program multiplies the energy values 

,vib rE  into the constant A to evaluate the energy values in terms of -1cm  (See Appendix (A), cell 
K3). In the same way, one can calculate the wave function and vibrational energy of the IF 
molecule with potential energy functions. In Table 3, the six lower level of vibrational energy 
levels of the IF molecule are obtained in terms of -1cm , where one can also find their deviation 
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percentages from the analytical calculations of the existing molecular constants [29] (in the table 
manual values are obtained from relation 21 2 1 2( ) ( ) ...v e e ev x vε ω ω= + − + + ).     

 
Table 3 
Six lower level of vibrational energy levels of the IF molecule in terms of cm-1 and deviation 
percentages from the analytical calculations of the existing molecular constants. 
 

% error  5E  4E  3E  2E  1E  0E  Potential  

0.005553 
0.136874 
-0.16252 
0.232856 
0.15136 
0.015406 
0.285899 
-0.00294 
0.034345 
0.33651 
0.051033 

3262.116 
3270.194 
3252.248 
3275.037 
3271.192 
3262.843 
3281.752 
3261.419 
3263.928 
3282.198 
3264.957 

2683.093 
2688.469 
2676.199 
2692.186 
2689.151 
2683.509 
2696.082 
2682.62 
2684.266 
2696.438 
2684.998 

2097.783 
2101.011 
2093.526 
2103.54 
2101.426 
2097.992 
2105.443 
2097.5 

2098.466 
2105.797 
2098.932 

1506.205 
1507.834 
1504.009 
1509.255 
1508.038 
1506.292 
1509.86 
1506.076 
1506.54 
1510.265 
1506.784 

908.3837 
908.9551 
907.6058 
909.4955 
909.0096 
908.4116 
909.3626 
908.3633 
908.4998 
909.8416 
908.5784 

304.3436 
304.3891 
304.2991 
304.4331 
304.3633 
304.3511 
303.9794 
304.3812 
304.3616 
304.5278 
304.344 

Morse 
Rydberg 
Varshni(II) 
Varshni(III) 
Varshni(VI) 
Poschl-Teller 
Lippincott 
Hulburt-Hirschfelder 
Frost-Musulin 
Linnet 
Rosen-Morse  

  3261.94 2682.9 2097.62 1506.1 908.34 304.34 Manual value 

 
 

2.2. Numerical solution of the vibration-rotation Schrödinger equation of heteronuclear 
diatomic molecules 

 
Since the radial function )(RP  is a solution of the equation [2, 8] 

 
2 2

int2
2 1

,
2 2

( )
( ) ( ) ( ) ( ) ( ) ( )

J J
P R P R P R U R P R E P R

R Rµ µ

− +
′′ ′+ + + =

⎡ ⎤
⎢ ⎥⎣ ⎦

h h                          (20) 

 
the vibration-rotation Schrödinger equation with Varshni (III) potential function will be 
 

2 2

2
2 2

2
2 1

1 ,
2 2

( )( )
( ( ) ( )) ( ) ( )er re

e
rJ J

P r P r D e P r EP r
r r r

β

µ µ

− −− +
′′ ′+ + + − =

⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

h h              (21) 

 
therefore 

2 2
22 2

2
1

1 .
2 2

( )( ) er re
e

rJ J
F D e F EF

r r

β

µ µ

− −− +
′′ + + − =
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

h h                            (22) 

 
then, the dimensionless form of this equation will be 
 

2
2

2
2

1
2 1 2,( ),

.,
,

( ) r r e rx x re r
r e r r r

r r e r

rJ J
F D e E F

r x r

− ++
′′ = + − −

+

⎛ ⎞⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
                         (23) 

 
from (13) it follows that, dimensionless expression of rG  will be 
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2
2

2
.2

1
2 1 2,( ),

,
,

( ) r r e rx x re r
r e r r

r r e r

rJ J
G D e E

r x r

− ++
= + − −

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                          (24) 

 
Comparing (24) and (14) we find out that the difference between the vibrational rG  and the 

vibration-rotation rG  is only in the term 21( ) rJ J r+ . So, we can obtain the vibration-rotation rG  

for all potentials by adding the term 21( ) rJ J r+  to vibrational rG  , and solve the related 
Schrödinger equation numerically as before. Finally, we obtain the vibration-rotation energy 
levels of the molecule. Tables 4 and 5, demonstrate the calculated vibration-rotation energy 
levels of the IF molecule for the two initial vibrational states ( 0v =  and 1v = ).    
 
