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ABSTRACT: Berberine is a multifunctional compound belonging to the Berberidaceae family may be used to 

promote the quality of industrial food products in the form of dried microcapsules. In this research, the effects of 

the drying techniques on the coacervated microcapsules as well as the core material's quality and stability were 

investigated. Berberine microcapsules using Astragalus rahensis/gelatin cross-linked by transglutaminase were 

dried by two different methods The particle size and polydispersity, efficiency, berberine release kinetics were 

analyzed. Spray-dried (SD) microcapsules were 37.6–49.6 nm in diameter, whereas freeze-drying produces 

bigger particles with wider size dispersion. The positive interaction between the low-grade flaky tragacanth and 

gelatin reduces the undesirable stickiness of SD microcapsules and causes higher drying yields by up to 50 %. 

The porous structure of the freeze-dried (FD) microcapsules may expose sensitive berberine to oxidative 

reactions. Differential scanning calorimetry thermograms indicated greater thermal stability of SD microcapsules 

than FD microcapsules. The release profiles of berberine showed a good fit to the modified Korsmeyer-Peppas 

model, where the SD microcapsules with the greatest burst effect at 5˚ and 80˚C provide the desirable controlled 

release characteristics. Berberine SD microcapsules may be used as a safe and nutritious powder in heat-treated 

food formulations. 
 
Keywords: Astragalus rahensis, Berberis vulgaris, Berberine, Complex Coacervation, Freeze-drying, Spray-

drying. 

 
Introduction

1
 

Berberine is an isoquinoline-type 

alkaloid and mostly found in plants 

belonging to Berberidaceae family. 

Berberine has a long history of extensive 

usage in traditional Chinese and Indian 
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medicine (Ikuta & Itokawa, 1988). 

Berberine also offers numerous biological 

and pharmacological properties including 

anti-cancer (Wang et al., 2020); anti-

lipidemic (Zhao et al., 2021), anti-viral 

(Warowicka et al., 2020), anti-bacterial 

(Schmeller & Latz-Brȕning, 1997), anti-

inflammatory (Liu et al., 2013), anti-
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diarrheal (Chen et al., 2015), anti-

hypertension (Xia & Luo, 2015), and 

antioxidant activities (Li et al., 2014). This 

compound is obtained in Berberidaceae 

plant species such as Hydrastis canadensis 

L., Mahonia aquifolium, Xanthorhiza 

simplicissima, and Phellodendron 

amurense (Yeung et al., 2020). Berberis 

are a group of berry fruits, widely 

distributed in Asian, African and tropical 

regions and one of the known seedless 

varieties of the Berberidaceae family is 

Berberis vulgaris L. var. asperma (Hatch, 

2007; Bhat & Paliyath, 2016). The 

seedless Barberry (B. vulgaris var. 

asperma) is a special fruit belonging to 

family of Berberidaceae. It is one of the 

few unique crops grown in Asia, Europe 

and North Africa. (Hatch, 2007; 

Alemardan et al., 2013). This variety is 

widely cultivated in Iran, particularly in 

Southern Khorasan province, located in 

the eastern part of Iran (Ghosi, 2021). This 

cultivar has been the subject of intense 

investigations for the extraction of its 

multifunctional chemicals for deployment 

in food and medicinal formulations. Our 

recent study determined the optimal 

conditions for berberine extraction in 

terms of maximum yield, antioxidant 

activity, and safety by using a co-solvent 

such as ethanol-water mixture (Keshtkaran 

et al., 2022). One of persistent challenges 

of using extracted bioactive ingredients 

such as berberine in food formulations is 

their susceptibility to degradation and 

oxidation upon exposure to light, oxygen, 

heat, and moisture which cause a product 

with compromised antioxidative activity 

(Admassu & Kebede, 2019). In order to 

overcome this challenge, many strategies 

have been developed to minimize the 

inconveniences and degradation risks of 

berberine during oral administrations or 

processing using microencapsulation 

technologies (Šeregelj et al., 2020). 

Microencapsulation involves the 

manufacture of microcapsules by 

entrapping the sensitive bioactive 

compounds within a polymeric matrix or 

carrier to enhance their stability and 

bioavailability and to protect them from 

the damages of harsh environmental or 

processing conditions such as heat, 

oxidization, light or moisture and 

acidity(Yu et al. 2017).Microcapsules 

enable the controlled released of entrapped 

active substances for an extended period of 

time (Zuidam & Nedovic, 2010; Ozkan et 

al., 2019). Complex coacervation is a 

common microencapsulation strategy that 

is based on separation of colloidal systems 

into two liquid phases. The associative 

phase separation between two oppositely 

charged polymers in an aqueous solution 

generates a solid complex precipitate 

(Gouin, 2004; Zuidam & Nedovic, 2010; 

