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Abstract 

 
In this paper, a theoretical study of the behavior of multiple moving cracks in a non-homogeneous orthotropic plane under 

anti-plate deformation is presented. Material properties of the functionally graded (FG) orthotropic plane are assumed to 

vary exponentially in the y-direction. First, the distributed dislocation method is used to perform stress analysis, and the 

Galilean transformation is used to express the wave equations in terms of the coordinates attached to the moving crack. 

Then, the solution of the moving screw dislocation in the non-homogeneous orthotropic plane is obtained using the Fourier 

transform and shows that the stress components have the familiar Cauchy singularity at the location of dislocation. The 

solution is employed to derive integral equations for a non-homogeneous orthotropic plane weakened by multiple moving 

cracks. Numerical calculations are performed to show the effects of material properties and the cracks propagating velocity 

on the dynamic stress intensity factors of crack tips. 
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1. Introduction 
 

Recently, functionally graded materials (FGMs) 

have widely been introduced and applied in the 

environments with extremely high temperature. The 

major advantages of the graded material, especially 

in elevated temperature environments, stem from the 

tailoring capability to produce a general variety of 

its thermomechanical properties in the spatial 

domain. The knowledge of crack growth and 

propagation in functionally graded materials is 

important in designing components of FGMs and 

improving its fracture toughness. From the fracture 

mechanics viewpoint, a crack in FGMs may exhibit 

the complex behavior due to the variety of the 

mechanical properties of the material. The 

increasing attention to the study of crack problems 

in functionally graded materials in the last decade 

has led to a lot of significant work. Especially, the 

influence of the crack moving speed on the stress 

intensity factors was a popular subject in classical 

elastodynamics. Problems of crack propagation at 

constant speed can be classified into three classes 

depending on the boundary conditions [1]. The first 

class is the steady-state crack growth. Here, the 

crack tip moves at constant speed for all the time 

and the mechanical fields are invariant with respect 

to an observer moving with the crack tip. The 

prototype problem in this category is the two-

dimensional Yoffe problem of a crack of fixed 

length propagating in a body subjected to uniform 

far field tensile loading [2]. The second class of 

problems is the self-similar crack growth subject to 

time-independent loading. In this case, the crack tip 

has been moving at constant speed  
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since some initial instant, and certain mechanical 

fields are invariant with respect to an observer 

moving steadily away from the process being 

observed. The third category of problems 

corresponds to crack in a body initially at rest and 

subjected to time-independent loading. 

Wang and Meguid [3] obtained the stress field 

around a moving finite crack that propagates in a 

non-homogeneous interfacial layer between two 

dissimilar elastic half-planes under anti-plane 

loading conditions. The plane strain problem for 

determining the dynamic stress intensity factor in 

orthotropic medium when a moving Griffith crack is 

situated at the interface of two dissimilar half spaces 

was considered by Das et al. [4]. Asymptotic 

expansion of out of plane displacement fields for a 

crack propagating with a constant velocity at an 

angle to the property gradient was obtained by 

Chalivendra et al. [5]. Jiang and Wang [6] studied 

the dynamic plane behavior of a Yoffe type crack 

propagating in a functionally graded interlayer 

bonded to dissimilar half planes. The dynamic stress 

intensity factor and strain energy density for moving 

crack in an infinite strip of functionally graded 

material subjected to antiplane shear was determined 

by Bi et al. [7]. Li [8] solved the dynamic problem 

of an impermeable crack of length 2a propagating in 

a piezoelectric strip. The problem for the crack 

propagating at constant speed in a functionally 

graded piezoelectric ceramic strip under combined 

anti-plane shear and in-plane electrical loadings was 

studied by Kwon [9]. Ma et al. [10] investigated the 

theoretical analysis of the dynamic plane behavior 

of a Yoffe type crack [11] propagating in a 

functionally graded orthotropic medium. 
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The elastic stiffness constants and mass density of 

