به کارگیری هوش مصنوعی مولد در تحلیل تحقیقات آمیخته
محورهای موضوعی : مدیریت آموزشی
1 - دانشگاه آزاد واحد تهران جنوب
کلید واژه: هوش مصنوعی مولد, تحقیق آمیخته, تحقیق کیفی, تحقیق کمی,
چکیده مقاله :
دستاوردهای اخیر در زمینه هوش مصنوعی مولد قادر است روشهای تحقیقات علمی را دگرگون سازد. برای بهرهبرداری از ابزارهای نوین در تمامی حوزههای آموزشی، سازگاری با تغییرات سریع فناوری امری ضروری محسوب میشود. این مطالعه با هدف بررسی استفاده از هوش مصنوعی مولد[1] در تحلیل دادههای تحقیق آمیخته (کیفی-کمی) نوشته شده است. در این تحقیق به بررسی این موضوع پرداخته میشود که دادههای حاصل از هوش مصنوعی مولد چگونه میتوانند معتبر و قابل اعتماد باشند. همچنین توصیههایی نیز برای بهبود استفاده از این رویکرد برای استفاده در تحقیقات آمیخته ارائه میشود. هوش مصنوعی مولد به عنوان ابزاری فکری، میتواند بهترین همکاری را با دیدگاههای انسانی داشته باشد؛ این مسئله بهویژه در زمان کدگذاری دادههای کیفی اهمیت مییابد. برای مثال، اگر از مدل هوش مصنوعی مولد [2]ChatGPT درخواست کدگذاری استقرایی شود، این پلتفرم میتواند کدهای عمومی را تولید کند که بر اساس تجزیه و تحلیلهای انسانی، بهبود یافته و ارتباط معناداری بین کدگذاری انسانی و ماشین (هوش مصنوعی مولد) ایجاد شده است. همچنین، به کارگیری هوش مصنوعی مولد در تحلیل کمی دادههای آمار توصیفی نیز میتواند دقیق باشد، اما محقق باید بهطور منطقی بهترین انتخاب را برای انجام تحلیل استنباطی مناسب داشته باشد. بهعلاوه، برای تحلیل کمی و کیفی در تحقیقات آمیخته باید استفاده از هوش مصنوعی مولد بهطور جداگانه مدنظر قرار گیرد. این مقاله شامل توصیهها و راهنماییهایی درباره نحوه استفاده اخلاقی، مسئولانه و علمی از هوش مصنوعی مولد در زمینه تحقیقات علوم اجتماعی و علوم انسانی است.
[1] Generative Artificial Intelligence (Gen AI)
[2] Chat Generative Pre-Trained Transformer
The next steps in the field of generative artificial intelligence (GAI) can transform scientific research methods. To utilize new tools in all educational fields, adaptation to rapid technological changes is required. This study was written with the aim of examining the use of artificial intelligence in mixed research data analysis (qualitative-quantitative). This study examines how the findings from artificial intelligence can be valid and reliable. It also provides recommendations for improving the use of this method for use in mixed research. Artificial intelligence, as an intellectual tool, can best collaborate with human perspectives. This issue becomes especially important during qualitative coding. For example, if the ChatGPT artificial intelligence model is asked to perform inductive coding, the platform can generate generic codes that are based on human analysis, improved, and meaningful connections between human and machine (GAI) coding. Also, the use of AI in quantitative analysis of descriptive statistics data can be accurate, but the researcher must make the best logical choice to perform the appropriate inferential analysis. In addition, GAI should be fully considered for quantitative and qualitative analysis in mixed research. This article provides recommendations and guidelines on how to use ethical, including cases of science and knowledge from artificial intelligence in the context of social science and humanities research.
1. Ågerfalk, P. J. (2020). Artificial intelligence as digital agency. European Journal of Information Systems, 29(1), 1–8.
2. Atkinson, R. (2019). Don’t fear AI (Volume 2). European Investment Bank.
3. Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983.
4. Barros, A., Prasad, A., & Śliwa, M. (2023). Generative artificial intelligence and academia: Implication for research, teaching and service. Management Learning, 54(5), 597-604.
5. Boxleitner, A. (2023). Pushing boundaries or crossing lines? The complex ethics of ChatGPT jailbreaking. The Complex Ethics of ChatGPT Jailbreaking.
6. Cave, S., & Dihal, K. (2019). Hopes and fears for intelligent machines in fiction and reality. Nature Machine Intelligence, 1(2), 74–78.
7. Combrinck, C. (2024). A tutorial for integrating generative AI in mixed methods data analysis. Discover Education, 3(1), 116.