Ozkan et al., 2019; Keshtkaran et al., 

2022). This is to note that wet 

microcapsules may not be practically 

suitable for usage in the food industries, 

thus, a drying stage is typically required to 

produce dried microcapsules with a longer 

shelf life and broader applications 

(Fernandes et al., 2013; Holkem et al., 

2016). Various drying techniques 

including freeze-drying, spray drying, and 

fluidized bed drying have been applied to 

obtain a dried powder, although freeze- 

and spray drying have received more 

attention from academics and occupied the 

main stream of recent literature (Pang et 

al., 2017; Kanha et al., 2021; Qi et al., 

2021). The choice of drying technique can 

impart important effects on the 

microcapsules' characteristics, as well as 

the core material's quality, stability, and 

release properties. There are few studies 

that focused on development of the 

microcapsulation systems containing 

berberine (Lam et al., 2012; Hu et al., 

2013); however, the effects of drying 
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methods on the properties of berberine-

entrapped microcapsules that are 

somewhat unexplored scenarios and need 

to be investigated with a more 

comprehensive approach. Given the lack 

of information on this aspect, this study 

was devised to engineer a berberine-

loaded microcapsule and examine its 

physical properties and microstructures 

after drying with two different drying 

methods (freeze and spray drying). In 

addition, the solubility, thermal stability, 

and the release kinetics of the dried 

microcapsules have been characterized in 

detail. The findings of this research are 

envisioned to provide a better 

comprehension in selecting drying 

techniques that can be applied toward the 

manufacture of high quality berberine 

powder. 

 

Materials and Methods 

- Materials 

The whole Berberis vulgaris plant 

including fruit, leaves, and stems was 

collected at maturity phase from South 

Khorasan province (Qayen, Iran) so that 

all berberine-containing components could 

be utilized (Rokade et al., 2022). Ethanol 

as an extraction solvent was purchased 

from Merck (Darmstadt, Germany). The 

powdered gelatin type B and berberine 

chloride hydrate (purity of ~90%) were 

purchased from Sigma-Aldrich Company 

(St. Louis, Mo., USA). Tragacanth gum 

(rahensis species) was kindly supplied by 

the Shahid Beheshti Institute of Nutrition 

and Food Science (Tehran, Iran). 

Commercial microbial transglutaminase 

enzyme (TEGEN 220 DM) with a nominal 

enzyme activity of 120 U/g was supplied 

from Benosen Chemical Co., Ltd. 

(İstanbul, Turkey) and was used as a 

crosslinking agent. All other chemicals 

were of analytical reagent grade and were 

used without further purification. 

- Methods 

- Berberine extraction process 

Before the extraction of berberine, the 

entire plant was washed, sun-dried 

outdoors for 7 days, and ground to obtain a 

uniform powder with particle size of 0.2-

0.5 mm using a blender. The ground 

powder was further dried in a vacuum 

oven at 75°C for 2 h before storage in a 

tightly sealed container. In order to extract 

berberine, ~3 g of the as-prepared 

powdered sample was mixed with 75% 

ethanol aqueous solution. The mixture was 

incubated at 50°C for 30 min while being 

shaken at 100 rpm in a shaker incubator 

(Fan Azma Gostar; Tehran, Iran) in 

accordance to our previous published 

method (Keshtkaran et al., 2022). The 

extraction suspension was then centrifuged 

at 9000 rpm for 10 min, and the 

supernatant was collected and filtered 

through Whatman
®
 filter paper (Grade 

41). A rotary evaporator (HS-2005 VN, 

Hahn Shin Scientific Co., Korea) was 

utilized for the complete removal of 

ethanol from the extract at 55–60 °C and 

500 mm Hg. The berberine concentration 

was determined using a high-performance 

liquid chromatography system (Knauer, 

advanced scientific instrument, Berlin, 

Germany) following our previous report 

(Keshtkaran et al., 2022). A series of 

standard solutions of berberine with 

concentrations ranging from 0.7 to 

25μg/mL were prepared and the resulting 

standard curve was used to study the 

berberine release kinetics from the 

microcapsules (Wu et al., 2015). 

 

- Preparation of dried coacervated 

berberine-loaded microcapsules 

Berberine-loaded microcapsules using 

an optimal extract prepared by the method 

previously described (Keshtkaran, Mizani, 

Mousavi, Mohammadifar, & Azizinejad, 

2022) with the concentration of 16±0.16 
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micrograms per milliliter. The wet 

microcapsules containing berberine were 

produced by a complex coacervation with 

wall materials made of three different 

ratios of tragacanth/gelatin (Ps/Pr) of 1:1, 

1:2, and 2:1, according to the method and 

optimal conditions that previously 

described by Keshtkaran et al., (2022). To 

gain an insight into the effect of drying 

method on characteristics of 

microcapsules, two drying processes were 

utilized: spray-drying and freeze-drying. 

The microcapsule samples were powdered 

using a spray-drying method. Briefly, 150 

mL of microcapsule suspension was fed 

into a mini spray-drier (Büchi Mini Spray 

Dryer B-290, Büchi Labortechnik AG, 

Flawil, Switzerland) under these 

conditions:  an inlet temperature (T inlet) of 

125–130°C, an outlet temperature (T outlet) 

of 70–75°C. a drying airflow of 50 m
3
/h, 

and pumping rate of 20% (Yu et al., 

2017). For the Freeze drying, 50 mL of 

microcapsule suspension was centrifuged 

at 9,000 rpm for 20 min, before being 

freeze-dried (ZIRBUS VACO5) for 48 h at 

-48°C under -0.9 bar pressure (Quispe-

Condori et al., 2011). All powder samples 

were separately placed into aluminium 

bags and stored in dark and cold place 

until further analysis. Each drying 

technique was conducted using three ratios 

of Ps/Pr. Based on the experimental 

design, spray-dried samples were labeled 

as (SD 1:1, SD 1:2, and SD 2:1), and those 

of freeze-dried microcapsules samples 

were labelled as (FD 1:1, FD 1:2 and FD 

2:1). 