materials are assumed to vary exponentially 

perpendicular to the direction of the crack 

propagation. Numerical examples were given to 

show the effects of the material properties, the 

thickness of the functionally graded orthotropic strip 

and the speed of the crack propagation upon the 

dynamic fracture behavior. Das [12], Considered the 

interaction between three moving collinear Griffith 

cracks under anti-plane shear stress situated at the 

interface of an elastic layer overlying a different half 

plane. The problem of a Griffith crack of constant 

length propagating at a uniform speed in a non-

homogeneous plane under uniform load is 

investigated by Singh et al. [13]. The finite crack 

with constant length (Yoffe-type crack) propagating 

in a functionally graded strip with spatially varying 

elastic properties between two dissimilar 

homogeneous layers under in-plane loading was 

studied by Cheng et al. [14]. 

Yan [15] investigated the problem of a propagating 

finite crack in functionally graded piezoelectric 

materials. The solution procedures devised in all 

above studies are neither capable of handling 

multiple cracks nor arbitrary arrangement. In the 

most of studies, FGMs are assumed to be isotropic. 

However, because of the nature of the techniques 

used in processing, the graded materials are seldom 

isotropic. For example, FGMs processed by using a 

plasma spray technique have generally a lamella 

structure, whereas processing by electron beam 

physical vapor deposition would lead to a highly 

columnar structure. Thus, the orthotropic properties 

should be considered in studying the mechanics of 

FGMs. However, due to the problem complexity, up 

to now, only a few researchers considered the crack 

problem for functionally graded orthotropic 

materials.  

The primary objective of this study is to provide a 

theoretical analysis of multiple moving cracks with 

arbitrary arrangements propagating in a functionally 

graded orthotropic plane under anti-plane traction. 

The complex Fourier transform is employed to 

obtain transformed displacement and stress fields. 

The inversion of transforming displacement and 

stress fields is carried out by changing the contour 

of integration. 

The dislocation solutions are then used to formulate 

integral equations for a plane weakened by several 

cracks.  

The integral equations are of Cauchy singular types 

which are solved numerically for the dislocation 

density on the crack. 

To confirm the validity of formulations, numerical 

values of dynamic stress intensity factors for a crack 

are compared with the results in the literature. 

Several examples of cracks are solved to study the 

effects speed of crack on the stress intensity factor 

of cracks to illustrate the applicability of the 

procedure. 

2. Description of the Problem and Governing 

Equations 
 

Consider a functionally graded orthotropic plane 

with moving screw dislocation along x-axis, as 

shown in Fig. (1). The X- and Y-axes are in the 

direction of principal material orthotropic. 

The distributed dislocation technique is an efficient 

means for treating multiple moving cracks. 

However, determining stress fields due to a single 

dislocation in the region has been a major obstacle 

to the utilization of this method. We now take up 

this task for a functionally graded orthotropic plane 

containing a moving screw dislocation. Under the 

assumption of anti-plane deformation, the only 

nonzero displacement component is the out of plane 

component W(X, Y, t). Consequently, the 

constitutive equations are given by Eq. (1) [7].  

 

𝜎𝑧𝑥(𝑋, 𝑌, 𝑡) =  𝜇𝑋(𝑌)
𝜕𝑊

𝜕𝑋
   

𝜎𝑧𝑦(𝑋, 𝑌, 𝑡) =  𝜇𝑦(𝑌)
𝜕𝑊

𝜕𝑌
   Eq. (1) 

 

where 𝜇𝑦(𝑌) = 𝜇0𝑋𝑒2𝜁𝑌 and 𝜇𝑦(𝑌) = 𝜇0𝑌𝑒2𝜁𝑌 are 

the shear modulus. Utilizing Eq. (1) in the absence 

of body forces, the governing equation of dynamic 

anti-plane deformation in terms of displacement 

may be written as Eq. ( 2).  

 
𝜕2𝑊

𝜕𝑋2 + 
1

𝑓2  
𝜕2𝑊

𝜕𝑌2 +  
2𝜁

𝑓2  
𝜕𝑊

𝜕𝑌
=  

1

𝐶𝑋2
 

𝜕2𝑊

𝜕𝑡2   Eq. ( 2) 

 

Where 𝑝(𝑦) = 𝑝0𝑒2𝜁𝑌  is the material mass density. 

