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ABSTRACT: In this study the reliability of using response surface-neural network method to predict the 
osmotic dehydration properties of crookneck squash has been investigated. In order to carry out this project, the 
osmotic solution concentration, the osmotic solution temperature and immersion time were chosen as inputs and 
solid gain and water loss were selected as outputs of the designed network. The results showed that the optimal 
points for the artificial neural network parameters such as the number of neurons, momentum coefficient, 
learning epoch and the rate to predict water loss and solid gain were 15.75, 0.90, 4999.98 and 0.55, respectively. 
The results also demonstrated that the model was able to forecast water loss and solid gain with R2 values equal 
to 0.967 and 0.890 where relative error values corresponding to each of these factors were estimated at 0.0205 
and 0.0872, respectively.
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Introduction1

Dehydration is one of the most commonly 
used techniques for creating new food 
products. Osmotic dehydration is a process 
for partial removal of the water from plant 
tissue by direct contact with a hypertonic 
solution (i.e. sugar, salt or mixtures of salt 
and sugar) (Singh et al., 2007). In the 
process of placing the food such as fruits or 
vegetables, either chopped or whole in an 
osmotic solution, the food cell wall acts as 
semi permeable membrane due to the 
concentration gradient between the osmotic 
solution (containing the higher osmotic 
pressure and the lower water activity) and 
intracellular fluid driving force (Singh et al.,
2007; Jayaraman, 1990). Several factors, 
such as the concentration of osmotic 
solution, processing temperature and time, 
agitation, material to solution ratio and raw 
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material characteristics have impacts on the 
osmotic dehydration process (Uddin et al.,
2004; Lazarides, 2001). Several studies on 
the osmotic dehydration process and 
processing of food products have been 
conducted. An et al. (2013) worked on the 
osmotic dehydration of Chinese ginger 
(Zingiber officinale Roscoe) slices by 
response surface methodology. The results 
indicated that the optimum operating 
conditions were found to be the process 
duration of 102 min, solution temperature of 
30°C, solution concentration of 50 Brix 
sucrose and 7.31% sodium chloride with the 
solution to food ratio of 8:1 (w/w). 
Fernandes et al. (2009) studied the effect of 
osmosis and ultrasound on pineapple cell 
tissue structure during dehydration. The 
results showed that the use of ultrasound 
osmosis due to the changes in the cellular 
structure of the pores has increased solid 
gain and water diffusion. Nawirska et al.
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(2009) investigated the drying kinetics and 
quality parameters of pumpkin slices in 
different ways and expressed that drying rate 
in a vacuum-microwave dryer is higher than 
convection, vacuum and freeze drier. 
Kowalska et al. (2008) examined the effect 
of blanching and freezing on the osmotic 
dehydration of pumpkin. They stated that 
both pretreatments increased water loss and 
especially solid gain, in comparison with the 
controlled samples. Rodrigues et al. (2009) 
evaluated the effect of osmo-ultrasound 
process on the cell structure of papaya 
during dehydration. The results indicated 
that water loss and solid gain were increased 
because of the cellular damage by 
ultrasound. 

Nowadays, artificial neural networks play 
an important role as a powerful tool in 
predicting the process parameters. Many 
studies have been undertaken in the field of 
artificial neural networks to predict the 
parameter of various processes. For 
example, Tavakolipour & Mokhtarian 
(2012) used an ANN approach for the 
prediction of moisture ratio of pistachio. 
Koc et al. (2007) applied the artificial neural 
network and genetic algorithm to predict the 
free fat content, lactose crystallinity and 
average particle size of spray-dried whole 
milk powder. Goni et al. (2008) used an 
artificial neural approach to predict the 
freezing and thawing times on foods. 
Momenzadeh et al. (2011) investigated 
shelled corn drying in a microwave-assisted 
fluidized bed dryer using artificial neural 
network and predicted the drying time 
during dehydration. Menlik et al. (2010) 
investigated freeze-drying behaviors of 
apples by means of ANN and anticipation of 
moisture content, moisture ratio and drying 
rate. Madadlou et al. (2009) predicted the 
size of re-assembled casein micelles using 
response surface methodology coupled with 
artificial neural network (RSM-ANN) 
method. Mateo et al. (2011) used two 
different networks called MLP and RBF to 