- Evaluation of microstructure and 

particle size of microcapsules 

The morphological characteristics of 

the powdered microcapsules through two 

drying techniques were observed by an 

environmental scanning electron 

microscope (ESEM XL30, Philips, 

Eindhoven, the Netherlands) operating at 

an accelerating voltage of 20 kV. Using 

double-sided tapes to fix microcapsules on 

metal stubs, and then coated with a 20 nm 

layer of gold using a magnetron sputter 

(DF 101, Yare Nikane Saleh, Tehran, Iran) 

for 30 s in a high vacuum evaporator. The 

SEM images were collected under two 

magnification levels: 2,000 and 10,000 

(Jain, Thakur, Ghoshal et al., 2016).  

The particle size distribution of the 

freeze-dried and spray-dried samples were 

determined using a Malvern Mastersizer 

2000 Laser Particle Size Analyzer 

(Malvern Instruments Ltd., 

Worcestershire, UK) equipped with a 

Hydro 2000S automated sample dispersion 

unit. To measure the size distribution of 

microcapsules, one milligram of the dried 

microcapsules was weighed and dispersed 

in 10 mL deionized water with vigorous 

stirring for 30 minutes at room 

temperature. The particle size distribution 

was expressed as volume-weighted (D4,3) 

and surface-weighted (D3,2) mean 

diameters. All samples were analyzed at 

least three times. 

 

- Product yield and encapsulation 

efficiency  

The product yield of spray-dried and 

freeze-dried samples was calculated by 

dividing the final weight of collected 

powder sample by the total weight of solid 

materials as equation1 (Eq.1):  
Yield % = 

                                          

                                                             
 

× 100                                                   (Eq.1) 

 

Encapsulation efficiency was 

determined according to the method 

described by Rocha et al. (2012) with 

minor modifications.  

3 mL of methanol was added to 3 mg of 

powdered samples. The mixture was 

shaken with a Heidolph magnetic stirrer at 

100 rpm for 5 min and stored in the 
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darkness for 4 h and it was subsequently 

centrifuged at 9,000 rpm for 10 min. The 

supernatant containing unentrapped 

berberine was used to determine the 

content of microencapsulated berberine by 

a double-beam UV-visible 

spectrophotometer (Cecil CE-7200, UK) at 

the wavelength of 470 nm. The 

encapsulation efficiency (EE) was 

calculated using equation 2 (Eq.2) (Rocha 

et al., 2012):       
EE% = 

                                                                    

               
 

× 100%                                                (Eq.2) 

 

The standard curve was established by 

preparing serial dilution of berberine in 

absolute ethanol (5, 10, 25, 50, 75, and 

100 µg/mL). The absorbance values of 

these standard solutions were determined 

under similar conditions. At least three 

measurements of each sample were taken 

to ensure the repeatability of the results.  

 

- Solubility 

The water solubility of the 

microcapsules was determined using a 

gravimetric method. Briefly, 10 mg of 

powder sample was weighed and added 

into in a 50 mL beaker containing 10 mL 

of distilled water and homogenized at 100 

rpm for 30 min at room temperature. The 

stirring was slightly increased to 1,000 and 

continued for 5 min to ensure homogenous 

mixing is achieved. The mixture was then 

stored in the dark environment. The as-

prepared solution was then transferred to 

50 mL centrifuge tubes and centrifuged at 

7,500 rpm for 10 min under normal 

conditions. An aliquot of 2.5 mL of the 

supernatant was transferred to a pre-

weighed petri dish and oven-dried at 

105°C for 2 h to a constant weight. The 

water solubility was calculated based on 

the ratio of the mass of solids in the 

supernatant to the mass of the samples as  
 

equation3 (Eq.3): 

Solubility = 
   

  
 × 100%                   (Eq.3) 

 

where Wds is the mass of dispersed 

microcapsules in the supernatant and Ws is 

the initial mass of the sample (Comunian 

et al., 2016). The measurements were 

performed in triplicate. 

 

- Thermal properties  

The glass transition temperatures (Tg) 

of berberine-loaded microcapsule powder 

samples were recorded using an INNUO 

500-B differential scanning calorimetry 

(DSC) instrument (INNUO, Shanghai, 

China). Briefly, approximately 5 mg of 

specimens were hermetically sealed into 

aluminum pans. All samples were scanned 

from 10 to 300°C at a heating rate of 

9.8°C/min with a nitrogen purging flow 

rate of 50 mL/min. An empty pan was 

utilized as a reference (Nogueira et al., 

2017). 

 

- Berberine release and kinetic models 

The release characteristics of berberine 

from spray- and freeze- dried 

microcapsules were evaluated at two 

experimental temperatures:  5 °C and 80 

°C. 6 mg dried loaded microcapsules were 

dispersed in 10 mL water and stirred at 

100 rpm. At specific time intervals up to 

30 days for specimens stored at 5 °C and 

100 min for specimens stored at 80 °C, 

aliquots of 20 µL were taken and filtered 

through a 0.45 µm pore size filter. The 

absorbance of each sample was quantified 

by a UV-Visible spectrophotometer at 

wavelength of 470 nm (Dong et al., 2011). 

The concentration of berberine in the 

release medium at each sampling time 

interval was calculated using a calibration 

curve. In order to gain an insight on the 

release mechanisms of berberine from 

microcapsules, the release data were fitted 

to three models including zero-order, 
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Higuchi, and modified Korsmeyer-Peppas 

models. These models were chosen 

because they are consistently used to 

explain the release of bioactive 

compounds from polymeric microcapsules 

(Keshtkaran et al., 2022). The zero-order 

model can be written as equation4:            

Zero-Order model:    Qt = K0 t + C   (Eq.4) 

 

Where Qt is the amount of the 

berberine released over time t, C is the 

amount of berberine in solution prior to 

release (which is usually zero), and K0 is 

the zero-order release rate constant. 