Also 𝐶𝑋 =  √
𝜇0𝑋

𝑝0
 is the characteristic elastic shear 

wave velocity for the material in the x direction. The 

crack is assumed to be open at one end and closed at 

the other, to have a constant velocity V, and to 

maintain its length constant within the plane. 

Localized crack-tip plasticity and three-dimensional 

effects are neglected in this formulation. For the 

current problem of a crack propagating at constant 

velocity V along the X–direction, it is convenient to 

employ the Galilean transformation such as Eq. (3) 

[7]. 

 

X = x + Vt, Y=y, 
𝜕

𝜕𝑡
=  −𝑉 

𝜕

𝜕𝑥
    Eq. (3) 

 

Where (x, y) is the translating coordinate system 

attached to the propagating crack. Therefore, Eq. 

(1). becomes independent of time and can be 

converted into: 

 

𝑎2 𝜕2𝑤

𝜕𝑥2 +  
1

𝑓2  
𝜕2𝑤

𝜕𝑦2 + 
2𝜁

𝑓2  
𝜕𝑤

𝜕𝑦
= 0   Eq. ( 4) 

Where w(x, y) = W(X, Y, t) and a = √(
1 − 𝑉2

𝐶𝑥
2 ). Let a 

Volterra type screw dislocation with Bergers vector 

bz be situated at the origin of the coordinate system 

with the dislocation line x > 0 . 
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 The conditions representing the screw dislocation 

are: 

 

W(x, 0+) – w(x, 0−) = b2H(x) 

𝜎𝑧𝑦(x, 0+) = 𝜎𝑧𝑦 (x, 0−)   Eq. (5) 

 

Here, H(x) is the Heaviside step-function. The first 

Eq. (5). shows the multivaluedness of displacement 

while the second implies the continuity of traction 

along the dislocation line. 

It is worth mentioning that the above conditions for 

screw dislocation were utilized by several 

investigators, e. g., Weertman and Weertman [16]. 

To obtain a solution of the differential Eq. (4). 

subject to the conditions Eq. (5). , the complex 

Fourier transform is defined as follows: 

 

𝑓∗(𝜆) =  ∫ 𝑒𝑖𝜆𝑥𝑓(𝑥)𝑑𝑥
+∞

−∞

 

𝑓(𝑥) =  
1

2𝜋
∫ 𝑒−𝑖𝜆𝑥𝑓∗(𝜆)𝑑𝜆

+∞

−∞
  Eq. (6) 

 

In the above equation i=√−1, Applying Fourier 

transform Eq. (6). to Eq. (4). leads to a second order 

ordinary differential equation for w*(λ, y). The 

solution to this equation readily known: 

 

w*(λ, y) = A(λ)𝑒(−𝜁−√𝜁2+𝑓2𝑎2λ2)𝑦 +

𝐵(λ)𝑒(−𝜁−√𝜁2+𝑓2𝑎2λ2)𝑦                                
Eq. (7) 

 

where A(λ) and B(λ) are unknown. Application of 

conditions Eq. (5). to Eq. (7). gives the unknown 

coefficients. Therefore, the expressions for 

transformed component of displacement field 

become: 

 

w*(λ, y) = 
𝑏𝑧

2
(πб(λ)+i/λ)𝑒(−𝜁−√𝜁2+𝑓2𝑎2λ2)𝑦  Eq. (8) 

 

where б(λ) is the Dirac delta function. The 

displacement component in view of Eq. (6). and Eq. 