forecast accumulation of deoxynivalenol in 
barley seeds contaminated with Fusarium 
culmorum. Fernandes et al. (2011) 
determined anthocyanin concentration in 
whole grape skins using hyperspectral 
imaging and adaptive boosting neural 
networks. Lertworasirikul & Saetan (2010) 
used artificial neural network modeling to 
predict mass transfer parameters of kaffir 
lime peel (i.e. water loss and solid gain).  

Few works have been carried out on the 
application of RSM-ANN approach. 
Therefore, the aim of this study is the 
reliability of using response surface-neural 
network to predict mass transfer factors of 
crookneck squash during osmotic 
dehydration and reduced modeling time. 

 
Materials and Methods 

 
- Preparation of raw material 

Fresh crookneck squash was purchased 
from a local market in Sabzevar, Iran and 
were kept in the refrigerator at 5oC. The 
initial moisture content of fresh crookneck 
squash was determined according to AOAC 
method (1990) at 105oC using an oven 
(Memmert, model UNE 400 PA, Scheabach, 
Germany). Each sample was cut as cube in 
10×10×5 mm length, width and height, 
respectively and the dimensions were 
controlled by caliper (Vertex, M502, with a 
sensitivity of 0.01 mm). 

 
- Preparation of osmotic solution and 

dehydration process 
Different concentrations of osmotic 

solution [(5% NaCl+50% sucrose w/v), 
(10% NaCl +50% sucrose) and (15% NaCl 
+50% sucrose)] and different temperatures 
(5oC, 25oC and 50oC) were employed. The 
cubed samples were submerged in osmotic 
solution at time interval of 0, 30, 60, 90, 120 
and 180 minutes. After the end of osmotic 
process, the cubes were removed from 
osmotic solution and the surface was washed 
with water and placed on the tissue paper to 
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remove excess water and finally weighted. 
Water loss and solid gain in different stages 
(before osmotic dehydration, after osmotic 
dehydration and after drying in the oven) 
were computed using the following 
equations (Eqs. 1 and 2). 

 
0 0

0 0

(1 ) (1 )t tS m S mWL
S m

− − −= (1) 

 

0 0

0 0

t tS m S mSG
S m
−= (2) 

 
Where, m0 is the initial mass of the 

sample, mt is the sample mass at time t0, S0
and St are the solid content in the osmotic 
solution prior to osmotic dehydration and the 
solid content in osmotic solution during 
osmotic dehydration, respectively (An et al., 
2013). 

 
- Artificial neural network (ANN)  

ANN consists of a set of neurons with 
internal communication between each other, 
which it is able to predict the output basis on 
input data. In this study, response surface 
methodology was used for ANN 
optimization which this model design was  
 

based on three inputs and two outputs. 
Osmotic solution temperature (x1), 
immersion time (x2) and osmotic solution 
concentration (x3) were selected as inputs 
and water loss (y1) and solid gain (y2) for the 
chosen outputs (Figure 1). 

In the optimization process, number of 
neuron (T1), momentum coefficient (T2), 
learning epoch (T3) and learning rate (T4)
were the independent variables and Mean 
Relative Error (MRE) was as response 
variable. The logarithm sigmoid (

1log (1 )zsig e− −= + ) was chosen as threshold 
function for optimization process. The 
Central Composite Design (CCD) including 
30 experiments with 6 replications in the 
central points were used for the statistical 
analysis (Table 1). 

In order to optimize and model the 
artificial neural network, the Design Expert 
(Version 6.01) and SPSS (Version 19) 
software were employed. The experimental 
data were fitted by a third-order polynomial 
model as the following: 

 
3 3 2 3

2
k k0 ki i kii i kij i j k

i 1 i 1 i 1 j i 1

Y β β x β x β x x ε
= = = = +

= + + + +∑ ∑ ∑∑
 

(3) 

 

Fig. 1. ANN architecture; x1: osmotic solution temperature, x2: immersion time, x3: osmotic solution 
concentration, y1: water loss and y2: solid gain 
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Where, βkn and Xi are the constant 
regression coefficients and independent 
variables, respectively. Evaluation of the 
best model was carried out via lack of fit test 
therefore, the model with non-significant 
lack of fit (LOF) was selected as the best 
model. 