The Higuchi model (equation5) can be 

written as follow: 

Higuchi model: Qt= KH t
0.5 

+ C        (Eq.5) 

 

Where KH is the Higuchi rate constant. 

To investigate the Fickian and non-

Fickian mechanisms, the modified 

Korsmeyer-Peppas model calculated by 

equation 6 as follow: 
Modified Korsmeyer-Peppas model: Qt/ Q∞ = 

KK-P t 
n 
+b                                            (Eq.6) 

 

Where Qt/ Q∞ is a fraction of released 

berberine at time t, KK-P is the release 

kinetic constant, n is the release exponent 

and b is the intercept, to characterize the 

burst effect, which represents an abrupt 

increase in the active compound’s initial 

release. This phenomenon occurs most 

frequently with microencapsulated flavors 

and is dependent on the shape and surface 

porosity of the microcapsule walls (Huang 

& Brazel, 2001). "n" is an exponent 

parameter that determines whether the 

release is controlled by the Fickian 

mechanism (n< 0.45) or both Fickian and 

swelling phenomena have to be considered 

(0.5< n <1) (Korsmeyer et al., 1983; 

Ritger & Peppas, 1987; Sheikh et al., 

2020). The release rate profile was plotted 

in Excel. The best-fit model was chosen 

based on maximum value of the adjusted-

R
2
. 

 

- Statistical analysis 

All the measurements were carried out 

in triplicate order unless specified 

otherwise. The analysis of the results was 

performed through one-way analysis of 

variance (ANOVA) using a SPSS
®
 ver. 

22.0 statistical software (IBM
®
 Co., 

Armonk, NY, USA). A Duncan test with a 

probability value of P < 0.05 was used to 

evaluate significant differences between 

the mean values. 

 

Results and Discussion 

- Morphological characteristics of the 

berberine-loaded microcapsules 

The detailed morphology of the 

berberine-loaded microcapsules after 

drying with spray and freeze-drying 

methods were investigated. The scanning 

electron microscopy (SEM) technique has 

been also used to examine the effects of 

different Ps/Pr ratios on the morphological 

characteristics of the dried microcapsules 

(Figure 1). The micrographs were 

presented under two different 

magnification levels to gain a better 

understanding of the size and/or sharp 

images of microcapsules generated by two 

different drying methods. The spray-

drying yielded semi-spherical 

microcapsules with a few wrinkles and 

protrusions (Figure 1a, b, and c), which 

may enhance the release qualities due to 

the increased surface area, whereas the 

freeze-drying process resulted in irregular-

shaped large microcapsules with a lumpy 

and visible porous structure (Figure 1d, e, 

and f). This is because spray-drying often 

uses a high inlet temperature that causes a 

rapid evaporation of water within the 

particle, leading to the formation of a 

rougher and more concave surface than the  
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freeze-drying method (Bi et al., 2022). 

Meanwhile, the SEM images suggested 

that when the protein proportion in the 

wall material was increased (i.e., Ps/Pr of 

1:2), spray-dried microcapsules presented 

smoother surfaces, smaller sizes, and 

greater uniformity, as confirmed by 

previous studies (Alvim & Grosso, 2010; 

Jain et al., 2016). In contrast, freeze drying 

operates at lower temperatures than spray 

drying, resulting in microcapsules with 

higher moisture content, particularly when 

polymers (proteins) with a higher water-

binding capacity (i.e., gelatine and 

tragacanth) were used as wall materials 

(Pudziuvelyte et al., 2020). Therefore, 

freeze drying results in the development of 

sticky microcapsules and agglomerates. 

Ezhilarasi et al. (2013) demonstrated that 

ice crystal sublimation under vacuum 

during a typical freeze-drying process may 

lead to the formation of a porous structure. 

This porous structure may increase the risk 

of oxidation (Eratte et al., 2014) for the 

encapsulated core material (i.e., 

berberine). Therefore, spray drying may be 

preferred as a method of choice for 

dehydration of the complex coacervated 

Berberine microcapsules. 

 

- Particle size distribution of microcapsules 

Particle size is an important parameter 

when it comes to the applications of 

microcapsules in different food 

formulations. The particle size and 

polydispersity index of microcapsules may 

be realized as the most influential aspects 

of the release patterns of 

microencapsulated compounds (Li et al.,  
 

 

 
Fig. 1. Scanning electron micrograph of complex coacervated berberine microcapsules with different 

ratios of Astragalus rahensis to gelatin A) SD1:1, B) SD1:2, and C) SD2:1 and D) FD 1:1, E) FD1:2, and 

F) FD 2:1. The images magnifications are 2000X (left) and 10000X (right) 
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2016). The particle size characteristics (D 

[3,2], D [4, 3], and span) of the berberine-

loaded microcapsules dried by two 

different drying methods are given in 

Table 1. The particle size data varied in 

the range of 37.56–183.55 µm while the 

span values spread from 1.61 to 2.61. The 

average size of microcapsules obtained by 

spray-drying and freeze-drying was 40.97 

μm and 177.46 μm, respectively. It is 

important to note that the spray-dried 

particle sizes lie in the range that is 

commonly reported for the complex 

coacervated microcapsules (Comunian et 

al., 2016). The average sizes of the freeze-

dried microcapsules were in the range of 

158–184 µm with the distribution slightly 

shifted to larger particle sizes (100−1000 

μm). Indeed, the particle sizes of the 

spray-dried microcapsule were smaller 

than those of freeze-dried microcapsules. 