(8). leads to: 

w(x, y) = 
𝑏𝑧

4
𝑒−2𝜁𝑦 +

𝑖𝑏𝑧𝑒−𝜁𝑦

4𝜋
∫

𝑒
−𝑦√𝜁2+𝑓2𝑎2λ2−𝑖λ

λ

+∞

−∞
dλ  

     Eq. (9) 
 

It is elementary to show that Eq. (9). satisfy the first 

condition Eq. (5). The associated stress components 

by virtue of Eq. (1). and Eq. (9)., are given by: 

 

σ𝑧𝑥(x, y) = 
𝜇0𝑥𝑏𝑧𝑒𝜁𝑦

4𝜋
∫ 𝑒−𝑦√𝜁2+𝑓2𝑎2λ2−𝑖λx𝑑𝜆

+∞

−∞
  

Eq. (10) 

σ𝑧𝑦(x, y) = 
−𝜁𝜇0𝑦𝑏𝑧

2
−

 
𝑖𝜇0𝑦𝑏𝑧𝑒𝑦𝜁

4𝜋
∫ (

𝜁+√𝜁2+𝑓2𝑎2λ2

𝜆
𝑒−𝑦√𝜁2+𝑓2𝑎2x2−𝑖λx𝑑𝜆

+∞

−∞
 

     Eq. (11) 

The integrals in Eq. (10). and Eq. (11). can be 

evaluated with the contour integration. For the sake 

of brevity, the details of manipulation are not given 

here. The final results are Eq. (12): 
 

σ𝑧𝑥(x, y) = 
𝜇0𝑥𝑦𝜁𝑏𝑧𝑒𝑦𝜁

2𝜋𝑟
 𝑘1(

𝑟𝜁

𝑎𝑓
) 

σ𝑧𝑦(x, y) = 
𝜇0𝑦𝑥𝜁𝑏𝑧𝑒𝑦𝜁

2𝜋𝑟
 {𝑘1 (

𝑟𝜁

𝑎𝑓
) +

𝑟𝜁

𝑎𝑓
∫

√𝑢2−1𝑒
−(

𝑟𝜁
𝑎𝑓

)𝑢

(
𝑓2𝑎2𝑦2

𝑟2−𝑢2 )

+∞

1
𝑑𝑢 − 2 ∫

𝑢√𝑢2−1𝑒
−(

𝑟𝜁
𝑓𝑎

)𝑢

(
𝑓2𝑎2𝑦2

𝑟2−𝑢2 )
2 𝑑𝑢 −

+∞

1

𝑦𝜁 ∫
√𝑢2−1𝑒

−(
𝑟𝜁
𝑓𝑎

)𝑢

𝑢(
𝑓2𝑎2𝑦2

𝑟2−𝑢2 )
𝑑𝑢 −

+∞

1

𝑎𝑓𝑦

𝑟
∫

√𝑢2−1𝑒
−(

𝑟𝜁
𝑓𝑎

)𝑢

𝑢2(
𝑓2𝑎2𝑦2

𝑟2−𝑢2 )
𝑑𝑢 −

+∞

1

2𝑎𝑓𝑦

𝑟
∫

√𝑢2−1𝑒
−(

𝑟𝜁
𝑓𝑎

)𝑢

(
𝑓2𝑎2𝑦2

𝑟2−𝑢2 )
2 𝑑𝑢

+∞

1
}    

Eq. (12) 
 

Where k1(…) is the modified Bessel function of the 

second kind and r=√𝑥2 + 𝑓2𝑎2𝑦2. From Eq. (12)., 

it is obvious that stress components are Cauchy 

singular at dislocation position which is a well-

known feature of stress fields due to volterra 

dislocation. 

 

3. Formulation for Moving Cracks 

 

The dislocation solutions obtained in Section 2 are 

utilized to analyze functionally graded orthotropic 

plane weakened by N arbitrary moving straight 

cracks. The distributed dislocation technique is an 

efficient means to carry out this task, see for 

instance [17]. The moving cracks configuration may 

be described in parametric form as Eq. )13(: 

 

Xi = x0i + lis 

Yi = y0i  i=1,2,…,N -1≤ s ≤ 1            

Eq. )13( 

 

We consider local coordinate systems moving on the 

face of ith crack. The anti-plane traction on the face 

of the ith crack in terms of stress components in 

Cartesian coordinates becomes Eq. )14(: 

 

σnz (xi , yi) = τ0                                 Eq. )14( 

 

Suppose dislocations with unknown density Bzj is 

distributed on the infinitesimal segment dli located 

at the face of the jth crack where the parameter -1≤ 

p ≤1   and prime denotes differentiation with respect 

to the relevant argument. The traction on the face of 

ith crack due to the presence of distribution of 

dislocations on the face of all N moving cracks 

yields Eq. )15(: 