Two criteria such as coefficient of 
determined (R2) and mean relative error 
were used to compare the neural network 
performance according to the following 
equations; 
 

, ,

1 ,

1 100
N

p i e i

i e i

U U
MRE

N U=

 −
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 
 
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∑

∑

(5) 

 

Where ,p iU is the predicted data, e,iU is 

the experimental data, ,p iU is the average of 
experimental data and N is the number of 
observations (Tavakolipour & Mokhtarian, 
2012). 

Results and Discussion 
In this research, the possibility of using 

response surface-neural network to predict 
the mass transfer factors (i.e. water loss and 
solid gain) of crookneck squash during 
osmotic dehydration was studied. 
Optimization variables of ANN consist of 
neuron number, momentum coefficient, 
learning epoch and learning rate. ANOVA 
results of response surface indicated that, 
cubic model due to the non-significant of 
LOF test was selected as goodness model to 
optimize the process. The results also 
demonstrated that, linear (T1, T2, T3 and T4), 
interaction (T1T2, T1T3, T1T4, T2T3, T2T4,
T3T4, T1

2T2, T1
2T3, T1

2T4, T1T2T3 and 
T1T3T4) and quadratic (T1

2 and T4
2) terms 

have significant effects on optimization 
variables (i.e. neuron number, momentum 
coefficient, learning epoch and learning rate) 
(Table 2). The F-values indicated that (i.e. 
FWL and FSG), among the linear terms, the 
effects of learning epoch and neuron number 
had the greatest impact on the model (Table 
2). A similar result was stated by 
Nazghelichi et al. (2011). They have 

Table 1. The central composite design (CCD) consisting of 30 experiments with 6 replications for neural 
network optimization 

 

Run 
variables Response (MRE) 

Run 
variables Response (MRE) 

T1
a T2

b T3
c T4

d WL SG T1
a T2

b T3
c T4

d WL SG 
1 +1 -1 -1 +1 0.0563 0.2014 16 0 0 0 +1 0.0262 0.0717 
2 +1 0 0 0 0.0311 0.0757 17 +1 -1 -1 -1 0.0346 0.0715 
3 -1 -1 +1 +1 0.0327 0.1139 18 +1 +1 -1 +1 0.0420 0.1603 
4 0 0 0 -1 0.0345 0.1390 19 -1 -1 +1 -1 0.0147 0.1160 
5 -1 +1 -1 +1 0.0405 0.0811 20 0 0 0 0 0.304 0.0720 
6 -1 0 0 0 0.0435 0.0785 21 0 +1 0 0 0.0269 0.0855 
7 +1 +1 -1 -1 0.0232 0.0881 22 0 0 0 0 0.0306 0.0709 
8 0 -1 0 0 0.0368 0.0959 23 +1 -1 +1 +1 0.0290 0.1241 
9 -1 +1 +1 +1 0.0378 0.0809 24 +1 +1 +1 -1 0.0325 0.1137 
10 -1 -1 -1 +1 0.0330 0.1104 25 -1 +1 +1 -1 0.0371 0.1031 
11 +1 +1 +1 +1 0.0495 0.0936 26 0 0 0 0 0.0291 0.0934 
12 0 0 +1 0 0.0180 0.0943 27 0 0 -1 0 0.0362 0.0925 
13 +1 -1 +1 -1 0.0293 0.1101 28 0 0 0 0 0.0313 0.0545 
14 0 0 0 0 0.0281 0.0837 29 -1 -1 -1 -1 0.0487 0.1038 
15 -1 +1 -1 -1 0.0533 0.1606 30 0 0 0 0 0.0294 0.0781 

a Number of neuron, b Momentum coefficient, c learning epoch, d Learning rate. 



