ارزیابی روش های قطعی و زمین آمار در پهنه بندی غلظت ذرات معلق (PM2.5 و PM10) با استفاده از GIS: مطالعه موردی، شهر سبزوار
محورهای موضوعی : آلودگی های محیط زیست (آب، خاک و هوا)سید علی سجادی 1 , مهری دلسوز 2 , قاسم ذوالفقاری 3 * , محسن میرمحمدی 4 , حامد ادب 5
1 - دانشیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی گناباد، گناباد، ایران.
2 - کارشناسی ارشد، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی گناباد، گناباد، ایران.
3 - دانشیار، گروه علوم و مهندسی محیط زیست، دانشکده علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران. *(مسئول مکاتبات)
4 - استادیار، گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران.
5 - استادیار، گروه آب و هواشناسی و ژئومورفولوژی، دانشکده علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران.
کلید واژه: زمین آمار, GIS, ذرات معلق, میانیابی,
چکیده مقاله :
زمینه و هدف: امروزه زندگی افراد به خاطر آلاینده های متعدد وارد شده به اتمسفر ناشی از اقدامات انسانی و فعالیت های بیولوژیکی در معرض خطر است. از دیدگاه بهداشت عمومی ذرات معلق یکی از آلاینده های اصلی هوا می باشد. هدف از این پژوهش ارزیابی روش های میان یابی مکانی جهت تعیین غلظت سطحی ذرات معلق PM10و PM2.5 در شهر سبزوار و در نتیجه، انتخاب مناسب ترین روش میان یابی به منظور تهیه نقشه های پهنه بندی ذرات معلق در محیطGIS است. مواد و روش ها: اندازه گیری ذرات معلق PM2.5 و PM10 توسط دستگاه مونیتورینگ گرد و غبار محیطیمدلHaz-Dust EPAM5000، در 48 ایستگاه سطح شهر انجام شد و پس از اطمینان از صحت آماری آن ها در محیط نرم افزاری ARC GIS توسط افزونه زمین آماری در منطقه مورد مطالعه (شهر سبزوار) به روش های کریجینگ (Kriging)، وزن دهی فاصله معکوس (IDW) پهنه بندی و ارزیابی شد. در نهایت با توجه به مقادیر خطایی که هر الگوریتم پس از میان یابی نشان داد بهترین روش از بین روش های میان یابی مورد آزمون انتخاب شد. یافته ها: نتایج حاصل نشان دهنده این بود که بین روش های زمین آمار و قطعی تفاوت چندانی بین روش های قطعی و زمین آمار به لحاظ مقادیر مربع میانگین ریشه دوم (Root Mean Squared (RMS)) و همچنین میانگین قدر مطلق درصد خطا (Mean Absolute Percentage Error (MAPE)) وجود ندارد هر چند که این میزان برای روش های قطعی کم تر می باشد. بحث و نتیجه گیری: به نظر می رسد که مناسب ترین روش میان یابی برای پهنه بندی غلظت ذرات معلق PM2.5 و PM10 روش قطعی با تابع IDW می باشد.
Background and Objectives: Nowadays, people’s life is at risk because of various pollutants into the atmosphere by human action and biological activities. One of the major air pollutants are particulate matter. The aim of this study was to evaluate spatial interpolation methods to determine the concentration PM2.5 and PM10 in Sabzevar city and select the most suitable interpolation method for preparation of zoning maps particulate matter in GIS. Materials and Methods: Particulate matter were measured by a monitoring device, environmental dust model Haz-Dust EPAM 5000 at 48 stations in the city, then in ARC GIS software three well-known spatial interpolation techniques, namely Kriging, Inverse Distance Weighting (IDW) were applied for generating the prediction maps. Finally the best interpolation method was chosen according to the values of each algorithm error. Findings: The results indicated that the RMS was lower between geostatistical and deterministic methods, and the MAPE in deterministic methods was lower. Discussion and Conclusion: The best interpolation method for the particulate matter (PM2.5 and PM10) was deterministic method by IDW function.
- Burnham, P., Anderson, R., 2004. Multimodel inference understanding AIC and BIC in model selection. Sociological Methods and Research, Vol. 33, pp. 261 -304.
- Qorbani Salkhord, R., Mobasheri, M.R., Rahimzadehgan, M., 2012. A fast method for assessment of PM10 concentration using MODIS images, a case study in Tehran. Hakim Research Journal, Vol. 15(2), pp. 166-177. (In Persian)
- Data and Research Unit. Annual report of air quality of Tehran in 2012. Air Quality Control Company, technical report.
- Keynejad, M., Ebrahimi, S., 1998. Environmental Engineering. Sahand University of Technology. (In Persian)
- Rogge, W., Determination of key organic compounds in the particulate matter amission from air pollution sources. California Institute of Technology, Research Note 1994. Available From:URL:http://www.ard.ca.gov. Accessed Dec 25, 2008.