𝜎𝑛𝑧(𝑥(𝑠), 𝑦(𝑠)) = ∑ ∫ 𝑘𝑖𝑗(𝑠, 𝑝)𝑙𝑗𝐵𝑧𝑗(𝑝)𝑑𝑝
1

−1

𝑁

𝑗=1

 

i=1,2,…,N.               Eq. )15( 
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Where from Eq. (12)., the kernel of integral 

equation is: 

 

𝑘𝑖𝑗 (𝑥𝑖(𝑠), 𝑦𝑖(𝑠), 𝑥𝑗(𝑝), 𝑦𝑗(𝑝))

=
𝜇0𝑦 (𝑥𝑖(𝑠) − 𝑥𝑗(𝑝)) 𝜉𝑒(𝑦𝑖(𝑆)−𝑦𝑗(𝑝))𝜉

2𝜋𝑟𝑖𝑗
{𝑘1 (

𝑟𝑖𝑗𝜉

𝑎𝑓
)

+ 
𝑟𝑖𝑗𝜉

𝑎𝑓
∫

√
𝑢2 − 𝑙𝑒

−(
𝑟𝑖𝑗𝜉

𝑎𝑓
)𝑢

(𝑓2𝑎2(𝑦𝑖(𝑆)−𝑦𝑗(𝑃))2

𝑟𝑖𝑗
2 − 𝑈2

+∞

1

𝑑𝑢

− 2 ∫
𝑢

√
𝑢2 − 𝑙𝑒

−(
𝑟𝑖𝑗𝜉

𝑓𝑎
)𝑢

(
(𝑓2𝑎2(𝑦𝑖(𝑆)−𝑦𝑗(𝑃))2

(𝑟𝑖𝑗
2 −𝑢2)

)

2

+∞

1

𝑑𝑢 − (𝑦𝑖(𝑆) − 𝑦𝑗(𝑃)) 𝜉

− ∫

√
𝑢2 − 𝑙𝑒

−(
𝑟𝑖𝑗𝜉

𝑓𝑎
)𝑢

(
𝑢(𝑓2𝑎2(𝑦𝑖(𝑆)−𝑦𝑗(𝑃))2

(𝑟𝑖𝑗
2 −𝑢2)

)

+∞

1

𝑑𝑢

− (
𝑎𝑓 (𝑦𝑖(𝑆) − 𝑦𝑗(𝑃))

(𝑟𝑖𝑗)
) ∫

√
𝑢2 − 𝑙𝑒

−(
𝑟𝑖𝑗𝜉

𝑓𝑎
)𝑢

(
𝑢2(𝑓2𝑎2(𝑦𝑖(𝑆)−𝑦𝑗(𝑃))2

(𝑟𝑖𝑗
2 −𝑢2)

)

+∞

1

𝑑𝑢

+ (
2𝑎𝑓 (𝑦𝑖(𝑆) − 𝑦𝑗(𝑃))

(𝑟𝑖𝑗)
) ∫

√
𝑢2 − 𝑙𝑒

−(
𝑟𝑖𝑗𝜉

𝑓𝑎
)𝑢

(
(𝑓2𝑎2(𝑦𝑖(𝑆)−𝑦𝑗(𝑃))2

(𝑟𝑖𝑗
2 −𝑢2)

)

2

+∞

1

𝑑𝑢} 

            Eq. )16( 

 

We substitute Eq. (14) and (16) into Eq. (15), 

becomes: 

0

1
222222

)(2

1
222222

)(2

1
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1
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1
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1
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
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eu
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epxsx
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ufr

ijji

ufr
ij

ij

ij

pysy

jiy
N

j

ij

ij

ij

ij

ij

ji

                 Eq. )17( 
 

Since the singularity of stress fields for dislocation 

is of Cauchy type then the Eq. (17). is Cauchy 

singular equations for unknown dislocation 

densities. Employing the definition of the 

dislocation density function, the equation for the 

crack opening displacement across the jth crack is 

 

