تعیین مهم ترین ویژگی های کمی و کیفی متمایزکننده سرده Rubus L. در ایران با استفاده از الگوریتم های دسته بندی و انتخاب ویژگی
محورهای موضوعی : زیست شناسی سلولی تکوینی گیاهی و جانوری ، تکوین و تمایز ، زیست شناسی میکروارگانیسم
1 - دانشکده علوم پایه و فنی مهندسی، دانشگاه گنبد کاووس، گنبد کاووس، ایران
کلید واژه: ریخت شناسی, الگوریتم, داده کاوی, کلید شناسایی,
چکیده مقاله :
جنس سرده Rubus L. متعلق به تیره Rosaceae و زیرتیره Rosoideae شامل حدود 750 گونه در دنیا است. این جنس در اکثر نواحی جهان پراکنش دارد. در فلور ایران تعداد هشت گونه و پنج هیبرید (دو رگه) گزارش شده است. تمشک یکی از پر چالشترین جنسها در بین گیاهان گلدار میباشد. وجود عواملی از جمله پلیپلوئیدی، آپومیکسی و دورگهگیری زیاد در این جنس باعث مشکلاتی در تشخیص از نظر ریخت شناسی شده است. جمع آوری دادههای کمی و کیفی جهت تشخیص گونهها و روشهای جمعآوری مولفههای ریخت شناسی بسیار زمانبر و پر هزینه است. بنابراین، بکارگیری روش-های متفاوت در جهت کاهش زمان و هزینهها همواره مطرح میباشد. در بسیاری از موارد، جهت آنالیز دادههای زیستی روشهای داده کاوی بکار گرفته میشود. در این مقاله، از ترکیب الگوریتمهای مختلف انتخاب ویژگی و دستهبندی برای تشخیص ویژگیهای متمایزکننده بین گونههای سرده Rubus L. استفاده شد. با بکارگیری روش دستهبندی Random Forest و مدل انتخاب ویژگی InfoGainAttributeEval با تعداد 28 ویژگی به دقت 05/94 درصد در دستهبندی رسیدیم که بهترین الگوریتم از نظر دقت میباشد و با استفاده از روش MLP و مدل انتخاب ویژگی SymetricalAttributeEval، با تعداد 4 ویژگی دقت دستهبندی 32/84 درصد حاصل شد که بهترین الگوریتم از نظر تعداد اندک ویژگیهای انتخاب شده است. چهار ویژگی فوق توسط اکثر الگوریتمهای استفاده شده در این مقاله انتخاب شدند. تمامی این ویژگیها کیفی هستند و جهت بدست آوردن آنها نیازی به هزینه اندازهگیری آزمایشگاهی نمیباشد. بنابراین می-توانند معیار مناسبی جهت کلید شناسایی باشند.
The genus Rubus L. (Rosaceae, Rosoideae) includes 750 species. This genus is distributed from Low-TroPical to Sem-Polar region. Eight species and five hybridization varieties were reported in the flora of Iran. Rubus is one of the most challenging genera in flowering plants. Due to polyploids, apomixis and hybridization in the genus mentioned bring challenges in Rubus identification based on morphological characters. Collecting quantitative and qualitative data in plant studies is very time consuming and costly. Therefore, many kinds of research have been conducted on variable methods which are so reliable and economy vantage. Data mining has been applied for many purposes, e.g., bio-data analysis. In the current paper, a combination of different feature selection and classification algorithms was used to recognize the distinctive features of the genus Rubus L. Using the Random Forest classification method and the InfoGainAttributeEval feature selection model, we accurately classified it to 94.05 percent with 28 attributes which is the best algorithm in terms of accuracy and when we applied the MLP method and the SymetricalAttributeEval feature selection model, With only four attributes, the accuracy of the classification was obtained by 84.32 percent which is the algorithm with the least number of selected attributes. Four attributes mentioned were selected by most of the algorithms used in this paper. All of these attributes are qualitative and there is no need for laboratory measurement costs to obtain them. So there can be a suitable criterion for identifying key.
[1] Aalders, L. E. and Hall I. V. 1966. A Cytotaxaonomic survey of the native blackberries of Nova Scotia.Canadian Journal of Genetics and Cytology 8: 528-532.
[2] Ali, A.S.O., Malik, A.S. and Aziz, A. 2013. A geometrical approach for age-invariant face recognition. International Visual Informatics Conference. – Springer 81-96.