Spray drying produces smaller 

microcapsules because of atomizing small 

droplets in the drying chamber and 

potential volatilization/dehydration upon 

exposure to hot air (Kaushik et al., 2016; 

Bi et al., 2022). We found a larger particle 

size for microcapsule powder dried by 

freeze-drying. This is because freeze 

drying is often operated at lower 

temperatures compared with spray drying. 

A low operational temperature results in 

the production of microcapsules with 

higher moisture content. As a result, freeze 

drying may result in the development of 

large and sticky microcapsules as was 

previously comprehended from SEM 

analysis. However, the wall material 

seems to have a slight change in the 

particle size distribution. As shown in 

Table 1, when using Ps/Pr of 1:2 as the 

wall material, the spray-dried 

microcapsules had the lowest particle size 

of 37.56 μm. 

 

- Microencapsulation yield and efficiency  

As given in Table 1, the yields of 

berberine microencapsulation were in the 

range of 24–50% for the spray-drying and 

(34–42%) freeze-drying processes. The 

spray-dried berberine microcapsule with a 

Ps/Pr of 1:2 had the highest yield (50%) 

amongst others. This may be ascribed to 

the ice crystallizing during freezing that 

leads to liberation/release of some of the 

core material and lower yields (Kanha et 

al., 2020). The literature has often reported 

contradictory outcomes on the yields of 

spray-drying and freeze-drying methods. 

According to Kaushik et al., 2016, freeze 

drying could have a higher yield, up to 

90%, and spray drying was found to have 

a minimum yield of ~50, which may 

contribute to adhesion of the particles to 

the walls of the drying chamber, causing 

higher loss of core material in the dried 

product. A recent work by Carra et al. 

(2022) showed that the size of the spray 

drying chamber and the efficiency of the 

cyclone could be considered the two most 

effective processing factors to reduce the 

likelihood of deposition of dried particles 

and loss of yield. Based on results from 

Table 1, the differences between the yields 

obtained from the two drying techniques in 

our research were somewhat lower than in 

previous research (Kaushik et al., 2016). 

The main reason for this observation could 

be related to using tragacanth gum as one 

of the wall components, which may create 

a sticky texture in the dried products for 

both of the drying methods. In terms of 

Ps/Pr ratios in the wall material, spray-

dried microcapsules with more protein 

components (Ps/Pr=1:2) had a 

significantly higher yield (Table 1). It can 

be assumed that a mixture of tragacanth 

gum and other biopolymers such as protein 

may prevent or reduce the stickiness of the 

spray-dried microcapsules, resulting in 

higher yields (Saffari et al., 2013). The 

higher yields observed in the present study 
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could be partially related to the high 

efficiency of the cyclone that trapped a 

large number of smaller particles and/or 

larger specific surface areas of particles, 

which enabled more contacts between the 

drying air and the particle surface. It may 

be emphasized that applying the spray 

drying method further to complex 

coacervation may have fewer negative 

effects on microcapsule quality as 

compared to using this drying method for 

microcapsulation (Rojas-Moreno et al., 

2018; Glomm et al., 2021). 

Microencapsulation efficiency is 

another key quality that was investigated 

in this study. Table 1 indicates the 

microencapsulation efficiencies of freeze 

and spray-dried microcapsules varied in 

the ranges of 70–75% and 65–68%, 

respectively. The nature of the wall 

material has obviously a substantial effect 

on the retention of the core material. 

Electrostatic interaction between negative-

charged carboxyl groups of tragacanth and 

positive-charged amine groups of gelatin 

in aqueous media has been recently 

studied in detail (Molaahmadi Bahraseman 

et al., 2022) and the results revealed the 

potential of this protein/polysaccharide 

system to form a continuous strong film 

layer around the core material. However, 

microencapsulation efficiency increased 

(P > 0.05) when the ratio of Ps/Pr of 

spray-dried microcapsules decreased. 

Similar findings were reported by 

Carpentier et al. (2022) who found a 

significant increase in encapsulation 

efficiency when the Ps/Pr ratio was 

changed from 1:1 to 1:2. The main 

explanation for the improvement in 

percentage of efficiency after adding 

protein to the carbohydrate wall system 

was attributed to the lowering of the 

solvent diffusability through the matrix 

due to the creation of a strong continuous 

phase. 

- Solubility 
The solubility of microcapsules is a 

critical factor for the quality of the powder 

as it shows its ability to absorb water. 

Complex coacervation usually increases 

microcapsule insolubility, creating better 

conditions for controlled release patterns 

in food formulations (Baracat et al., 2012; 

Dong et al., 2011). As a result, 

microcapsules with low solubility may be 

formed during coacervation, despite the 

fact that each of the polymeric components 

(i.e., gelatine and tragacanth) has a high-

water solubility (Molaahmadi Bahraseman 

et al., 2022). This study revealed that the 

freeze-dried microcapsules possessed the 

maximum water solubility (40–53%), 

while those of spray-dried samples were 

relatively insoluble, with solubility values 

ranging from 4 to 16% (Table 1). The key 

parameters affecting the solubility appear 

to be the drying techniques and conditions, 

particle sizes, and textural porosity of the 

dried microcapsules. As it was understood 

from SEM analysis, freeze drying 

produced larger particles with a porous 

structure, which is apparently responsible 

for more solubility of the powder. On the 

other hand, the high temperature at the 

beginning of the spray drying process 

could accelerate the formation of a 

hardened case of wall material, rendering 

it less soluble by preventing the transfer of 

water molecules (Chegini & Ghobadian, 

2007), and more appropriate for controlled 

release processes. It should be noted that 

the higher inlet temperatures result in 

producing larger, hygroscopic particles 

with a porous structure, while using lower 

temperatures may produce shrunken and 

smaller particles (Pui & Saleena, 2022). 