- Naddafi, K., 2009. Air pollution with emphasis on dusts and their health and environmental impacts. 12th National Confrance on Environmental Health, Tehran, Iran. (In Persian)
- Bahari, R.A., Abaspour, R.A., Pahlavani, P., 2016. Zoning of particulate matters (PM) pollution using local statistical models in GIS (case study: Tehran metropolisies). Journal of Geomatics Science and Technology, Vol. 5(3), pp. 165-174. (In Persian)
- Ghahroudi, M., 2005. Geographic Information System (GIS). Tarbiyat moalem Jahadedaneshgahi Publication. (In Persian)
- Shad, R., Ashoori, H., Afshari, N., 2008. Evaluation of optimum methods for predicting pollution concentration in GIS environment. International archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, Vol 17, pp. 315-320.
- Webster, R., Oliver, M.A., 2000. Geostatistics for Environmental Scientists. Wiley Press, 271 p.
- Timonen, K., Tiittanen, P., Penttinen, P., 1997. Effects of fine and ultrafine particles on respiratory and cardiovascular health. Finish Research Programme on Environmental Health. (available at http://www.ktl.fi/sytty/ abstracts/ pekka1 htm).
- Fathtabar Firouz Jani, S., Alesheikh A., Rangzan K., Chinipardaz R., 2011. Air pollution zoning using geostatistics methods and GIS: case study, Tehran. 5th National Conference on Environmental Engineering, Hamedan, Iran. (In Persian)
- Kumar, D., Sabesan, M., Das, A., 2011.Evaluation of interpolation technique for air quality parameters in Port Blair, India. Universal Journal of Environmental Research and Technology, Vol. 3, pp. 301 -10.
- Asakereh, H., 2008. Kriging application in climatic element interpolation, a case study: Iran precipitation in 1996.12.16. Geqgraphy and Development Journal. Vol. 6, pp. 25-42. (In Persian)
- Nadiri, A., Shakour, S., Asgharimoghadam, A., Vadiati, M., 2017. Investigation of groundwater nitrate pollution with different interpolation methods (case study: East Azarbayjan, Bilverdy plain). Journal of Hydrogeomorphology, Vol. 1, pp. 75-92. (In Persian)
- Hasanipak, A., 1998. Earth Statitis (Geostatitial): Tehran University. (In Persian)
- Ayobi, S., Hosseinalizadeh, M., 2007. Assessment spatil variability of soil erodibility by using of geostatiti and GIS (case study, Mehr watershed of Sabzevar). Iranian Journal of Natural Resources, Vol. 60(2), pp. 369 – 82. (In Persian)
- 18-. Nasrollahi, Z., Ghaffari, M., 2010. Air pollution and its determinants (The case study of SPM, and SO2 emissions in Iran manufacturing industries). Journal of the Economic Research, Vol. 10(3), pp. 75-95.
- Hadipoor, M., Poorebrahim, S.H., 2011. Locating residential land use in urban transportation planning by the application of GIS and mathematical emission modeling of air pollution. Journal of Environmental Studies, Vol 37, 135-149.
- Mansouri, N., Esmaealzadeh, J., 2011. Investigating suspended particles resulted from Tehran`s highways traffic. Journal of Traffic Engineering, Vol. 44. (In Persian)
- Mirmousavi, S.H., Mirain, M., 2012. The application of geostatistics methods in temporal precipitation distribution (Case study: Kerman Province). Journal of Geography and Planning, Vol 16, pp. 153-178.
- Momeni Damaneh, J., Joulaei, F., Alidadi, H., Peiravi, R., 2015. Evaluatin of interpolatin methods to determine spatil variatins of groundwater Quali-tatie parameters (Case study: Gonabad plain). Iranian Journal of Research in Environmental Health, Vol. 1(3), pp. 165-176. (In Persian)
- Sadeqi Aqdam, F., Asqari Moqadam, A., Nadiri, A., 2015. An evaluation of temporal and spatial variation of arsenic anomalies in water resources of sahand dam using statistical methods. International Bulletin of Water Resources and Development, Vol. 2, pp. 11-23. (In Persian)
- Tombette, M., Mallet, V., Sportisse, B., 2009. PM 10 data assimilation over Europe with the optimal interpolation method. Atmos. Chem. Phys, Vol. 9, pp. 57–70.
- Norazian, M.N., Shukri, Y.A., Azam, N.R., 2008.Estimation of missing values in air pollution data using single imputation techniques. ScienceAsia, Vol.34, pp. 341-45.
_||_
- Burnham, P., Anderson, R., 2004. Multimodel inference understanding AIC and BIC in model selection. Sociological Methods and Research, Vol. 33, pp. 261 -304.
- Qorbani Salkhord, R., Mobasheri, M.R., Rahimzadehgan, M., 2012. A fast method for assessment of PM10 concentration using MODIS images, a case study in Tehran. Hakim Research Journal, Vol. 15(2), pp. 166-177. (In Persian)
- Data and Research Unit. Annual report of air quality of Tehran in 2012. Air Quality Control Company, technical report.