Table 4 
Rotational levels for vibrational state 0v =  of the IF molecule in terms of cm-1. 
 

  v,JE     
Potential  

0,0E  1,0E  2,0E  3,0E  4,0E  5,0E  
Morse 304.3436 304.9027 306.0411 307.6978 309.9224 312.7544 
Rydberg 304.3891 304.9482 306.0625 307.7848 309.9804 312.7765 
Varshni(II) 304.2991 304.8583 305.9866 307.6581 309.8927 312.6826 
Varshni(III) 304.4331 304.9824 306.1209 307.7886 310.0256 312.8222 
Varshni(VI) 304.3633 304.9245 306.0489 307.7188 309.9853 312.7213 
Poschl-Teller 304.3511 304.9102 306.0386 307.7122 309.942 312.7389 
Lippincott 303.9794 304.5386 305.6872 307.3448 309.5728 312.3682 
Hulburt-Hirschfelder 304.3812 304.9403 306.0687 307.7364 309.9986 312.749 
Frost-Musulin 304.3616 304.9206 306.0488 307.7191 309.9684 312.7429 
Linnet 304.5278 305.0871 306.2255 307.8863 310.1244 312.9168 
Rosen-Morse 304.344 304.9032 306.0316 307.7093 309.9386 312.7345 
 
Table 5 
Rotational levels for vibrational state 1v =  of the IF molecule in terms of cm-1. 
 

  v,JE     
Potential  

0,1E  1,1E  2,1E  3,1E  4,1E  5,1E  
Morse 908.3837 908.9429 910.0613 911.7388 913.9756 916.7715 
Rydberg 908.9551 909.5143 910.6326 912.3101 914.5468 917.3426 
Varshni(II) 907.6058 908.165 909.2833 910.9608 913.1975 915.9933 
Varshni(III) 909.4955 910.0548 911.1733 912.8511 915.0882 917.8846 
Varshni(VI) 909.0096 909.5688 910.6872 912.3648 914.6016 917.3976 
Poschl-Teller 908.4116 908.9707 910.0891 911.7667 914.0035 916.7994 
Lippincott 909.3626 909.9219 911.0403 912.7181 914.9551 917.7513 
Hulburt-Hirschfelder 908.3633 908.9225 910.0409 911.7185 913.9552 916.7512 
Frost-Musulin 908.4998 909.0589 910.1771 911.8544 914.0907 916.8862 
Linnet 909.8416 910.4009 911.5195 913.1973 915.4343 918.2307 
Rosen-Morse 908.5784 909.1376 910.2561 911.9338 914.1707 916.9669 
 
2.3. Determination of eω  and e exω  from vibrational levels  

 
As we know, vibrational energy of an anharmonic oscillator is as follows [27, 28]:  
 

2 31 1 1
2 2 2

( ) ( ) ( ) ( ) ...v
e e e e e

E
Q v v x v y v

hc
ω ω ω= = + − + + + +                                  (25) 

 
where eω  is vibration wavenumber and e exω and e eyω  are anharmonicity constants. 
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The distance between the two vibrational adjacent levels is obtained from the following 
relation: 

 
1( ) ( ).

v
Q Q v Q v∆ = + −                                                                         (26) 

 
thus: 
 

2262 2 3 6
8

( ) ...,v e e e e eQ x v y v vω ω ω ⎛ ⎞∆ = − + + − − +⎜ ⎟
⎝ ⎠

                                         (27) 

 
which becomes finally as follows: 
 

2 2( ).v e e eQ x vω ω∆ ≈ − +                                                                (28) 
 
 Therefore, to determine eω  and e exω , it should be clear at least three vibrational levels. 
Now for example, we compute eω  and e exω  of the IF molecule with Varshni(III) potential 
function. Wavenumbers of vibrational jumps of the IF molecule with Varshni(III) potential 
function are shown in Table 6.  

According to the relation (28), if we draw the diagram vQ∆  in terms of )22( +v , it will 
obtain a straight line which gives slope e exω− and y-intercept, eω . According to this method, for 
the IF molecule with Varshni(III) potential function, we obtain -1610 7818 cm.eω =  and 

-12 7768 cm.e exω = . 
 