8. Fontenelle-Tereshchuk, D. (2024). Academic writing and ChatGPT: Students transitioning into college in the shadow of the COVID-19 pandemic. Discover Education, 3(1), 6.
9. Dempere, J., Modugu, K., Hesham, A., & Ramasamy, L. K. (2023). The impact of ChatGPT on higher education. Frontiers in Education, 8, 1206936.
10. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International journal of information management, 57, 101994.
11. Fàbregues, S., Molina-Azorin, J. F., & Fetters, M. D. (2021). Virtual special issue on “quality in mixed methods research”. Journal of Mixed Methods Research, 15(2), 146-151.
12. Grimes, M., Von Krogh, G., Feuerriegel, S., Rink, F., & Gruber, M. (2023). From scarcity to abundance: Scholars and scholarship in an age of generative artificial intelligence. Academy of Management Journal, 66(6), 1617–1624.
13. Herrmann, H., & Cameron, R. (2023). Responsible mixed methods research (RMMR): A case for managing ethics and AI in MMR. In Handbook of Mixed Methods Research in Business and Management (pp. 55–75). Edward Elgar Publishing.
14. Hinks, T. (2024). Artificial Intelligence Perceptions and Life Satisfaction. Journal of Happiness Studies, 25(1), 5.
15. Hmoud, M., Swaity, H., Hamad, N., Karram, O., & Daher, W. (2024). Higher education students’ task motivation in the generative artificial intelligence context: the case of chatgpt. Information, 15(1), 33.
16. Howard, J. (2019). Artificial intelligence: Implications for the future of work. American Journal of Industrial Medicine, 62(11), 917–926.
17. Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100001.
18. Kantor, J. (2024). Best practices for implementing ChatGPT, large language models, and artificial intelligence in qualitative and survey-based research. JAAD International, 14, 22–23.
19. Kuckartz, U., & Rädiker, S. (2022). Using Maxqda for integration in mixed methods research. In The Routledge Handbook for Advancing Integration in Mixed Methods Research (pp. 540–562). Routledge.
20. Mari, L. (2023). Chatbots: Facing a cultural revolution and trying to understand it (a non-technical perspective) (B. Seminar, Ed.). UC Berkeley.
21. McClure, P. K. (2018). “You’re fired,” says the robot: The rise of automation in the workplace, technophobes, and fears of unemployment. Social Science Computer Review, 36(2), 139–156.
22. Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104.
23. OpenAI. (2024). ChatGPT (September 25 Version) [Large language model]. https://chat.openai.com
24. Pack, A., & Maloney, J. (2023). Using generative artificial intelligence for language education research: Insights from using OpenAI’s ChatGPT. TESOL Quarterly, 57(4), 1571–1582.
25. Rawas, S. (2024). ChatGPT: Empowering lifelong learning in the digital age of higher education. Education and Information Technologies, 29(6), 6895-6908.
26. Roth, P. A. (2019). Meaning and method in the social sciences: A case for methodological pluralism. Cornell University Press.
27. Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., & Gonzalez-Rodriguez, M. (2023). Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix. Sustainability, 15(15), 11524.
28. Schlagwein, D., & Willcocks, L. (2023). ‘ChatGPT et al’: The ethics of using (generative) artificial intelligence in research and science. Journal of Information Technology, 38(3), 232–238.
29. Schwartz, R., Schwartz, R., Vassilev, A., Greene, K., Perine, L., Burt, A., & Hall, P. (2022). Towards a standard for identifying and managing bias in artificial intelligence (Vol. 3, p. 00). US Department of Commerce, National Institute of Standards and Technology.
30. Skorburg, J. A., O’Doherty, K., & Friesen, P. (2024). Persons or data points? Ethics, artificial intelligence, and the participatory turn in mental health research. American Psychologist, 79(1), 137.
31. Smolansky, A., Cram, A., Raduescu, C., Zeivots, S., Huber, E., & Kizilcec, R. F. (2023, July). Educator and student perspectives on the impact of generative AI on assessments in higher education. In Proceedings of the tenth ACM conference on Learning@ Scale (pp. 378-382).
32. Strzelecki, A. (2024). Students’ acceptance of ChatGPT in higher education: An extended unified theory of acceptance and use of technology. Innovative higher education, 49(2), 223-245.
33. Vindrola-Padros, C., & Johnson, G. A. (2020). Rapid techniques in qualitative research: A critical review of the literature. Qualitative Health Research, 30(10), 1596–1604.
34. Wang, Y., & Singh, L. (2023). Adding guardrails to advanced chatbots. arXiv preprint arXiv:2306.07500.
35. Wikipedia. (2024). ChatGPT. https://en.wikipedia.org/wiki/ChatGPT (Accessed March 4, 2024).