J. FBT, IAU, Vol. 6, No. 2, 23-30, 2016 
 

27 

determined the optimum neural network 
architecture for carrot drying by GA-RSM 
method. They stated that, the increase in the 
neuron number from 20 to 30 and learning 
epoch from 100 to 3000, caused the value of 
ln (MSE) to be decreased to minimum. 
Effects of neuron number and learning 
epoch on the MREWL are shown in Figure 
(2a). According to the contour plot, 
increased learning epoch decrease the 
amount of MREWL. Also, according to 

Figure (2b), it is clear that by increasing the 
training epoch from 1000 to 5000 and 
neurons number from 3 to about 15, the 
MRESG decreased to a minimum value. A 
similar result was stated by Nazghelichi et 
al. (2011). They stated that, the increase in 
the neuron number from 20 to 30 and 
learning epoch from 100 to 3000, caused a 
decrease in the value of ln (MSE) to the 
minimum. 

Fig. 2. Three-dimensional plot of interaction of the neurons number and the training epoch versus (a) MREWL (b) 
MRESG.

Table 2. ANOVA results of cubic model in the optimization of ANN 
 

Source 
F Value Regression coefficient (βn)

FWL FSG MREWL MRESG 
Model 8.43 5.42 +0.0565 +0.1785 
T1

a 0.53 1.28 +1.2×10-3 -6.5×10-3

T2
b 2.48 1.01 +0.0178 +0.0300 

T3
c 21.70 4.2×10-3 -9.3×10-6 -1.1×10-5

T4
d 1.75 0.16 -0.0297 -0.3386 

T1
2 20.14 0.053 -6.6×10-5 +8.9×10-5

T4
2 - 9.14 - +0.3399 

T1T2 5.54 - -4.5×10-3 -
T1T3 4.55 0.25 +2.1×10-7 +1.5×10-6

T1T4 14.43 15.22 -1.6×10-3 +0.0108 
T2T3 13.48 - +1.7×10-6 -
T2T4 - 6.93  -0.1030 
T3T4 1.75 4.51 +1.1×10-5 +1.6×10-5

T1
2T2 4.83 - +1.07×10-4 -

T1
2T3 - 0.36  -2.5×10-8

T1
2T4 4.59 - +1.3×10-4 -

T1T2T3 3.70 - +2.03×10-7 -
T1T3T4 16.18 11.68 -5.6×10-7 -2.05×10-6

Lack of Fit 19.58 2.45n.s - -
R2 0.8872 0.7927 - -
C.V. 12.87 18.66 - -
PRESS 0.0024 0.020 - -
a Number of neuron, b Momentum coefficient, c learning epoch, d Learning rate. 



M. Mokhtarian & H. Tavakolipour 
 

28

In optimum conditions of ANN parameters 
such as neuron number, momentum 
coefficient, learning epoch and learning rate, 
water loss and solid gain were 15.75, 0.90, 
4999.98 and 0.55 for prediction, 
respectively. In optimal conditions, 
desirability value was 0.861. Regarding this 
point, response value (i.e mean relative 
error) of water loss and solid gain was 
determined to be 0.0190 and 0.075, 
respectively. Comparison of experimental 
data and predicted data were obtained by 
RSM-ANN approach as presented in Figure 
3. As shown and as can be observed the data 
were randomly located around the regression 
line and this could be a reason for carefully 
evaluating the RSM-ANN model to predict 
the mass transfer parameters of crookneck 
squash during osmotic dehydration. 

Generally, the results have shown that, 
RSM-ANN model could predict water loss 
and solid gain values with high precision. 
According to Figure 3 it was observed that, 

this model was able to forecast water loss 
and solid gain with R2 values of 0.967 and 
0.890 respectively, which the relative error 
values corresponding to each of these values 
were estimated at 0.0205 and 0.0872, 
respectively. 

The coupled RSM and ANN is a superior, 
less expensive and faster optimization 
technique to find appropriate ANN topology 
when compared to the traditional trial and 
error methods. Therefore, the integrated 
RSM and ANN approach is an appropriate 
alternative over lone RSM and trail-and-
error methods, that can reduce the 
computational cost and accelerate the ANN 
development. 