𝑊𝑗
−(𝑆) − 𝑊𝑗

+(𝑆) =  ∫ 𝑙𝑗𝐵𝑧𝑗(𝑝)𝑑𝑝,
𝑠

−1
 j=1,2,3,.,N Eq. )18( 

 

The displacement field is single-valued for the faces 

of cracks. Consequently, the dislocation density 

functions are subject to the following closure 

requirements 

 

𝑙𝑗  ∫ 𝐵𝑧𝑗(𝑝)𝑑𝑝 = 0,
1

−1
   j=1,2,3,..,N          Eq. )19( 

 

The Cauchy singular integral Eq. (17) and Eq. (19) 

are solved simultaneously. To determine dislocation 

density functions this task is taken up by the 

methodology developed by Erdogan et al. [18]. The 

stress fields in the neighborhood of crack tips 

behave like 1/√𝑟 where r is the distance from the 

crack tip. Therefore, the dislocation densities are 

taken as 

,
1

)(
)(

2
p

pg
pB

zj

zj


  

Njp ,...,3,2,111              Eq. )20( 

 

Substituting Eq. (20) into Eq. (17) and Eq. (19) and 

discretizating of the domain, 11  p , by m+1 

segments, we arrive at the following system of 

Nx2m algebraic equations: 
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Where the collocation points are: 
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                Eq. )22( 

The components of matrix in Eq. (21) are: 
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                 Eq. )23( 

In Eq. (23.), 
ij

 in the last row of ijA
 designates 

the Kronecker delta. The components of vectors in 

Eq. (21). Are Eq. 24.: 

 

gzj (Pn)=[ gzj(P1) gzj (P2) Ʌ gzj(Pm)]T, 

qj(Sr) = [бyz(xi(Sj(S1),yj(S1)) бyz(xj(S2),yj(S2))… 

бyz(xj(Sm-1),yj(Sm-1))0]T               Eq. )24( 
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 Where superscript T stands for the transpose of a 

vector. The stress intensity factors at the tip of ith 

crack in terms of the crack opening displacement 

can be determined as follows  

 

kLi=
√2

4
𝜇(𝑦𝐿𝑖) lim

𝑟𝐿𝑖
→0

𝑊𝑖
−(𝑠)− 𝑊𝑖

+(𝑠)

√𝑟𝐿𝑖

 , 

kRi=
√2

4
𝜇(𝑦𝑅𝑖) lim

𝑟𝑅𝑖
→0

𝑊𝑖
−(𝑠)− 𝑊𝑖

+(𝑠)

√𝑟𝑅𝑖

  

                                   Eq. )25( 

where L and R designate, the left and right tips of a 

crack, respectively. The geometry of a crack implies 

 

rLi= [(𝑥𝑖(𝑠) − 𝑥𝑖(−1))2 + (𝑦𝑖(𝑠) − 𝑦𝑖(−1)2]1/2
, 

rRi= [(𝑥𝑖(𝑠) − 𝑥𝑖(1))2 + (𝑦𝑖(𝑠) − 𝑦𝑖(1)2]1/2
,  

Eq. )26( 

 

In order to take the limits for rLi→0  and rRi→0, we 

should let, in Eq. (26)., the parameter s→-1 and 

s→1, respectively. 

The substitution of Eq. (20). into E. (18)., and the 

resultant equations and Eq. (26). into Eq. (25). in 

conjunction with the Taylor series expansion of 

functions xi(s) and yi(s) around the points S=±1 

yield: 

kLi=
𝜇(𝑦𝐿𝑖)𝑓

2
((𝑥𝑖

, (−1))
2

+ (𝑦𝑖
,(−1))

2

)

1

4
𝑔𝑖(−1), 

kRi=
𝜇(𝑦𝑅𝑖)𝑓

2
((𝑥𝑖

, (1))
2

+ (𝑦𝑖
,(1))

2

)

1

4
𝑔𝑖(1), 

i=1,2,3,…N.               Eq. (27). 

 

The solutions of Eq. (21). are plugged into Eq. (27). 

thereby the dynamic stress intensity factors are 

obtained. 