Table 6 
Wavenumbers of vibrational jumps of the IF molecule with Varshni (III) potential function. 
 

1( )v v+ −  2 2( )v +  Q∆ in terms of cm-1 

1-0 2 605.0624 
2-1 4 599.7595 
3-2 6 594.2849 
4-3 8 588.6461 
5-4 10 582.8507 

 
2.4. Determination of eB and eα  from vibration-rotation levels 
 

Vibration-rotation energy of anharmonic oscillators is as follows [30-32]:   
 

2 2 21 1 1 1  .
2 2, ( ) ( ) ( ) ( ) ... ( ) ( ) ...v e e e v vv J Q v F J v x v B J J D J Jε ω ω= + = + − + + + + − + +          (29) 

As we know, the selection rule of 1±=∆J  ruling over transitions between rotational levels 
results in a branch R )1( +=∆J  and a branch P )1( −=∆J . Each transition becomes marked 
with )(JR  or )(JP .  

In many cases, because of inequality of B′  and B ′′ , the bands of the branches R  and P  are 
asymmetric. To obtain B′  and B ′′  from spectral data, we use combination differences method. If 
we need to obtain some information about one series of lower states or one series of upper ones 
between which the transitions are occurred, then according to this method, the difference 
between wavenumber of transitions with common upper state, only depends upon the 



S. Bagheri  / J. Iran. Chem. Res. 2 (2009) 95-109 

 

 

105

characteristics of lower state. Likewise, the difference between wavenumber of transitions with 
common lower state only depends upon the characteristics of the upper state.   

As we know, in case of a vibration-rotation band, the lines )0(R  and )2(P  have got a 
common upper state with 1=′J  and as a result, )]2([~)]0([~ PR νν − is only a function of B ′′ . The 
transitions )1(R  and )3(P  are common in 2=′J . Hence, we can say that in general 

)]1([~)]1([~ +−− JPJR νν that is written as )(2 JF∆ ′′ , is only a function of B ′′ . For these 
transitions, we have: 
 

2 2 2 2
2 0

2 2 2 2 2
0

1 1 1 1 1 1

                              1 1 2 1 1 2

                             

( ) [ ( )] [ ( )] ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

F J R J P J B J J B J J D J J D J J

B J J B J J J D J J D J J J

ν ν ν

ν

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

′′ ′ ′′ ′ ′′∆ = − − + = + + − − − + + −

′ ′′ ′ ′′− + + − + + − + + + +

% % %

%

31 1 4 6 8
2 2

( )( ) ( ) .B D J D J′′ ′′ ′′= − + − +

 

                                                                                             (30) 
Thus, the diagram of changes )21/()(2 +∆ ′′ JJF  in terms of 2)21( +J , gives a line with the 

slope D ′′− 8 and y-intercept )64( DB ′′−′′ . As the two )(JR  and )(JP  are common in low states, 
therefore )]([~)]([~ JPJR νν −  is only a function of B′ . So we will have: 
 

2 2 2 2
2 0

2 2 2 2
0

                           

1 2 1 1 2 1

                                        1 1 1 1

( ) [ ( )] [ ( )] ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

F J R J P J B J J B J J D J J D J J

B J J B J J D J J D J J

ν ν ν

ν

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

′ ′ ′′ ′ ′′∆ = − = + + + − + − + + + +

′ ′′ ′ ′′− + − − + − − + +

% % %

%

31 1                    4 6 8
2 2

( )( ) ( ) .B D J D J′ ′ ′= − + − +

            

                     (31) 
 
Thus, the diagram of changes )21/()(2 +∆′ JJF  in terms of 2)21( +J , gives a line with the 

slope D′− 8 and y-intercept )64( DB ′−′ . By regarding the relations (30) and (31) and also the 
Tables 4 and 5, the values 0B  and 1B  for the IF molecule with Varshni(III) potential function are 
0.281226 and 0.279636, respectively. According to the relation [30]:  
 

1
2

,v eB B vα ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

                              (32) 

Table 7 
Spectroscopic constants of the IF molecule for all potential functions and deviation percentages 
from experimental values. 
 