This point may explain why the spray-

dried microcapsules produced in the 

current study at low inter temperatures 

(130) exhibited lower solubility in 

comparison to those produced in previous 
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research at high temperatures (180) (Ho et 

al., 2022). 

 

- Thermal characteristics 

Figure 2 shows the thermograms  
 

obtained from differential scanning 

calorimetry (DSC) analysis to examine the 

thermal properties of dried microcapsules 

including the glass transition temperature 

(Tg). Tg was determined as the midpoint of 

the heat capacity change (Fredlake et al., 

2004). Indeed, the Tg is a key parameter 

that if properly tuned, can avoid physical 

and structural changes of the encapsulating 

material during processing and storage 

(Zhang et al., 2021). The Tg values of 

microencapsulated berberine powders are 

summarized in Table 1. As shown in Table 

1, there was a significant difference (P < 

0.05) between the Tg values for the freeze-

dried and spray-dried microcapsules, with 

the higher Tgs of the spray-dried samples 

(80-85  C) indicating better thermal 

stability than the freeze-dried 

microcapsules (Durrieu & Gandini, 2006; 

Cruz et al., 2017; Lu et al., 2022). It is 

well known that the Tg values of 

carbohydrates in a carbohydrate-protein 

system will shift to higher temperatures 

(Górska et al., 2017). The Tg value of the 

native species of tragacanth (Astragalus 

rahensis) used in the current research is 

49–49.5˚C (Delta Cp= 0.055 J/g˚K), which 

is significantly lower than the Tg levels 

previously reported for other species such 

as Astragalus compactus (Saffari et al., 

2012; Martín-Alfonso et al., 2019). It 

seems that the lower Tg of Astragalus 

rahensis is attributable to the higher 

concentration of saccharides with lower 

molecular weights (Furlán et al., 2011) 

such as arabinose (Mw=150.1) as 

compared to Astragalus compactus, which 

is rich in fucose with a high Mw 

(Mw=363.9) (Taghavizadeh Yazdi et al., 

2021; PubChem, 2022; Chemical aid, 

2022). Meanwhile, the Tg value of gelatin 

is ~25-30 °C (Bohidar et al., 1993; Singh 

et al., 2007) It is well known that the Tg 

values of carbohydrates in a carbohydrate-

protein system will shift to higher 

temperatures (Górska, 2017). The Tg 

value of the native species of tragacanth 

(Astragalus rahensis) used in the current 

research is 49–49.5˚C (Delta Cp= 0.055 

J/g˚K), which is significantly lower than 

the Tg levels previously reported for other 

species such as Astragalus compactus 

(Saffari et al., 2012; Martín-Alfonso et al., 

2019). It seems that the lower Tg of 

Astragalus rahensis is attributable to the 

higher concentration of saccharides with 

lower molecular weights (Furlán et al., 

2011) such as arabinose (Mw=150.1) as 

compared to Astragalus compactus, which 

is rich in fucose with a high Mw 

(Mw=363.9) (Taghavizadeh Yazdi et al., 

2021; PubChem, 2022; Chemical aid, 

2022). Meanwhile, the Tg value of gelatin 

is ~25-30 °C (Bohidar et al., 1993; Singh 

et al., 2007) and this means that, the Tg of 

the microcapsules may be expected to be 

higher than the Tg of each component, and 

the results of Table 1 confirm this point for 

both of the drying methods. In addition, 

the level of the residual moisture in the 

dried microcapsules may significantly 

affects the Tg values (Frascareli et al., 

2011; Dianawati et al., 2013; Górska et 

al., 2017). The high inlet temperature of 

the spray drying process may have caused 

it to lower the moisture content more 

effectively than freeze-drying, and the 

hygroscopic texture of the freeze-dried 

samples, which was already discussed in 

the morphological study (section 3.1), may 

confirm this result. It may be concluded 

that all Berberine microcapsule powders 

may be in their glassy state (T<Tg) at 

ambient temperature, with limited thermal 

motion in the polymeric structure of the 

wall material (Kirk et al., 2004) resulting  
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Table 1. Different physical characteristics of the complex coacervated berberine microcapsules dried by spray-

drying and freeze-drying methods 

Samples
1 

Yield (%) Efficiency (%) Solubility (%) Tg ( ˚C) D[4,3] (µm) D[3,2](µm) Span 

SD 1:1 0.32d±24.80 1.21c±68.00 0.03f±4.00 4.63a±80.95 2.13c±46.68 3.46c±26.28 0.34b±1.89 

SD 1:2 0.42a±50.00 1.35c±67.00 0.03e±8.00 4.56 a±80.38 2.48d±37.56 4.12d±18.01 0.31b±1.76 

SD 2:1 0.33c±36.00 1.19d±65.00 0.02d±16.00 4.61a±83.87 3.12d±38.68 2.72d±19.41 0.41a±2.61 