[3] Ballington, JR. Luteyn, MM. Thompson, K. Romoleroux, K. and Castillo, R. 1993. Rubus and Vacciniaceous germplasm resources in the Andes of Ecuador. Plant Genetic Resources newsletter 93: 9-15.
[4] Bramer, M. 2007. Principle of data mining. Springer.
[5] Carletta, Jean. 1996. Assessing agreement on classification tasks: The kappa statistic. Computational Linguistics 22: 249–254.
[6] Cohen, J. 1960. A Coefficient of Agreement for Nominal Scales. Educational and psychological measurement, 20: 37-46.
[7] Dash, M. and Liu, H. 1997. Feature selection for classification. Intelligent data analysis 1:131-156.
[8] Diaz, F., & Jones, R. 2004. Using temporal profiles of queries for precision prediction. International ACM SIGIR conference on Research and development in information retrieval 18-24.
[9] Focke, W. O. 1910. Species Ruborum. Monographiae Generic. Rubi Prodromus. Bibliotheca Botanica 17: 1-120.
[10] Focke W. O.1911. Species Ruborum. Monographic Genesis. Rubi Prodromus. Pars I, Stuttgart.
[11] Focke, W. O. 1914. Species Ruborum. Monographic Genesis. Rubi Prodromus. Pars I-II. Stuttgart.
[12] Gu, Y., C. M. Zhao, W. Jin, and W. L. Li. 1993. Rubus resources in Fujan and Hunan provinces. Acta Horticulturae 345: 117-125.
[13] Gustafsson, A. 1942. The origin and properties of the European blackberry flora. Hereditas28: 249-277.
[14] Gardner, M. W., Dorling, S. R. 1998. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15), 2627-2636.
[15] Han, J., Pei, J. and Kamber, M. 2011. Data mining: concepts and techniques. Elsevier.
[16] Hummer, K. E. 1996. Rubus diversity. Hort Science 31: 182-183.
[17] Ian H. Witten and Eibe Frank. 2005. Data Mining Practical Machine Learning Tools and Techniques.
[18] Kasalkhe, R., Jorjani, E., Sabori, H., Sattarian, A., Habibi, M. 2016. Biosystematic study of Rubus L. (Rosaceae) in North of Iran. MSc thesis. University of Gonbad-e-Kavous, 276 pp.
[19] Kantardzic, M. 2003.Data Mining: Concepts, models, methods, and algorithms. Wiley-Interscience.
[20] Khatamsaz, M. 1992.Flora of Iran (Rosacea).-Research Institute of forests and Rangelands 6: 20-35.
[21] Larose, D. T. 2005. k‐nearest neighbor algorithm. Discovering Knowledge in Data: An Introduction to Data Mining, 90-106.
[22] Lu, L. T. 1983. A study on the genus Rubus of china. Actaphyto taxonomic sinica 21: 13-25.
[23] Published on the Internet https://weka.waikato.ac.nz/explorer [accessed 13 November 2017].
[24] Published on the Internet http://weka.sourceforge.net/doc.dev/weka/attributeSelection/AttributeEvaluator.html [accessed 13 November 2017].
[25] Platt, J. 1998. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Microsoft Research.
[26] Quinlan, J.R. 2014. C4.5: programs for machine learning. Elsevier 58-60.
[27] Richards, A. J., J. Kirschner, J. Stepanek, and K. Marhold. 1996. Apomixis and taxonomy: an introduction. Folia Geobotanica phytotaxonomica 31: 281-282.
[28] Rish, I. 2001. An empirical study of the naive Bayes classifier. IJCAI Workshop.
[29] Robertson, K. R. 1974. The genera of Rosaceae in the southe astern United States. Journal of the Arnold Arboretum 55: 352-360.
[30] Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., Feuston, B. P. 2003. Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of chemical information and computer sciences, 43(6), 1947-1958.
[31] Thompson, M. M. 1995. Chromosome number of Rubus species at the National Clonal Germplasm Repository. Hort Science 30: 1447-1452.
[32] Weber, H. E. 1995. Die Gattung Rubus L. im nordwestlichen Europa. Phanerogamarum Monographiae Tomus VII. J. Cramer, Lehre, Germany.
[33] Remagnino, P., Mayo, S., Wilkin, P., Cope, J. and Kirkup, D., 2016. Computational Botany. Springer Berlin Heidelberg:.
[34] Ramírez‐Gallego, S., García, S., Mouriño‐Talín, H., Martínez‐Rego, D., Bolón‐Canedo, V., Alonso‐Betanzos, A., Benítez, J.M. and Herrera, F., 2016. Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(1), pp.5-21.
_||_