Potential  )cm( -1
eω  )cm( -1

ee xω  )cm( -1
eB  )cm( -1

eα  error(av)%  
Morse 610.3179323 3.127228291 0.282011202 0.001610499 -3.24623872 
Rydberg 610.2920599 2.855192337 0.283067969 0.002324512 4.19364745 
Varshni(II) 610.0635947 3.412313365 0.28180642 0.001482443 -2.69913534 
Varshni(III) 610.781762 2.776840816 0.282022327 0.001590858 -6.29588047 
Varshni(VI) 610.3198872 2.825683996 0.282108683 0.001672717 -4.82356128 
Poschl-Teller 610.2436233 3.090876958 0.281869279 0.001515884 -4.81558776 
Lippincott 610.3398071 2.464203711 0.285706693 0.004056236 24.4029689 
Hulburt-Hirschfelder 610.2950543 3.14790117 0.282216684 0.001747487 -1.23548709 
Frost-Musulin 610.2711679 3.059656064 0.281896637 0.001568289 -4.36299498 
Linnet 610.2013369 2.444552229 0.283332987 0.002465441 2.80348402 
Rosen-Morse 610.3298391 3.034542904 0.282275484 0.001771445 -1.81748346 
Experimental 610.24 3.12 0.2797111 0.0018738  
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eB  and eα  become -10.28202 cm  and -10.001591 cm , respectively.  
Similarly, eB  and eα  are computed for other heteronuclear diatomic molecules with other 
potential functions. The gained results for the IF molecule are inserted in Table 7.   
 
3. Conclusions 

 
In this paper, the nuclear Schrödinger equation for the IF molecule is solved by the 

Numerov method. The potential functions of Morse, Rydberg, Varshni(II), Varshni(III), 
Varshni(VI), Poschl-Teller, Hulburt-Hirschfelder, Lippincott, Frost-Musulin, Linnet, and Rosen-
Morse are used to calculate the quantum states, vibrational energy levels, and vibration-rotation 
energy levels. The results are compared with the available experimental values and the accuracy 
of these potential functions is estimated. Our calculations have utilized more than 200 
worksheets of Excel spreadsheet software. Then the spectroscopic constants eω , e exω , eB , and 

eα  were computed from vibrational and vibration-rotation energy levels. To compute according 
to this method, 5 Excel worksheets are used for the IF molecule with all of the potential 
functions. The Hulburt-Hirshfelder potential function in comparison with other potential 
functions, forecast the values of the spectroscopic constants with a higher accuracy. Totally, the 
spectroscopic constants gained from this method, are in a very good accordance with 
experimental values.  
 
Appendix (A) 

 
Programming by the Excel spreadsheet to obtain vibrational levels for the IF molecule with 

Varshni (III) potential function is as follows  (the operations to be done in each cell are written in 
front of each cell):   
A1: Write Potential Function (U = De*[1- re/r *EXP(- β *(r^2-re^2)]^2) 
A3: Write (Evib,r=) 
B3: Enter Evib,r,guess 
C3: Write (Sr=) 
D3: Write (0.01) 
A5: Write (xr) 
B5: Write (Gr) 
C5: Write (Psir) 
A7: Write (-0.19) 
A8: Write (A7+$D$3) 
A9-A47: Copy A8, Select A9-A47, Paste A8 in A9-A47 
B7: Write (=2*46397.2898*(1-1.0778/(A7+1.0778)*EXP(-(A7^2+2*A7*1.0778)))^2-2*$B$3) 
B8-B47: Copy B7, Select B8-B47, Paste B7 in B8-B47 
C7: Write (0) 
C8: Write (1E-4) 
C9: Write (=(2*C8-C7+5*B8*C8*$D$3^2/6+B7*C7*$D$3^2/12)/(1-B9*$D$3^2/12)) 
C10-C47: Copy C9, Select C10-C47, Paste C9 in C10-C47 
D9: Write (=IF(C9*C8 〈 0; 1; 0)) 
D10-D47: Copy D9, Select D10-D47, Paste D9 in D10-D47 
E3: Write (Nodes=) 
F3: Write (=SUM(D9:D47)) 
E5: Write (nPsir) 
E50: Write (=SUMSQ(C7:C47)*$D$3) 
E7: Write (=C7/$E$50^0.5) 
E8-E47: Copy E7, Select E8-E47, Paste E7 in E8-E47 
G3: Write (Psir Max=) 
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H3: Write (=$E$47) 
J3: Write (Evib=) 
K3: Write (=$B$3*0.64968) 
 
Appendix (B) 
 

The graphs of six lower vibrational wave functions versus xr for IF molecule with 
varshni(III) potential function.  
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