FD 1:1 0.45c±34.80 1.31b±71.14 0.04b±47.00 4.23b±50.49 4.11b±169.30 3.23b±90.74 0.36b±1.61 

FD 1:2 0.28b±42.44 1.23a±75.34 0.02c±40.00 4.44b±49.38 4.15a±179.54 3.81a±96.39 0.21b±1.89 

FD 2:1 0.35b±40.35 1.24b±70.21 0.02a±53.33 4.32 b±56.59 4.45a±183.55 3.67a±98.48 0.43b±1.69 

1 Berberine microcapsules were produced with different ratios of tragacanth/gelatin (Ps/Pr) (1:1, 1:2 and 2:1). 

SD and FD are the abbreviations for spray-drying and freeze-drying, respectively 

Values with different superscript letters in the same column indicate significant difference (P ≤ 0.05) when 

analyzed by Duncan's multiple range test. 

Note: Results are expressed as mean value± standard deviation 
 

 
Fig. 2. Differential scanning calorimetry (DSC) thermograms of berberine complex coacervated 

microcapsules with different ratios of tragacanth: gelatin: A) SD1:1, B) SD1:2, and C) SD 2:1 D) FD 

1:1, E) FD1:2, and F) FD 2:1 

 

in low oxygen permeability and protecting 

the sensitive core material (Berberine) 

from oxidation (Jin et al., 2018; Kanha et 

al., 2021). 

 

- Berberine release kinetics  

The in vitro release of berberine from 

both groups of the dried microcapsules in 

water was investigated at two distinct 

temperatures (5 °C and 80 °C) and time 

intervals (Figure 3 a, b). At both 

temperatures, the general release pattern 

was similar, consisting of an initial rapid 

release phase (burst effect) followed by a 

slow and sustained one. As it may be 

expected, the release rates were  
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Fig. 3. Berberine release rate from dried microcapsules with different ratios of Astragalus rahensis: gelatin: 

A) SD1:1, B) SD1:2, and C) SD2:1 D) FD 1:1, E) FD 1:2, and F) FD 2:1 at 5  C (a) & 80   C (b) 

 

considerably higher at 80˚ C 

(pasteurization temperature) than at 5˚C 

(refrigerator temperature). Therefore, 

about 50% release from spray-dried 

microcapsules took about five days at 5˚C 

and only one hour at 80˚C. According to 

Cui et al. 2021, the higher temperatures of 

the release medium increase the Brownian 

motion and kinetic energy of the core 

materials, leading to a larger diffusion rate. 

Therefore, it may be concluded that 

berberine microcapsules were more stable 

in low-temperature conditions and released 

relatively slowly over an extended length 
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of time. In order to comprehend the 

process of berberine release from 

tragacanth/gelatin microcapsules, the 

release profile was fitted with three known 

kinetic models: zero-order, Higuchi, and 

modified Korsmeyer-Peppas. The 

constants and coefficient of determination 

(R
2
) for each model are listed in Tables 2 

and 3. The zero-order and Higuchi models 

were deemed unsatisfactory (R
2
< 0.8) for 

modeling the release of berberine from 

microcapsules. Nonetheless, the modified 

Korsmeyer-Peppas model best explained 

the release data (R
2
 > 0.90). The 

Korsmeyer-Peppas model has been found 

to accurately describe the release data of 

essential oils (de Oliveira et al., 2014), 

curcumin (Xiao et al., 2015) from 

nanoparticles, and polyphenols (Pulicharla 

et al., 2016). The n parameter, determined 

from the Korsmeyer-Peppas equation, 

represents the diffusional exponent as an 

indicator of the release mechanism. All 

studied samples had n values smaller than 

0.45, indicating the Fickian diffusion 

release mechanism from swellable 

spherical particles (Ritger & Peppas, 

1987). The spray-dried and freeze-dried 

microcapsules with a Ps/Pr ratio of 1:2 had 

the highest (Kk-p =44.5, b = 43) and 

lowest (Kk-p =11.93, b= 11.34) release 

rates at 5 °C, respectively (Figure 3a, 

Table 2). The variations in release rate 

constants may be attributable to the 

following factors: a) the size and specific 

area of the microcapsules b) The thermal 

conditions used in drying procedures c) 

The Ps/Pr ratio of the wall material and 

hydrophilicity of each component d) 

Temperature of the release medium 

influencing the hydrating potential of the 

polymeric wall material.  According to 

Table 1, the spray-dried microcapsules 

with PS/Pr 1:2 were the smallest sized 

samples compared to the freeze-dried 

samples; thus, the largest specific area 

might provide a greater potential for the 

diffusion through the wall material of this 

sample (Jovanovi´c et al., 2021). The high 

inlet temperature of the spray drying 

process is another parameter which is 

previously reported to alter the release rate 

due to formation a hard shell on the 

microcapsule surfaces and reducing the 

diffusability of the wall material 

(Wardhani et al., 2020) It has been 

distinguished that the effect of this 

parameter was not dominant in the current 

study since the inlet temperature (130 ˚C) 

applied in the spray drying process was 

not as high as in the earlier research (180˚-

200˚C). Microcapsules, on the other hand, 

do not case-harden due to the low 

temperature of freeze-drying, but the 

larger-sized, lumpy particles may be 

expected to slow down the release rate. 