 

4. Results and Discussion 

 

In this section, attention will be focused on the 

effect of the speed of crack propagation and material 

properties upon the dynamic stress intensity factors. 

Several examples are solved to demonstrate the 

applicability of the distributed dislocation technique. 

The analysis developed in the preceding section 

allows the consideration of a functionally graded 

orthotropic plane with any number of moving 

straight cracks. The stress distribution around the 

moving crack tip, are far more complicated than for 

the case of a stationary crack.  

All of the field variables have fields intensity factors 

and these intensity factors are all dependent on the 

crack moving velocity. In order to investigate the 

effects of the materials properties gradient and the 

crack moving velocity on the stress intensity factors, 

we now furnish some numerical works to 

demonstrate the applicability of the applied method. 

In all examples, the plane is under anti-plane shear 

deformation with magnitude τ0 . 

First, consider the case where example deals the 

moving crack is propagating parallel to the x-axis 

with constant velocity V in the positive X –

direction. The moving crack situated at l=1  with 

different ratios of moduli and FGM constant. In 

these examples, the effects of material properties 

and dimensionless crack speed V/C on the dynamic 

stress intensity factors are investigated. The problem 

is symmetric with respect to the y-axis. As it may be 

observed k/k0, is increased by growing V/C. The 

values of the normalized stress intensity factors for 

single crack versus the dimensionless crack speed 

V/C, are given in Fig. (2). The trend of variation 

remain the same by changing the FGM constant and 

the ratio of moduli of elasticity of the non-

homogeneous orthotropic plane.  

In the second example, we consider two collinear 

moving cracks with length 2l which are placed on 

the x-axis. The ratio of the moduli of elasticity of 

the functionally graded plane is chosen f=1.0,1.2. 

The graphical representation of the normalized 

stress intensity factors of crack tips k/k0, against the 

V/C, is depicted in Fig. (3). In this figure 2a is the 

distance between two crack tips. As expected, the 

value of k/k0, increases with increasing crack 

moving velocities. Conversely, with increasing 

ratios of moduli, the values of the k/k0 decreases. 

In the third example, the non-homogeneous 

orthotropic plane contains two parallel identical 

moving cracks with lengths 2l which are also 

parallel with the x-axis. Fig. (4)., shows the 

variation of normalized stress intensity factors with 

crack speed V/C, for various values of f. The stress 

intensity factors of the first crack which located on 

the vertical distance 2a with x-axis, is higher than 

the second one, mainly because it is closer to the 

load.  

Consider now the case where the two equal-length 

cracks are parallel with x-axis are shown in Fig. (5). 

The length of cracks remain fixed while the crack 

velocity are changing. The dimensionless stress 

intensity factors verses the dimensionless crack 

velocity, for value of FGM constant ξ=1.0, is 

depicted in Fig. (5). As it might be observed the 

maximum stress intensity factor for the crack tips 

occur when the crack velocity is increased. 
 

 
 

Fig. 1. Schematic view of a non-homogeneous 

orthotropic plane with a screw dislocation. 
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Fig. 2. Normalized stress intensity factors of crack tips 

versus the dimensionless crack speed. 

 

 
 
Fig. 3. Normalized stress intensity factor versus the 

dimensionless crack velocity for different ratio of the 

moduli. 

 

 
 

Fig. 4. Variation of Normalized stress intensity factors 

with V/C.  

 
 

Fig. 5. Normalized stress intensity factors of crack tips 

versus the dimensionless crack speed. 

 

8. Conclusion 

 

1.The anti-plane stress analysis of a non-

homogeneous orthotropic plane weakened by 

several moving cracks is carried out in this article. 

2.The dislocation solutions are used to construct 

integral equations for a functionally graded 

orthotropic plane weakened by multiple moving 

straight cracks.  

3.The effect of crack velocity, cracks and the ratio 

of the module of elasticity of the functionally graded 

orthotropic plane on the stress intensity factor was 

studied.  

4.To show the applicability of the procedure more 

examples are solved wherein the interaction between 

moving cracks is investigated. 
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