Weights matrix obtained in the optimized 
network is as follows. Where, Q is the 
weight matrix between the input and the first 
hidden layer, Z is the weight matrix between 
the hidden layer and the output layer, Binput 
is the matrix of input bias and Boutput is the 
matrix of output bias. 

Fig. 3. Comparison of experimental and predicted values obtained by RSM-ANN approach. 
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0.814 0.310 0.182 1.511 0.738 0.362 1.468 0.760 0.315 1.182 0.302 1.326 2.436 0.672 0.522 1.250
0.022 0.580 0.275 0.228 0.311 0.033 0.495 0.189 0.064 0.068 0.257 0.141 0.010 0.372 0.032 0.193
0.224 0.305 0.411 0.57

Q

− − − − − − −
− − − − − − − − −
− − −

=

2 0.055 0.255 0.087 0.035 0.459 0.094 0.356 0.120 0.233 0.057 0.075 0.304
0.058 0.229 0.623 0.646 0.184 0.207 0.640 0.039 0.179 0.302 0.439 0.083 0.748 0.301 0.321 0.195
0.237 0.355 0.221 0.782 0.410 0.163 0.039 0.205 0.

− − − −
− − − − − − −
− − − − − − 227 0.310 0.008 0.144 1.051 0.643 0.082 0.611

0.184 0.101 0.126 0.664 0.002 0.141 0.365 0.316 0.115 0.701 0.164 0.590 0.732 0.188 0.080 0.715
0.160 0.358 0.053 0.143 0.469 0.252 0.713 0.012 0.056 0.741 0.385 0.626 0.005

− − −
− − − − − − − −

− − − − − − 0.113 0.567 0.169
0.153 0.021 0.324 0.320 0.032 0.221 0.135 0.402 0.082 0.253 0.227 0.338 0.040 0.295 0.288 0.113
0.468 0.806 0.140 0.329 0.028 0.242 0.110 0.755 0.186 0.059 0.107 0.157 0.193 0.257 0.184 0.427

0.14

− −
− − − − − − − − − −
− − − − − − − − −

5 0.549 0.428 0.313 0.263 0.085 0.387 0.080 0.131 0.122 0.533 0.374 0.066 0.151 0.107 0.397
0.458 0.139 0.343 0.335 0.196 0.252 0.290 0.102 0.094 0.078 0.187 0.351 0.003 0.302 0.002 0.339

0.120 0.373 0.308 0.099 0.029

− − − − − − −
− − − − − − − − − −

− − 0.384 0.312 0.216 0.256 0.078 0.115 0.108 0.258 0.037 0.418 0.387

 
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 − − − − − − − 

0.475 0.919
0.551 0.712

0.180 0.156
1.766 1.429
0.832 0.372
0.076 0.336
1.276 1.024
0.438 0.683
0.529 0.450
1.414 0.009
0.367 0.153

1.242 0.259
2.749 1.442
0.672 0.093
0.246 0.532
1.687 0.043

Z

− −
−

− −



−
− −

− −= − −
−
−



−



























 
 



[ ]0.395 0.094 0.028 0.173 0.364 0.378 0.270 0.355 0.170 0.312 0.325 0.284 0.739 0.537 0.389 0.289inputBias = − − − − − − −  

[ ]0.541 0.101outputBias = −

Conclusion 
In this research, the application of 

response surface methodology conjugated 
with artificial neural network to predict 
osmotic dehydration properties of crookneck 
squash was investigated. The result indicated 
that, this model was able to predict water 
loss and solid gain with R2 values equal to 
0.967 and 0.890, respectively. The optimal 
points in this state include values of 15.75 
for neuron, 0.90 for momentum coefficient, 
4999.98 for learning epoch and 0.55 for 
learning rate. Thus, according to the 
researchers’ hypothesis, RSM-ANN model 
provides the opportunity to determine the 
best arrangement of neural network in a 
short time. Generally, the response surface 
methodology hydride with artificial neural 
network can be utilized in order to optimize 
the best arrangement of neural network to 
predict industrial processes. 
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