Comparing the release data for sample 

(SD2:1) with that of sample (FD2:1) 

indicated that there is no big difference 

between these two samples produced by 

two different drying procedures at both 

temperatures (Tables 2, 3). This 

unexpected result may be attributable to 

the higher solubility values observed for 

the freeze-dried samples, which were 

described previously (Table 1). On the 

other hand, the hydration of the polymeric 

wall material may expedite the diffusion of 

the core material into the surrounding 

liquid by creating a porous structure that is 

more susceptible to release. Therefore, the 

freeze-dried samples with a higher Ps/Pr 

ratio (FD-2:1) exhibited a greater release 

rate compared to (FD 1:2), because of the 

greater proportion of tragacanth with more 

hydrophilicity than gelatine in the wall 

material (Zajic et al., 1976; De Oliviera et 

al., 2014). Meanwhile, applying a release 

medium at a high temperature (80˚C) may 

alter the water sorption ability of the wall 

material. According to Alexandre et al. 

2019, some degradation may happen in the  
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Table 2. The release kinetic parameters of spray-dried and freeze-dried berberine microcapsules stored at 5˚C 
 

 Kinetic Samples
1 

Model parameter SD1:1 SD1:2 SD2:1 FD1:1 FD1:2 FD2:1 

Zero-order K0 0.34 0.43 0.34 0.29 0.18 0.22 

Q0 = K0 t+ C C 22.21 48.59 39.39 29.84 13.79 35.57 
 R2 0.67 0.67 0.57 0.55 0.59 0.55 

Higuchi KH 0.03 0.03 0.03 0.02 0.02 0.02 

QH = KH t0.5 + C C 4.71 6.97 6.27 5.45 3.71 5.45 

 R2 0.64 0.0.65 0.55 0.53 0.57 0.54 

              Modified KK-P 19.07 44.51 35.61 26.56 11.93 33.12 

Korsmeyer-Peppas n 0.15 0.11 0.11 0.11 0.14 0.11 

Qt /Q0 = KK-P tn + b b 18.23 43.00 34.12 25.12 11.34 32.41 

 R2 0.95 0.95 0.91 0.91 0.92 0.90 
 

1 Berberine microcapsules were produced with different ratios of tragacanth/gelatin (Ps/Pr) (1:1, 1:2 and 2:1). 

SD and FD are the abbreviations for spray-drying and freeze-drying, respectively. 

 

 

Table3. The release kinetic parameters of spray-dried and freeze-dried berberine microcapsules stored at 80˚C 
 

 Kinetic Samples
1 

Model parameter SD1:1 SD1:2 SD2:1 FD1:1 FD1:2 FD2:1 

Zero-order K0 0.16 0.12 0.21 0.21 0.06 0.02 

Q0 = K0 t+ C C 13.93 41.83 30.37 16.34 8.51 26.35 

 R2 0.76 0.71 0.72 0.79 0.81 0.78 

Higuchi KH 0.02 0.01 0.02 0.02 0.01 002 

QH = KH t0.5 + C C 3.72 6.47 5.14 4.04 2.92 5.14 

 R2 0.73 0.71 0.76 0.75 0.78 0.76 

Modified KK-P 5.39 3.08 15.73 5.99 4.32 12.55 
Korsmeyer-Peppas n 0.37 0.12 0.26 0.39 0.27 0.29 

Qt /Q0 = KK-P tn + b b 11.2 39.2 26.41 13.22 7.64 23.12 

 R2 0.91 0.92 0.91 0.93 0.96 0.94 
 

1 Berberine microcapsules were produced with different ratios of tragacanth/gelatin (Ps/Pr) (1:1, 1:2 and 2:1). 

SD and FD are the abbreviations for spray-drying and freeze-drying, respectively. 

 

polymeric matrix of the cross-linked 

polysaccharide/gelatine coacervates at 

temperatures around 100˚C due to losing 

free and bound water. Consequently, it 

may be supposed that these structural 

changes may slow down the release rate at 

high temperatures (i.e., 80˚C). The burst 

effect and the b factor may be taken into 

consideration when recommending a 

drying process for berberine microcapsules 

from a controlled release 

standpoint.  According to Huang and 

Brazel (2001), an appropriate burst effect 

(a high b factor) is preferable for certain 

applications, such as encapsulated food 

ingredients. Therefore, the spray drying 

technique with the greatest burst effect at 

both temperatures may be chosen to 

produce the microcapsule samples with 

desirable controlled release characteristics 

(Ps/Pr = 1:2, and Ps/Pr = 2:1) (Tables 2 

and 3). 

 

Conclusion 

In this research the Berberine 

coacervates prepared by using different 

ratios of Astragalus rahensis/gelatin were 

dried by spray drying and freeze drying 

and the effects of two drying techniques 

on the characteristics of microcapsule 

powders were investigated. The rahensis 

species, a low-grade flaky tragacanth with 

economic value, was utilized for the first 

time in the formation of Berberine 
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microcapsules and exhibited desirable 

functional properties in combination with 

bovine gelatin. Due to the lumpy and 

porous structure of the freeze-dried 

microcapsules, the sensitive core material 

(Berberine) may be exposed to oxidative 

reactions. The Tg values as a thermal 

stability index, for spray-dried were 

greater than those for freeze dried 

products. After 60 minutes at 80°C and 

one month at 5°C, the maximum release 

rate of spray-dried microcapsules with 1:2 

Ps/Pr ratios was 51% and 58%, 

respectively. of 51 % and 58 %, 

respectively. The hydrophilicity of 

tragacanth from one side and structural 

changes of gelatin polymeric at high 

temperatures from the other side, have 

governed the structural diffusability of the 

wall polymeric matrix and release pattern. 
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