- Keynejad, M., Ebrahimi, S., 1998. Environmental Engineering. Sahand University of Technology. (In Persian)
- Rogge, W., Determination of key organic compounds in the particulate matter amission from air pollution sources. California Institute of Technology, Research Note 1994. Available From:URL:http://www.ard.ca.gov. Accessed Dec 25, 2008.
- Naddafi, K., 2009. Air pollution with emphasis on dusts and their health and environmental impacts. 12th National Confrance on Environmental Health, Tehran, Iran. (In Persian)
- Bahari, R.A., Abaspour, R.A., Pahlavani, P., 2016. Zoning of particulate matters (PM) pollution using local statistical models in GIS (case study: Tehran metropolisies). Journal of Geomatics Science and Technology, Vol. 5(3), pp. 165-174. (In Persian)
- Ghahroudi, M., 2005. Geographic Information System (GIS). Tarbiyat moalem Jahadedaneshgahi Publication. (In Persian)
- Shad, R., Ashoori, H., Afshari, N., 2008. Evaluation of optimum methods for predicting pollution concentration in GIS environment. International archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, Vol 17, pp. 315-320.
- Webster, R., Oliver, M.A., 2000. Geostatistics for Environmental Scientists. Wiley Press, 271 p.
- Timonen, K., Tiittanen, P., Penttinen, P., 1997. Effects of fine and ultrafine particles on respiratory and cardiovascular health. Finish Research Programme on Environmental Health. (available at http://www.ktl.fi/sytty/ abstracts/ pekka1 htm).
- Fathtabar Firouz Jani, S., Alesheikh A., Rangzan K., Chinipardaz R., 2011. Air pollution zoning using geostatistics methods and GIS: case study, Tehran. 5th National Conference on Environmental Engineering, Hamedan, Iran. (In Persian)
- Kumar, D., Sabesan, M., Das, A., 2011.Evaluation of interpolation technique for air quality parameters in Port Blair, India. Universal Journal of Environmental Research and Technology, Vol. 3, pp. 301 -10.
- Asakereh, H., 2008. Kriging application in climatic element interpolation, a case study: Iran precipitation in 1996.12.16. Geqgraphy and Development Journal. Vol. 6, pp. 25-42. (In Persian)
- Nadiri, A., Shakour, S., Asgharimoghadam, A., Vadiati, M., 2017. Investigation of groundwater nitrate pollution with different interpolation methods (case study: East Azarbayjan, Bilverdy plain). Journal of Hydrogeomorphology, Vol. 1, pp. 75-92. (In Persian)
- Hasanipak, A., 1998. Earth Statitis (Geostatitial): Tehran University. (In Persian)
- Ayobi, S., Hosseinalizadeh, M., 2007. Assessment spatil variability of soil erodibility by using of geostatiti and GIS (case study, Mehr watershed of Sabzevar). Iranian Journal of Natural Resources, Vol. 60(2), pp. 369 – 82. (In Persian)
- 18-. Nasrollahi, Z., Ghaffari, M., 2010. Air pollution and its determinants (The case study of SPM, and SO2 emissions in Iran manufacturing industries). Journal of the Economic Research, Vol. 10(3), pp. 75-95.
- Hadipoor, M., Poorebrahim, S.H., 2011. Locating residential land use in urban transportation planning by the application of GIS and mathematical emission modeling of air pollution. Journal of Environmental Studies, Vol 37, 135-149.
- Mansouri, N., Esmaealzadeh, J., 2011. Investigating suspended particles resulted from Tehran`s highways traffic. Journal of Traffic Engineering, Vol. 44. (In Persian)
- Mirmousavi, S.H., Mirain, M., 2012. The application of geostatistics methods in temporal precipitation distribution (Case study: Kerman Province). Journal of Geography and Planning, Vol 16, pp. 153-178.
- Momeni Damaneh, J., Joulaei, F., Alidadi, H., Peiravi, R., 2015. Evaluatin of interpolatin methods to determine spatil variatins of groundwater Quali-tatie parameters (Case study: Gonabad plain). Iranian Journal of Research in Environmental Health, Vol. 1(3), pp. 165-176. (In Persian)
- Sadeqi Aqdam, F., Asqari Moqadam, A., Nadiri, A., 2015. An evaluation of temporal and spatial variation of arsenic anomalies in water resources of sahand dam using statistical methods. International Bulletin of Water Resources and Development, Vol. 2, pp. 11-23. (In Persian)
- Tombette, M., Mallet, V., Sportisse, B., 2009. PM 10 data assimilation over Europe with the optimal interpolation method. Atmos. Chem. Phys, Vol. 9, pp. 57–70.
- Norazian, M.N., Shukri, Y.A., Azam, N.R., 2008.Estimation of missing values in air pollution data using single imputation techniques. ScienceAsia, Vol.34, pp. 341-45.